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Sample Size Calculation in Pool Screening

For pool screening (group testing) the sampling model is that of a series of
Bernoulli trials and the observed number of positive pools then has a Binomial
distribution. Suppose the we collect pools of size n and that the underlying prevalence we

wish to test is denoted by p, . If we collect m pools and denote the number of positive
pools by T then the probability mass function of 7'is

P(T=t|po,n,m)Z(}?j[l—(l—Po)"]t [a-py ]

A hypothesis test of H,: p=p, versus H, : p < p, can be based on T and it can be

shown that it is the uniformly most powerful test of this kind. The test has the rejection
region 7' <7 where T, is chosenso that P(T'<T |p=p,)=0.

When p, is small (say 25 per 10000), there is a minimal number, m, , of pools of

size n required for the test to even be meaningful. To see this, we note that the probability
of observing 7' =0 is

P(T=0’p0,n,l’l’Z) =(1_p0)mn

and that in order to make a test this probability must be at least as small as the proposed
a level of the test for otherwise observing no positive pools would not reject the null
hypothesis. In what follows, we shall make the rule that the minimum number of pools
collected , m, must be large enough so that

P(T <1| py,n,my) <o and P(T <2| p,,n,m,) > o (1.1)

Because the distribution of 7 1s discrete, we will have to settle for a level o test rather
than a size o test.

Finding a value of mo' such that P(T =0) <a is very straight forward. As noted
previously, P(T =0| p,,n,m)=(1—-p,)™ and this will be less than o for any fixed p,
In(ex)

and n if m, >| ————
nln(1- p,)

J+1 where L yJ stands for the greatest integer less than y.

Next, since the conditions of equation (1.1) can be viewed as the requirement that

P(T <1 py,n,m) = (1= p)™" Jf’"[l—(l—p)”][(l—p)”]m*1 ~a



The desired value of m, can then be found by solving the inequality

—[(m ~Dnln(l=p,)+1n(m—(m —1)(1—p0)")] > —In(at) (1.2)

subject to the constraint that m > m,. Note that the derivative (with respect to m) of the
function on the left hand side of this equation is equal to

- [=a-p)]
[m—(m=D(1-p,)" ]

—nin(1- p,)

The first term is positive by virtue of the fact that 0 < p; <1. The second term requires
some discussion. It is clear that the quantity

[1=0-p)" ] p[140=p)+(=py)’ +o+(1-p)" ]
[m—(m=1)(1-p,)" ] [ m—(m=1)1-p,)" ]

is positive for all m,n>1and 0 < p, <1. The numerator is bounded above by np, and the

denominator takes on its smallest value when m =1. Hence it follows that this quantity is
bound above by np, for all m >1 and decreases as m gets large. Hence,

- [1-a-p)]
[m—(m-1)(1-p,)" |

2 —np,

for all m,n>1and 0 < p, <1. Furthermore,

—nln(l- p,) = n[ p, +%P§ +%p3 +o]

so that

[1-(1-py)" ]

— > np, +npy| $ P +5 Py +o0 | =1py >0
m—(m=1)(1-p,)" ] i ]

~nln(l- p,)~
I

Thus, the derivative is positive for all m >1 and so the function on the left hand side of
equation (1.2) is strictly increasing as a function of m. In addition, since the second
derivative of the left hand side of equation (1.2) with respect to m is always negative the
function is concave downward. These conditions are generally sufficient to guaranteed
the stability of Newton’s method as a method for generating trial solutions for solving the



inequality. Newton’s method will lead, in general, to a non-integer solution and so the
final result should be the nearest integer larger than the observed solution.

Computation of the sample size required to achieve a given power against a
specific alternative is more complex. In this case two inequalities must be satisfied
simultaneously; one that identifies the critical value for the test of level a and a second
one which specifies the power. Thus, for any sample size m, level o and power  we

must first find the critical value 7. such that the rejection region for an alternative of the

form H,:p< p,is T <T,.. This means that 7, satisfies the conditions
P(T<T.|m,n,p))<a and P(T <T.+1|m,n,p,)>c
Once T, is found, then by definition

ﬂ:ﬁm :P(TSTC\m,n,pA)

The value of m is varied until 8, > B,,.... While B, | < B - Since, in general, the

power function is increasing as a function of the sample size, this condition insures that
the sample size is the minimum necessary.

