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1 Introduction

The purpose of this report is to explore the calculation of orthogonal polyno-
mials and their derivatives. The basic method follows the approach given by
Emerson (1968)[2]. Given a set of points x1, · · · , xn, polynomials pj(xi), j =
0, · · · ,m where pj(xi) is of degree j, are found such that the matrix of values

P =


p0(x1) p1(x1) p2(x1) · · · pm(x1)
p0(x2) p1(x2) p2(x2) · · · pm(x2)
p0(x3) p1(x3) p2(x3) · · · pm(x3)

...
...

...
...

...
p0(xn) p1(xn) p2(xn) · · · pm(xn)

 (1.1)

is orthonormal; that is such that P TP = Im+1 where Im+1 is the (m + 1) ×
(m + 1) identity matrix. From this matrix of values recursion coefficients
Aj, Bj and Cj, j = 1, · · · ,m are found and used to calculate values of the
polynomials at any point x. It will be shown that the derivatives of the
polynomials can also be found recursively utilizing constants Aj, Bj and Cj

defined in the next section.

1



2 Derivations of the methods

2.1 Calculation of the matrix P of equation (1.1)

We shall utilize the notation of Emerson’s paper [2]. Thus, let xi, i = 1, · · · , n
be given values of x and let wi be a weight associated with each xi. We
shall find the Aj, Bj and Cj such that at any x the values of the orthogonal
polynomials are given by the simple recursion (Equation (6) in Emerson),

pj(x) = (Ajx+Bj)pj−1(x)− Cjpj−2(x) , j = 2, 3, · · · ,m < n (2.1)

where p−1(x) = 0, ∀x and p0(x) =
(√∑n

i=1wi

)−1
,∀x. In the derivation of

these recursion constants we make use of the following conditions

n∑
i=1

wipj(xi)pk(xi) =

{
1 , if j = k
0 , if j 6= k

(2.2)

The values of Aj, Bj and Cj are then found recursively from the following
equations

Aj =


n∑

i=1

wix
2
i p

2
j−1(xi)−

[
n∑

i=1

wixip
2
j−1(xi)

]2
−

[
n∑

i=1

wixipj−1(xi)pj−2(xi)

]2
−1/2

Bj = −Aj

n∑
i=1

wixip
2
j−1(xi) (2.3)

Cj = Aj

n∑
i=1

wixipj−1(xi)pj−2(xi)

The steps in the calculation of the Aj, Bj and Cj given wi and xi, i = 1, · · · , n
can be summarized in the following steps

1. For the weights, wi calculate sw = [
∑n

i=1w(i)]
−1/2

. For i = 1, · · · , n
set p−1(xi) = 0 and p0(xi) = sw.

2. For j = 1, 2, · · · , n
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(i) Calculate

s1 =
n∑

i=1

wix
2
i p

2
j−1(xi)

s2 =
n∑

i=1

wixipj−1(xi)

s3 =
n∑

i=1

wixipj−1(xi)pj−2(xi)

(ii) Calculate

Aj =
{
s1 − s22 − s23

}−1/2
Bj = −Ajs2

Cj = Ajs3

(iii) For i = 1, 2, · · · , n calculate

pj(xi) = (Ajxi +Bj)pj−1(xi)− Cjpj−2(xi)

3. End of loop started at step 2.

2.2 Approximating a function using the orthogonal poly-
nomials

At this point the n× (m+1) orthogonal matrix P has been calculated. Next
given observations of a function y = f(x) for x = x1, x2, · · · , xn we determine
coefficients αj , j = 0, · · · ,m such that f(x) is approximated on the range
of the xi by f̃(x) ≈

∑m
j=0 αjpj(x). This is accomplished by finding the least

squares solution of the n× (m+ 1) system of linear equations

Pα = y , y = (y1, y2, · · · , yn)T

Because of the orthogonality of P the solution is trivially found to be α =
P Ty. Noting that C1 is arbitrary and so can be set to zero, the approximation
of the function f(x) can be found for any x by setting p0(x) = sw and using
the recursion of equation(2.1) to calculate p1(x), · · · , pm(x) and then form

the linear combination ˆf(x) =
∑m

j=0 αjpj(x).
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2.3 The derivative of the model function

