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SUMMARY 

 
Pool screening is a widely used design which provides an efficient way to estimate prevalence in vector-
borne infectious disease control when the prevalence is small. Laboratory screening tests may only have the 
capability of handling pool sizes up some maximum value. If a pool has size larger than this maximum value, 
it needs to be subdivided into smaller pools so that the new pool sizes meet the requirements of the screening 
test. This leads to the problem of analyzing data based on unequal pool sizes. We propose and compare 
procedures for statistical hypothesis testing under the setting of unequal pool sizes assumed to be fixed and 
known. The hypothesis testing procedures considered are: (1) an exact test based on the sum of positive 
pools, and (2) likelihood-based test procedures. Because the asymptotic distributions of these likelihood-
based tests are far from the expected Chi-squared distribution when the prevalence is small, we show that 
using the simulated quantiles of these likelihood-based statistics to define the new rejection region improves 
the performance of these tests. In the end, the exact test based on the sum of pool sizes outperforms the other 
tests with regard to power particularly when the prevalence is close to zero.  
 
Key words: Pool Screening, Likelihood Ratio Test, Statistical Power, Asymptotic Distribution, Maximum 
Likelihood Estimate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. Introduction 

The terms “pool screening” and “group testing” are used in the literature by different authors, but 
they both refer to procedures that test subjects in pools or groups instead of individually. In this case subjects 
may be insects, virus, blood samples, chemical agents etc. The pool screening testing procedure is usually 
implemented when the proportion of positive subjects is very low (for instance, rare disease with prevalence 
less than 0.1%). The outcome of pool testing is either positive or negative. When the outcome of pool testing 
is negative, then all the subjects in this pool are declared negative. When the result of pool screening is 
positive, then one or more subjects in this pool are positive. The goal of pool screening can be the efficient 
classification of individuals as positive or negative or estimating the probability of individual subject being 
positive in whole population.  
 

Even though earlier implementation of pool screening can be found in Marion’s(1936) research, 
Dorfman (1943) is often credited as the first person who discussed it in the statistics literature. The 
motivation of Dorfman’s work was identifying syphilitic antigen positive individuals among army man by 
pool screening of blood samples. Many of the statistical aspects of pool screening were widely investigated 
later. Retesting schemes that were explored mainly focused on improving efficiency of classifying all the 
positive and negative subjects (Sterrett, 1957; Milton and Groll, 1966; Chen and Swallow, 1990; Hsu, 1995). 
Test accuracy concerns came mostly from HIV research (Kline et al., 1989; Tu et al.,1995; Wein and Zenios, 
1996). Farrington (1992) recommended generalized linear models to handle covariates. Hepworth (1996) 
investigated exact confidence intervals given several pool screening stages where each stage has a different 
pool size. Barker (2000) considered the case where the pool sizes are unequal and follow no special pattern 
in size. 
 

Besides the above mentioned statistical development in pool screening, estimating the probability 
(denoted by p) of a subject being positive is one of the primary purposes of statistical inference. One 
commonly used estimator is the minimum infection rate (MIR) which is calculated as the fraction of number 
of positive pools over total number of subjects screened.  Gu et al (2003) cautioned that this estimator will 
underestimate the true infection rate when positive pools contain more than one positive subject. Another 

estimator is the maximum likelihood estimator (MLE) which can be expressed as
1
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M
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 where K 

denotes the common pool size and T is the sum of positive pools.  Tu et al. (1995) and Barker (2000) showed 
that first order approximations to the bias and variance of this estimator are  
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where M denotes total number of pools. Observe that if the pool size is greater than 1, the bias is positive and 
so the MLE is on the average is an overestimation. Also, for a fixed pool size, bias, variance and hence mean 
square error (MSE) decrease as the number of pools increases. Thus the MLE converges in probability to p 
as the number of pools goes to infinity, i.e., the MLE is a consistent estimator of p. Finally, both bias and 
variance increase with p if the number of pools and the pool size are held constant. 
 

Determining the appropriate pool size is very important in pool screening. Chiang and Reeves(1962) 

suggested a formula ( )
( )
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K
p

=
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 to compute the pool size with the aim of having half positive and half 



negative pools. Thompson (1962) proposed pool size formula 1.5936 pK
p
−

=  which minimizes the MSE. 