This process can be greatly facilitated if a good initial estimate of m can be
obtained. Asymptotic test methods provide a way to find such an estimate. From
Lehmann (2010) an asymptotic test for the parameter 6, of a Binomial random variable 7’

with success probability 6, and sample size m, is based on the test statistic,

7,-0)
\0,(1-6,)

which is asymptotically N(0,1). Consideration is given to a sequence of alternatives of

the form 6, =0, + %— where A is positive or negative depending on the direction of
m

the one-sided test. This leads to the sample size calculation formula

u,—u
mz(a 2ﬂ)

2
6,(1-6,)

where u, and u,, are appropriate critical values from the N(0,1) distribution.

For the pool screening model, 6, =1-(1- p,)", and for an alternative of the form

D, =Dyt %/Z we are leadtoa 0,(A) =0, + %% where by expanding



0,(M)=1-(1-p,)" =1- (1 - [po + %D in a Taylor expansion about A =0 and
m

dropping all but the first order terms we obtain the approximation A = n(1— p,)" ' A. This

(e — 105 )2

(n(1=py)"'A)

leads to the formula

1N

m

S[1-0-p) [a-p)"] (1.3)

This formula is simple and can be easily applied with a hand calculator and a table for the
standard normal distribution to find the quantities u, and u, . It would be of interest to

see if these values can be used to find the sample size for the exact test we are
investigating. If it could, this would save a great deal of complex computation. To this
end we consider the results given in Tables 1 and 2 which involve using the asymptotic
sample size in making the test. Thus the results indicated represent the quantities
associated with basing the test on the asymptotic sample size (asympt.) and for
comparison purposes basing the test on the smallest m such that

P(T<T.|m,n,py))<a and P(T <T.+1|m,n,p,) >
and B, 2> p,.... While B, <pB,.... where T, is the critical value for the test.

Table 1 below gives example results utilizing this formula for the case of pools of size
n =50 and target values of @ =0.05 and $ =0.80 andtest H,: p=p, vs H,: p< p,.

2 0.8p, 0.6p, 0.4p,
Do Asympt. | Minimal | Asympt. | Minimal | Asympt. | Minimal
m 1312 1196 328 273 146 109
25 T, 134 122 28 23 10 7
10,000 o 0.0425 0.0491 0.0376 0.0480 0.0363 0.0487
5} 0.8156 0.8015 0.8161 0.8125 0.8978 0.8363
m 697 634 174 137 77 57
5 T, 136 123 29 22 10 7
1,000 o 0.0486 0.0499 0.0455 0.0489 0.0303 0.0443
B 0.8354 0.8064 0.8729 0.8011 0.8869 0.8279
m 395 348 99 81 44 30
b T, 139 122 30 24 11 7
100 o 0.0403 0.0497 0.0369 0.0424 0.0322 0.0488
B 0.8189 0.8008 0.8624 0.8105 0.9107 0.8359

Table 1




The column labeled “Asympt.” corresponds to basing the test on the asymptotic
sample size while the one labeled “Minimal” corresponds to finding the sample size by
the search method described above. The table indicates that at least for these few
examples, the sample size estimated using the asymptotic formula is too large. It is also
apparent that choosing the smallest sample size to achieve the desired power often leads
to a critical value with associated alpha level considerably smaller than the target level.
This is simply a result of the fact that the test is based on a discrete distribution.

Similar calculations for the test H,: p=p, versus H,:p> p, are given in table

2. Again the column labeled “Asympt.” corresponds to basing the test on the asymptotic
sample size while the one labeled “Minimal” corresponds to finding the sample size by
searching until the criteria described above are met. In this case, the asymptotic sample
size is generally too small to achieve that desired power.

D 1.2p, 1.4p, 1.6p,
Do Asympt. | Minimal | Asympt. | Minimal | Asympt | Minimal

m 1312 1446 328 397 146 193

25 T, 175 191 49 58 25 31
10,000 a 0.0439 0.0498 0.0482 0.0495 0.0349 0.0452
B 0.7950 | 0.80161 | 0.7748 0.8057 0.6603 0.8006

m 697 777 174 217 77 105

5 T, 174 192 49 59 24 31
1,000 a 0.0431 0.0496 0.0377 0.0471 0.0427 0.0482
B 0.7434 0.8021 0.6898 0.8038 0.6793 0.8091

m 396 449 99 125 44 61

1 T, 173 195 48 59 24 31
100 a 0.0497 0.0495 0.0432 0.0484 0.0308 0.0479
B 0.7585 0.8045 | 0.69802 | 0.8014 0.6043 0.8003

