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1 Background Material:

A general introduction to asymptotic approximations to distributions is given
in Wallace [5] and the notation of his article will be used at least initially.
The Central Limit Theorem has its limitations, especially when the sample
size ,n, is small. The Edgeworth expansion is aimed at improving the approx-
imation for such samples. The expansion is derived from a formal identity
which relates the characteristic functions of two distributions. For simplicity
we shall assume that both distributions are continuous and share the same
domain on the real line. Let F (x) be the CDF of the distribution to be ap-
proximated and let Ψ(x) be the CDF of the distribution to be used in making
the approximation. In general, Ψ(x) need not be the normal distribution,
but later it will be what we use to obtain the Edgeworth expansion. Let ψ(t)
be the characteristic function of Ψ(x) and let γ1, γ2, · · · be its cumulants.
Then we know that ψ(t) can be written as

ψ(t) = exp(
∞∑
r=1

γr
(it)r

r!
) (1.1)

where i is the complex number defined as i =
√
−1. It follows then that it is

the case that

ψ(t) exp(
∞∑
r=1

−γr
(it)r

r!
) = 1 (1.2)
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If we denote the characteristic function for the distribution F (x) by f(t) and
its associated cumulants by κ1, κ2, · · · then

f(t) = exp(
∞∑
r=1

κr
(it)r

r!
) (1.3)

Combining equation (1.3) and equation( 1.2) the characteristic functions sat-
isfy the formal identity

f(t) = exp

(
∞∑
r=1

[κr − γr]
(it)r

r!

)
ψ(t) (1.4)

Next quoting from Wallace [5]

If now, Ψ and all its derivatives vanish at the extreme range of
x and exist for all x in that range, then by integration by parts,
(it)rψ(t) is the characteristic function of (−1)rΨ(r)(x). Introduc-
ing the differential operator D to represent differentiation with
respect to x, the formal identity corresponds term-wise in any
formal expansion to the formal identity

F (x) = exp

(
∞∑
r=1

[κr − γr]
(−D)r

r!

)
Ψ(x) (1.5)

One can formally and apparently construct a distribution with
prescribed cumulants by choosing Ψ and formally expanding.
The most important developing function Ψ(x) is a normal distri-
bution and with that choice, the formal expansion has been given
earlier by Chebyshev,[2] Edgeworth [3] and Charlier [1].

2 Developing the Expansion

Let X1, X2, · · · , Xn be an i.i.d. sample from a distribution with E(Xi) =
µ = κ1 and V ar(Xi) = σ2 = κ2 and higher cumulants denoted by κr and
with −∞ < X <∞. Our objective will be to develop an approximation for
the distribution of the statistic

Yn =

√
n
(
X̄n − µ

)
σ

=
1√
n

n∑
i=1

(
Xi − µ
σ

)
(2.1)
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where Yn
L→ N(0, 1) as n→∞ which is better than N(0, 1) when n is not too

large. In our development we shall use the standard normal distribution with
CDF Φ(x) as the approximating distribution Ψ(x) of equation (1.5). For the
standard normal it is well known that the cumulants are γ1 = 0, γ2 = 1 and
γr = 0, r ≥ 3. Next we must find the characteristic function for Yn. Let
g(t) be the characteristic function for the distribution of the Xi, Then it is
well known by properties of the characteristic function that for any Xi the
characteristic function of

1√
n

(
Xi − µ
σ

)
is

h(t) = exp

(
−t µ√

nσ

)
g

(
1√
nσ

t

)
(2.2)

= exp

(
−[

µ√
nσ

](it) + [
κ1√
nσ

](it) +
κ2
nσ2

(it)2

2!
+
∞∑
r=3

κr
(
√
nσ)r

(it)r

r!

)

Since κ1 = µ and κ2 = σ2 we see that the h(t) reduces to

h(t) = exp

(
1

2n
(it)2 +

∞∑
r=3

κr
(
√
nσ)r

(it)r

r!

)

Finally, the characteristic function of Yn is just equal to h(t)n so we have

w(t) = h(t)n = exp

(
1

2
(it)2 +

∞∑
r=3

1

nr/2−1
κr
σr

(it)r

r!