Katholi and Unnasch (2006) pointed out that for rare event where p is very small, the above formulae usually 
provide much larger pool size than can be handled in an actual lab screening test. That is, the chemistry of 
the test procedure places restrictions on the size of the pools. Consequentially, in practice collected subjects 
are subdivided into smaller samples that satisfy the requirements of the laboratory screening test. Therefore 
in determining pool sizes both statistical and practical requirements need to be considered. In Wuchereria 
bancrofti infection control, polymerase chain reaction (PCR) technique can be employed to detect up to 40 
female mosquitoes in a pool (Helmy et al., 2004; Goodman et al., 2003;Vasuki et al., 2003;Williams et al., 
2002); and in Onchocerca volvulus infection control program, most literature uses PCR assay method that 
can handle no more than 50 black flies in a pool(Yameogo et al., 1999; Guevara et al., 2003).  
   

Hypothesis testing is another important aspect of statistical inference. Especially for disease 
eradication programs such as the Onchocerciasis (river blindness) Control Program in Africa. After several 
years’ effort, hypothesis testing can be utilized to determine the progress of disease control and continuation 
of the program. However, as the prevalence, p, decreases and approaches zero, researchers must process very 
large number subjects because the probability of a pool being negative increases rapidly, and only a very 
small fraction of pools will turn out positive. Generally, it is believed that there is a level of prevalence at or 
below which transmission ceases. Hence testing a hypothesis of the kind 0p p≤  is essential. Hence it 
remains statistically challenging and practically crucial to investigate and compare different hypothesis 
testing procedures. There is a scarcity of articles in the literatures discussing statistical test and its power. 
Katholi (2007) summarized pool screening hypothesis testing under equal pool size situation. Tebbs and 
Mccann (2007) explored large sample, likelihood ratio based hypothesis tests for data stratified by 
categorical variable such as gender etc.    
 

The aim of this paper is to develop and investigate two-sided exact and asymptotic tests in the 
unequal pool size situation.  Model setting, distributional properties, and computational issues of the number 
of positive pools will be discussed in Section 2. Section 3 will focus on hypothesis testing procedures. 
Comparisons of the testing procedures in terms of statistical  power will be discussed in a simulation study in 
Section 4. Finally, limitations and recommendations will be discussed in the Section 5.   
 
2. Properties and Computational Method for the Distribution of Number of Positive Pools 
 

The number of positive pools will be the basis for the exact test proposed in Section 3.  In order to be 
able to properly use this statistic in developing inferential procedures, it is important to understand its 
distribution. We start by first stating the model and notations.   
 
2.1 Model Setting  
 

Assume all individual subjects within the same pool and between pools are independent and 
identically distributed (i.i.d.). Furthermore, assume that the screening test used has perfect sensitivity and 
specificity. Suppose 1 2, ,..., Mx x x  are pool testing results of M pools of sizes 1 2, ,..., Mnn n , where   
 

th

th
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Let p denote the probability of an individual in the population to be positive and the parameter of interest. 
Given ith pool, the probability that the pool tests negative is (1 ) inp− . Since one or more positive individuals 
in ith pool will make pool positive, the probability that the ith pool testing positive is 1 (1 ) inp− − . In this case, 
the random variable Xi has Bernoulli distribution given by 
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2.2 Distribution and Basic Properties for Number of Positive Pools   
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Wang (1993) provided several other expressions in a more general setting. Barker (2000) derived the above 
distribution in pool screening. Clearly, when all M pools have sizes equal to a constant K, pools are 
independent identically distributed (i.i.d.). Then T is distributed as Binomial (M,1 (1 )Kp− − ) which is a 
special case of equation (2).   
 
Moment and cumulant generating functions provide convenient ways to compute the moments of a 
distribution as well as other important properties like symmetry and kurtosis. Cumulants also play an 
important role in obtaining an asymptotic approximation to the distribution of a test statistic in this case, any 
test statistic which is a function of T. The following theorem gives us the moment and cumulant generating 
functions of the statistic T. 
 
Theorem 1: Moment generating function and cumulant generating function of T are respectively given by  
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First four cumulants, skewness and kurtosis are  
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The proof of this Theorem is straightforward, and an outline is given as follows: Since all subjects are 
assumed i.i.d, then pools are independently distributed, therefore the moment generating function of T is 
equal to the product of the moment generating function of each pool. The cumulant generating function can 
be easily found by taking the logarithm of the moment generating function. All the other results follow 
immediately by using their respective definitions.  
 