If we wish to use the model to estimate the derivative of the approximating
polynomial function we require the derivatives p

′
j(x) , j = 0, 1, · · · ,m. Noting

that p0(x) is a constant independent of x we see that p
′
0(x) = 0 for all x and

that C1 = 0 we can find p
′
j(x) by differentiating equation (2.1) to obtain the

recursion

p
′

j(x) = Ajpj−1(x) + (Ajx+Bj)p
′

j−1(x)− Cjp
′

j−2(x) , j = 1, 2, · · · ,m (2.4)

Since the recurrence of equation(2.4) requires pj−1(x) it is necessary for any
j to first utilize the recursion of equation (2.1) and then the recursion of
equation (2.4). The justification for equation (2.4) is given in Appendix A.

3 Some examples

3.1 Approximating the Runge Function:

A well known example from elementary Numerical Analysis is the interpola-
tion of the Runge Function

f(x) =
1

1 + 25x2
, x ∈ [−1, 1] (3.1)

Standard divided difference interpolation based on equally spaced points fails
completely due to rapid oscillation of the polynomial approximation near −1
and 1.[1],[3] The problem is due to the equal spacing of the interpolation
data points and becomes worse as the degree of the polynomial increases.
The problem can be remedied by making the interpolation table based on
the Chebyshev points on the interval [a, b].

xj =

(
a+ b− (a− b)cos[(2j − 1)π]

2n

)
/2 (3.2)

In this case a = −1 and b = 1. Rather than approach this problem by means
of approximation by an interpolating polynomial we shall use the methods of
least squares for approximation by a set of orthogonal polynomials based on
function evaluations at the Chebyshev points. We consider two approxima-
tions based on n = 51 Chebyshev points on [−1, 1] and polynomials of degree
10 and 20 respectively. Noting that the Runge function is symmetric about
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x = 0 we expect that only the polynomials of even degree will contribute to
the approximation and that proves to be true. Figures 1 and 2 below illus-
trates the fit based on polynomials up to degree 10 and 20 respectively. The
ANOVA table associated with the approximation based on n = 51 points
and polynomials up to degree 10 is

Source df SS MS F
Regression 11 5.13254 0.46659 307.155
Error 40 0.06763 0.00159
Total 51 5.19331
R2 = 0.9883

Table 1: Analysis of variance summary for approximating the Runge function
by a set of orthogonal polynomials up to degree 10 for x values taken to be
the Chebyshev points on [−1, 1] based on n = 51 values.The values of the
function are not assumed to be subject to any additive errors beyond normal
computational rounding errors.

Similarly, taking n = 51 and the maximum degree polynomial as m = 20
leads to Table 2

Source df SS MS F
Regression 21 5.19216 0.2474590 6491.4
Error 30 0.00114 0.0000381
Total 51 5.19331
R2 = 0.9998

Table 2: Analysis of variance summary for approximating the Runge function
by a set of orthogonal polynomials up to degree 20 for x values taken to be
the Chebyshev points on [−1, 1] based on n = 51 values.The values of the
function are not assumed to be subject to any additive errors beyond normal
computational rounding errors.

In Figure 1 we note that the polynomial model of degree 10 fails to capture
the peak of the function at x = 0 and shows significant oscillation in the tails
of the function. These differences are made clear in the second figure that
plots the derivatives. The large and rapid changes of the derivative of the
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polynomial model near -1 and 1 clarify the extent of the poor fit. On the
other hand, the 20th degree polynomial approximation shown in Figure 2, is
a great improvement. The oscillation in the tails is greatly reduced and the
fit at x = 0 is much better. Again, the derivatives display the problems in
the tail of the function. This example deals with a very hard problem and
the results of the approximation by the polynomials with maximum degree
20 does much to tame the bad behavior.