)

Next we note that for the standard normal distribution, γ1 = 0, γ2 = 1 and
γr = 0 , r ≥ 3, so that the characteristic function of the standard normal is
exp[(1/2)(it)2]. Plugging into equation (1.5) leads to the expression

FYn(x) = exp

(
∞∑
r=3

1

nr/2−1
κr
σr

(−D)r

r!

)
Φ(x) (2.3)

where as has been previously stated D is the differential operator, Dr =
dr/dxr. The next step is to expand the exponential function in its MacLaurin
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expansion; that is

exp

(
∞∑
r=3

1

nr/2−1
κr
σr

(−D)r

r!

)
= 1 +

(
∞∑
r=3

1

nr/2−1
κr
σr

(−D)r

r!

)

+
1

2!

(
∞∑
r=3

1

nr/2−1
κr
σr

(−D)r

r!

)2

+
1

3!

(
∞∑
r=3

1

nr/2−1
κr
σr

(−D)r

r!

)3

(2.4)

+
1

4!

(
∞∑
r=3

1

nr/2−1
κr
σr

(−D)r

r!

)4

+ · · ·

At this point each term in the formal relationship is expanded and the terms
gathered in powers of 1/

√
n. This is a daunting task even with today’s

modern computer tools for doing the algebra involved. This can be accom-
plished using a program like Maple or Mathematica. Written in terms of the
cumulants and powers of D the first few terms of this expansion are,

1− 1√
n

[ κ3
6σ3

D3
]

+
1

n

[
1

72

(κ3
σ3

)2
D6 +

1

24

(κ4
σ4

)
D4

]
− 1

n3/2

[
1

144

(κ3
σ3

)(κ4
σ4

)
D7 +

1

120

(κ5
σ5

)
D5 +

1

1296

(κ3
σ3

)3
D9

]
(2.5)

+
1

n2

[
1

1152

(κ4
σ4

)2
D8 +

1

720

(κ6
σ6

)
D6 +

1

1728

(κ3
σ3

)2 (κ4
σ4

)
D10

+
1

31104

(κ3
σ3

)4
D12 +

1

720

(κ3
σ3

)(κ5
σ5

)
D8

]
+©

(
1

n5/2

)
When this lengthy expression is applied as an operator on Φ(x) the result is
the Edgeworth expansion. This can be written in a number of ways, where
the effects of the differentiation can be expressed most simply in terms of the
Hermite polynomials Hen(x) defined by the relationship

Hen(x) = (−1)n
φ(n)(x)

φ(x)
or φ(n)(x) = (−1)nφ(x)Hen(x)
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where φ(x) = dΦ(x)/dx. The polynomial functions, Hen(x) can be found
recursively as

Hen+1(x) = xHen(x)− nHen−1(x) for n ≥ 1 (2.6)

given that He0 = 1 and He1 = x. Application of equation(2.5) to the
function Φ(x) leads to the Expansion for the distribution of the random
variable Yn,

FYn(x) = Φ(x)− 1√
n

[ κ3
6σ3

He2(x)
]
φ(x) +

1

n

[
1

72

(κ3
σ3

)2
(−He5(x))

+
1

24

(κ4
σ4

)
(−He3(x))

]
φ(x)− 1

n3/2

[
1

144

(κ3
σ3

)(κ4
σ4

)
He6(x)

+
1

120

(κ5
σ5

)
He4(x) +

1

1296

(κ3
σ3

)3
He8(x)

]
φ(x)

+
1

n2

[
1

1152

(κ4
σ4

)2
(−He7(x)) +

1

720

(κ6
σ6

)
(−He5(x))

+
1

1728

(κ3
σ3

)2 (κ4
σ4

)
(−He9(x)) +

1

31104

(κ3
σ3

)4
(−He11(x))

+
1

720

(κ3
σ3

)(κ5
σ5

)
(−He7(x))

]
φ(x) (2.7)

+©
(

1

n5/2

)
Or after adjusting for the minus signs on the odd ordered Hermite polyno-
mials, the expansion becomes
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FYn(x) = Φ(x)− 1√
n

[ κ3
6σ3

He2(x)
]
φ(x)− 1

n

[
1

72

(κ3
σ3

)2
He5(x)

+
1

24

(κ4
σ4

)
He3(x)

]
φ(x)− 1

n3/2

[
1

144

(κ3
σ3

)(κ4
σ4

)
He6(x)