First counterintuitive fact from above results is the variance of T. If let 1 (1 ) in
i pπ = − − , then 
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then (ar( )) 1v MT π π≤ − .  This implies that the maximum value of the variance of T is achieved when pool 
sizes are equal. Nedelman (1986) generalized this fact in other distributions. 
 

Second noticeable fact  is the sign of the skewness. Given in known, it is apparent that 2(1 ) 1inp− −  
determines the sign of each term within the summation of 1η  since 1 (1 ) 0inp− − > , (1 ) 0inp− >  and 

denominator greater than zero. When p is very small, it is possible that 1(1 )
2

inp− >  for all {1,2,..., }i M∈ , 

and the distribution of T is right skewed. As p increases, more terms of (1 ) inp− will be less than 1
2

 and sign 

of 1η  will change from positive to zero to negative. Consequently, the distribution of T will change from 
being positively skewed to symmetrical to negatively skewed . However, there might be few positive or 
negative terms that dominate the other terms given very different pool sizes. Under this situation, the above 
observation regarding skewness could not be generalized.    
 

When pool sizes are equal, it can be shown that T is a sufficient statistics of p and that it has the 
monotone likelihood ratio (MLR) property. Thus, a one-sided hypothesis test based on T regarding p is an 
uniformly most powerful (UMP) test by Karlin-Rubin Theorem (see for instance, Casella and Berger, 2001). 
In the next theorem, it will be shown that T is no longer sufficient for p when the pool sizes are unequal 



although it still possesses the MLR property. Thus, it is not necessarily true that a one-sided test for p based 
on T is UMP.  
 

Theorem 2: When pool sizes are unequal, the statistics T is not a sufficient statistics of p  
It is not difficult to prove above theorem  by  using the definition of sufficient statistics or by factorization 
theorem.  
 
Remark: However, by applying Marcus and Lopes (1957) inequality, Huynh (1994) showed that sum of 
independent and non-identical Bernoulli random variables still possess the MLR property under the 
condition of success probability of each trial ( )jP θ is a non decreasing function of θ . This condition is 

automatically satisfied in pool screening setting because 1 (1 ) inp− − is a monotone increasing function of p, 
thus statistics T has MLR property. 
 
2.3 Computation of Probability Mass Function of T 

 
Exact test based on T requires computing probabilities associated with different values of T. Most 

statistical software can easily compute the distribution of T when the pool sizes are equal by applying the 
Binomial distribution. However, when the pool sizes are unequal, different pools have different probabilities 
of being positive, and alternative methods need to be explored to compute the distribution of T before one 
can make further statistical inference. Several different computational methods will be proposed and 
compared in this subsection. 
 
2.3.1 Enumeration and Saddle Point Method 

 
The most obvious way to compute the distribution of T (that is, ( ), 0,1, ,P T t t M= = ) is 

exhaustively enumerating all 
M
t

⎛ ⎞
⎜ ⎟
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 possible combinations in the second factor of equation (2) for each value 

of t. However, this method is extremely tedious because the total number of arithmetic operations in the sum 
requires M-1 multiplications. Its computational complexities increase exponentially with M. Practical 
experience shows that the enumeration method is not applicable when the total number of pools is much 
larger than 25. Consider the case where there are total 34 pools having different pool sizes. By equation (2), 

the maximum number of combination terms within the summation is 
34

2,333,606,220
17
⎛ ⎞
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⎝ ⎠

 which already 

exceeds 231-1=2,147,483,647, the commonly used largest exact integer based on a 32 bit floating point 
arithmetic according to IEEE standard.  

 
Due to the deficiency of above direct computation, Barker (2000) explored the use of the saddlepoint 

approximation method to calculate distribution of T . The saddlepoint approximation is usually applied when 
there is no close form for the probability density (or mass) function but the moment generating function is 
known or when the probability has close form but is not easy to compute. Daniels(1954) first approached this 
problem by using inversion of Fourier transformation. Goutis and Casella (1999) had an excellent tutorial 
review on this method and simplified this method into several steps. Barker (2000) combined saddle point 
approximation and enumeration method in unequal pool size screening using Fortran, where exact 



enumeration method is used to calculate PMF at the two ends when t=0,1,2,M-2,M-1,M. And saddle point 
method is applied to calculate distributions when3 3t m≤ ≤ − .      
  