Table 2

The construction of an algorithm to find the minimum number of pools as just
described can be simplified if we make use of the well known relationship between the
upper tail probabilities of the binomial distribution and the incomplete beta function. We
recall the following identities (Abramowitz and Stegun):

m

Z[’:jesa—e)“ — I (a,m—a+1) (1.4)

s=a

where




Iy(a,p)= B(al ﬁ)joet““(l—t)ﬂ"dt (1.5)

and
Iy(a,B)=1-1,(B,a) (1.6)

Combining equations (1.4) and (1.6) leads to the computational formula

i[’:’je"a—e)m‘s SE [mj(?"(l—e)”“‘ =1,y (m-a,a+1) (1.7

s=0 s=a+l

Because the incomplete beta function is continuous in its parameters and if a is not
restricted to integers, it is possible to find an a unique number a such that for any fixed
integer m, I, ,(m—a,a+1)=oa . Next note that as m is increased in unit increments

(i.e.m —>m+1), a changes slowly when m is large and so | 4 |, the integer portion of a

remains constant over a range of values of m. Thus, since the critical value of the test
statistic is an integer, the critical value remains the same over a range of m values.

Obviously, since a is not an integer we expect that the a level of the test based on \_ElJ

will be different from the value a desired. The fact that it will be less than o follows
from the fact that the incomplete beta function is an increasing function of @ when m is
fixed and a decreasing function of m when a is fixed (Gun, 1965). For integer increments
this is well known. In particular, note the following identities for the incomplete beta
function (Abramowitz and Stegun, page 944):

_ T+ oy
Ix(r,s)—Ix(r+1,s)+r(r+1)r(s)x(1 X) (1.8)
Ix(r,s):lx(r—l,s+1)—%xrl(l—x)“' (1.9)

where r and s need not be integers as long as » —1> 0. From these it follows immediately
that / (r,s)>1 (r+1,s) and [ (r,s)<I (r—1Ls+1). Gun, (1965) showed that for

0<x<1, I (r,s) is a monotonically decreasing function of » and a monotonically
increasing function of s . His approach leads to the following result.

Lemma: Let ¢ >0 be any positive quantity then / (r,s)<I (r—¢g,r+¢)

Proof: Consider the quantity



h= B(r,S)B(r—8,r+8)[Ix(r,s)—lx(r—e,r+g]

where B(s,») is the complete beta function. Since B(s,*) is positive whenever the
arguments are positive, the algebraic sign of h depends on the difference in the two
incomplete beta functions. We shall show that # <0 when & > 0. To this end, note that

1
h J. rgl(l Z)s+8 leIyr 1(1 y)s ldy J-Zrl(l Z)sldzj.yrel(l y)s+£ ldy

0
1
0

Zr—s—l(l_z)s+s 1..r 1(1 y)s ldydz IJ.Z) 1(1 Z)s 1, r—e— l(l_y)s+s—ldydz

S S ¢

If the outer integral is divided into two segments, (0,x) and (x,1) in each case, the terms
involving the interval segment (0,x) from the two integrals are equal and hence cancel.
This we have that,

(1.10)

J.Zr—g—l(l_z)we: 1 .r— 1(1 y)s ldydz '[.[Zr 1(1 Z)v 1. r—e— 1(1_y)s+s—ldydz
0

:j‘]ﬁzf 1(1 Z)sl rl(l_y)sll(IZZj _(I;J’J :ldydz

Noting that the double integral is over the region R = {( 1,2)|0<y<x,x<z< 1} so that

h

Il
[ SR,

-z

y <z leads to the fact that (I—_y] > ( j > 0. Thus for any € >0,
y

z

(-5

so the integrand defining /4 is always negative and thus 4 <0 which completes the proof.

To apply these here note that r=m—a and s=a+1, and that the value of
T, =T.(m, p,), the critical value for the test, is | a |, the integer part of a. Thus, if a is

such that [ ,(m—-a,a+l)=a then [ _,(m-T.,1.+1)<ca. Furthermore, since
I (r,s)>1 (r+1,s), a unit increase in m requires a compensatory increase in a if
I, ,(m—a,a+1) is to equal o . This increase will generally be less than one and so if we
denote this new value of @ by & it will be the case for a range of values of m that
T.(m, py)=T.(m+1,p,) since |a| :Ld*J. This is illustrated clearly in Table 3. Note



that for m [1187,1195], a is increasing while the value of 7. remains constant at
T. =121. As m increases, there will be a point where T.(m+k, p,)=T.(m, p,)+1; that
is, where the critical value for the test takes the value of the next integer. It is at this value
of m that the test has an alpha level closest to the desired value since over the range of
values of m leading to the same critical value, 1, ,(m—T7,.,T, +1) is a decreasing function
of m. These observations are illustrated by the example in Table 3.