+
1

120

(κ5
σ5

)
He4(x) +

1

1296

(κ3
σ3

)3
He8(x)

]
φ(x)

− 1

n2

[
1

1152

(κ4
σ4

)2
He7(x) +

1

720

(κ6
σ6

)
He5(x)

+
1

1728

(κ3
σ3

)2 (κ4
σ4

)
He9(x) +

1

31104

(κ3
σ3

)4
He11(x)

+
1

720

(κ3
σ3

)(κ5
σ5

)
He7(x)

]
φ(x) (2.8)

+©
(

1

n5/2

)
Some sources express the expansion in terms of the central moments of

the the distribution of X and these first few of the relationships between the
cumulants and the central moments are

κ1 = µ

κ2 = µ2 = σ2

κ3 = µ3 (2.9)

κ4 = µ4 − 3µ2
2

κ5 = µ5 − 10µ2µ3

Given that κ3 = µ3 and that He2(x) = x2 − 1 the term of order 1/
√
n in

equation (2.7) can be written as

− 1√
n

[ µ3

6σ3
(x2 − 1)

]
φ(x) =

1√
n

[ µ3

6σ3
(1− x2)

]
φ(x) (2.10)

Similarly, given that He3 = x3 − 3x , He4 = x4 − 6x2 + 3 and He5 = x5 −
10x3 + 15x the second term in the expansion (term of order 1/n) becomes

− 1

n

[
1

72

(µ3

σ3

)2 (
x5 − 10x3 + 15x

)
+

1

24

(
µ4 − 3µ2

2

σ4

)(
x3 − 3x

)]
φ(x)

(2.11)
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The terms given in equations (2.10) and (2.11) correspond to those given by
Lehmann [4] on pages 81 and 83.

3 Remarks

In this report we have developed the Edgeworth expansion for the case of a
random variable Yn which has the property that

Yn =

√
n
(
X̄n − µ

)
σ

L→ N(0, 1) as n→∞

where X̄n is the sample mean of an i.i.d. sample from a distribution with
cumulants κ1, κ2, · · · . If the moment generating function, M(t) of the distri-
bution of a random variable is known then the cumulant generating function
is

K(t) = ln(M(t)) = κ1t+
κ2
2!
t2 +

κ3
3!
t3 + · · ·

The cumulants are then found by differentiating repeatedly by t and evaluat-
ing the respective derivatives at t = 0. From a computational point of view,
the recursion given in equation (2.6) is very handy, since for any particular
value of x, the numerical values of the polynomials Her(x) can be found
without actually finding the polynomial form.

Appendix

In this appendix we give the expressions for the terms of order n−5/2 and
n−3. These are long and involve high order cumulants and high order Her-
mite polynomials.

−φ(x)

n5/2

[
1

933120

(κ3
σ3

)5
He14(x) +

1

31104

(κ3
σ3

)3 (κ4
σ4

)
He12(x)

+
1

8640

(κ3
σ3

)2 (κ5
σ5

)
He10(x) +

1

6912

(κ3
σ3

)(κ4
σ4

)2
He10(x)

+
1

4320

(κ3
σ3

)(κ6
σ6

)
He8(x) +

1

2880

(κ4
σ4

)(κ5
σ5

)
He8(x)

− 1

5040

(κ7
σ7

)
He6(x)

]
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and

−φ(x)

n3

[
1

33592320

(κ3
σ3

)6
He17(x) +

1

746496

(κ3
σ3

)4 (κ4
σ4

)
He15(x)

+
1

155520

(κ3
σ3

)3 (κ5
σ5

)
He13(x) +

1

82944

(κ3
σ3

)2 (κ4
σ4

)2
He13

+
1

51840

(κ3
σ3

)2 (κ6
σ6

)
He11(x) +

1

17280

(κ3
σ3

)4 (κ6
σ6

)
He11(x)

+
1

17280

(κ3
σ3

)(κ4
σ4

)(κ6
σ6

)
He11(x) +

1

82944

(
κ4

σ4

)3

He11(x)

− 1

30240

(κ3
σ3

)(κ7
σ7

)
He9(x) +

1

17280

(κ4
σ4

)(κ6
σ6

)
He9(x)

+
1

28800

(κ5
σ5

)2
He9(x) +

1

40320

(κ8
σ8

)
He7(x)

]
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