6



Figure 1: Approximation of the Runge function, f(x) = (1 + 25x2)−1 by or-
thogonal polynomials of maximum degree 10 by the method of Least squares.
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Figure 2: Approximation of the Runge function, f(x) = (1 + 25x2)−1 by or-
thogonal polynomials of maximum degree 20 by the method of Least squares.
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3.2 A true polynomial data set

For this example we choose the polynomial

f(x) = 1− x+ x2 + 3x3

and generate pseudo data with the following SAS code,

seed =12345;
c a l l s t r e a m i n i t ( seed ) ;
do i=1 to 30 ;
j=i −1;
x=mod( j , 5 ) − 0.25+0.5∗ rand ( ’ uniform ’ ) ;
y=1−x+x∗∗2+3x∗∗3+0.5∗ rand ( ’ normal ’ ) ;
output ;
end ;
run ;

Note that in this example, the values of X have been subjected to a random
element. This is a device for generating values that are different but more
or less the same. The y values are are generated subject to an error that
is distributed N(0, 0.25). We would expect to be able to capture the third
degree polynomial nearly exactly and this precisely what we find. The results
of the regress are summarized in the following Analysis of Variance table,

Source df SS MS F
Regression 5 1328517.6 265703.52 1434650.0
Error 25 4.6301195 0.1852044
Total 30 1328522.3
R2 = 0.9999997

Table 3: Analysis of Variance summary for fitting a simple cubic polynomial
using orthogonal polynomials up to and including degree four. Although not
shown, the coefficient for the fourth degree polynomial is small relative to
the other coefficients and is not significant. In this case, the values of the
observations are subject to an additive error distributed as N(0, 0.25).

For this example the plots of the fit and of the derivative are so close to
the true values as to be indistinguishable.
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4 Summary

We have shown how to calculate the derivatives of a set of orthogonal poly-
nomials given the constants for the three term recursion which generates the
polynomial values. We have seen that these same constants can be used
in a recursion to calculate the derivatives of the polynomials and hence of
any model function based on a linear combination of the polynomials. A
down side of this approach for SAS users is that the procedure ORPOL does
not return the recurrence coefficients that are calculated by the methods de-
scribed in this report [2]. The computations for this report were done using
a program written in FORTRAN2003. A subroutine called ORPOLY.F95 is
available from the author.

Appendices

A Derivation of equation(2.4)

Note that in the construction of the recursion given in equation(2.1), the
constants Aj, Bj and Cj, j = 1, 2, · · · ,m are found recursively and once they
are found, the value of the polynomials at any point x can be found using
equation(2.1),

pj(x) = (Ajx+Bj)pj−1(x)− Cjpj−2(x) , j = 1, 2, 3, · · · , , m < n

In particular, given any x we can use the recursion to find values of the
polynomials at the points x+h where h is a small number, the by elementary
calculus we know that

p
′

j(x) = lim
h→0

pj(x+ h)− pj(x)

h

and from application of the Taylor expansion we can write,

pj(x+ h) = pj(x) + hp
′

j(x) + ◦(h) (A.1)

From equation(2.1) we have that

pj(x+ h) = (Aj(x+ h) +Bj)pj−1(x+ h)− Cjpj−2(x+ h)
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if we now replace pk(x + h) for k = j, j − 1, j − 2 with the appropriate
expressions from equation(A.1) in equation(2.1) , subtracting equation(2.1)
leads (after considerable algebra) to

pj(x+ h)− pj(x)

h
= (Ajx+ bj)p

′

j−1(x)− Cjp
′

j−2(x) + Ajpj−1 (A.2)

+ hAjp
′

j−1 + ◦(h)

Taking the limit of both sides of this equation leads to the result given in
equation(2.4).

References

[1] de Boor, Carl (2001),A Proactial Guide to Splines: revised edition,
Springer, New York.

[2] Emerson, Phillip L.,(1968) Numerical Construction of Orthogonal Poly-
nomials From a General Recurrence Formula, Biometrics, Vol 24, pp
695-701.

[3] Forsythe, G. ,Malcolm, M. and Moler, C.,Computer Methods for Mathe-
matical Computations, Prentice-Hall series in automaticd computation,
Prentice Hall, 1977.

11