As noted previously, in searching for the sample size, m, we need to find a size so
that both the Type I error and the power objectives are simultaneously met. For any
alternative, increasing the sample size will should increase the power, but again because
of the discrete nature of the quantities involved, the power also decreases as the critical
value is constant over a range of values of m. Thus referring to Table 3 we observe this
behavior on the intervals1187 <m <1196 and 1197 <m <1204 .

m asl, _,(m-a,a+1)=0.05 T.= LdJ o power
1185 120.8876 120 0.0420 0.7765
1186 120.9975 120 0.0411 0.7736
1187 121.1075 121 0.0490 0.7990
1188 121.2174 121 0.0479 0.7963
1189 121.3274 121 0.0469 0.7936
1190 121.4373 121 0.0459 0.7909
1191 121.5473 121 0.0449 0.7881
1192 121.6572 121 0.0440 0.7853
1193 121.7672 121 0.0430 0.7825
1194 121.8772 121 0.0421 0.7797
1195 121.9871 121 0.0412 0.7769
1196 122.0971 122 0.0491 0.8020
1197 122.2071 122 0.0480 0.7993
1198 122.3171 122 0.0470 0.7966
1199 122.4271 122 0.0460 0.7939
1200 122.5370 122 0.0450 0.7912
1201 122.6470 122 0.0441 0.7885
1202 122.7570 122 0.0431 0.7857
1203 122.8670 122 0.0422 0.7830
1204 122.9770 122 0.0413 0.7802
1205 123.0870 123 0.0492 0.8049
1206 123.1970 123 0.0481 0.8023

Note: This table was constructed with p, =0.0025, p, =0.0020, o =0.05 and the desired

power = 0.80.
Table 3




Thus, the search requires that we find the first value of m for which all conditions are
met. The behavior of the type I error and power on intervals of m, with constant critical
value preclude the use of sophisticated search algorithms and so a simple strategy of
starting at the minimum value of the sample size for which the test is properly defined
and incrementing m by one at each step until the conditions are met, seems to be the only
reasonable computational strategy. The calculation of the asymptotic sample size is
helpful in this effort, particularly for the hypothesis test

H,:p=p, versus H, :p>p, (1.11)
As noted in Table 2, illustrative calculations suggest that in this case, the asymptotic

sample size is generally smaller than needed, so the search can be started at this value
rather than with the value of m, defined above.

The computational approach associated with the calculation of the sample size for the
hypothesis test
H,:p=p, versus H, :p<p, (1.12)

can be summarized in the following pseudo code. The code for the case of equation
(1.11) is similar.

Algorithm: Given p,,p, andn,let 6,=1-(1-p,)" and 6, =1-(1-p,)"

1. Calculate m, by solving the inequality (1.2) finding trial solutions by
Newton’s method.

2. Calculate m, the asymptotic sample size based on equation (1.3).
3. Calculate T,.(m,) and find the starting value of m for the search as follows:

(1). Solve the equation [, , (m,—a,a+1)=a (defined in equation (1.7))

for a then calculate T,.(m,)=|a].
(i1). Calculate B = power=P(T <T.(m,))=1_, (m—T1.,T.+1)
(1), If B> B iea» St m=m, else set m=m, .

4. Search for the smallest m which meets the criteria set out previously.

(i). Set m=m+1



(i1). Solve the equation [, , (m—a,a+1)=a (defined in equation (1.7))

for a then calculate T,.(m)=|a].
(iii). Calculate = power =P(T' <T.(m,)=1,_, (m—T.,T. +1)

(v). If B < B, repeat steps 4.(1) through 4.(ii1); else exit with sample
size equal to m.

End of algorithm

The pseudo code for the test of equation (1.11) is similar. The main difference is
in step 3. where the starting value of the search is defined and in the need to set an upper
bound on the practical sample size if the search is initiated starting at m, . In step 3, if

B(m,)> B,.... thenthe search “back tracks” by halving m, until f(m) < B,,,,., and then
the search proceeds as in step 4.

The calculations described in this report are implemented in a Windows program
called PS_SampleSize which is available from the authors upon request.
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