 
2.3.2 Recursive Method 

 
From equation (2), note that distribution of T could be calculated as ( | ) ( , )i tg T t p c p n S= = where 
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Furthermore, let  *( )t iS a  represent tS  excluding all terms involving ia  for {1,2,3,..., }i M∈ . To illustrate, 
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2 1( )S a  is 2S excluding any terms having 1a  as shown below 
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relations mentioned in the proof of Theorem 1 in Marcus and Lopes (1957) paper,  
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The distribution of T can be calculated in the following manner: 

Step 1.) Define 0 1S = , *
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for {1,2,..., }i M∈ . Then g(T=0)= ( , )ic p n , g(T=1)= ( , )ic p n 1S  
Step 2.) Start loop: 
            2S   will be calculated by plugging  1S  and *

0S  into equation  (3) 
     *

2S  will be calculated by plugging  2S  and *
1S  into equation  (4) 

            Output g(T=2)= ( , )ic p n 2S  
 . 
 . 
 .  
            MS   will be calculated by plug  1MS −  and *

2MS −
 into equation (3) 

            Output g(T=M)= ( , )ic p n MS  
End  loop 

 
 

Another possible recursive method to calculate the distribution of T is using Newton’s identities. Newton’s 
identities connect power sums and elementary symmetric polynomials (Mead, 1992) which can be stated in 
the following equation   
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Calculation method will be similar to the above pseudo code and omitted here.  
 
 Unfortunately, the Newton recursion is unstable and hence not very useful in practice. Among the 
three methods of PMF calculation of statistic T, the Marcus recursive method performs better than saddle 
point approximation in terms of precision and speed. The greater precision is not a surprise since the saddle 
point approach is not expected to yield more than a few digits of accuracy. However, care must be taken with 

the Marcus method to control underflow problem. Considering only the leading term 1( , ) (1 )
i

M

i

n

ic p n p =
∑

= − in 

the PMF expression, ( , )ic p n  will decrease as 
1

i

M

i

n
=
∑ increases for a fixed p. Eventually, ( , )ic p n will run 

underflow after a certain point. However, if the natural logarithm of  ( , )ic p n  is used together with the 
natural logarithm of the quantities tS  the probabilities for values of T can be calculated successfully. There 
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 as well because this term is an increasing function 

of both p and  in . Therefore given large p and  in , above algorithm will break down. A simple safeguard to 

prevent this is to set max
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violated, calculation should be terminated. 
 
3. Two-Sided Hypothesis Testing Based on Sum of Positive Pools and Asymptotic Results 
 
3.1 Exact Test  

 
Using the exact distribution of T, its properties and the computational methods discussed in the 

preceding section, an exact test using T as the test statistic will be proposed. It was shown in the preceding 
section that T possesses a monotone likelihood ratio property. Consider a two-sided size α  hypothesis test 
for 0 0:H p p=  versus 0:aH p p≠  based on sum of positive pools. Let 1γ  and 2γ  be two constants taking 
values between 0 and 1. Because T is a discrete random variable, a randomized test (see for instance, 
Lehmann and Romano, 2005) will be utilized to test this set of hypotheses. The left and right critical values 
of the test and the constants, 1γ  and  2γ , can be respectively solved using following equations 
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Given an alternative ap , the formula for the statistical power, β, is given by 
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3.2 Asymptotic Tests  
 

Asymptotic test procedures are commonly used in practice because, in most cases, the asymptotic 
distribution is either normal or chi-square distribution.  These tests are typically based on the likelihood 
function.  Three of the standard likelihood-based test procedures are the likelihood ratio (LR) test, Wald’s 
test and the Score test.  In the most general case where pool screening applies, the pools do not necessarily 
have the same size which makes the sample independent but not identically distributed. This being the case, 
the usually quoted results concerning the asymptotic properties of the MLE parameter estimate do not apply. 
Bradley and Gart (1962) defined a special situation called  “associated population”  where observations come 
from different (sub)populations but have some parameters in common. In their paper, they proved that MLE 
is a consistent estimator, it is asymptotically normally distributed, and asymptotic Chi-square distribution 
still followed for the asymptotic likelihood ratio test under certain regularity conditions.  
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The MLE for p solves equation (10) when it is set equal to 0. Unlike the equal pool size case, there is no 
explicit expression for the MLE ( p̂ ) but it can be obtained using numerical methods. In this research, the 
inverse quadratic interpolation was utilized to find the root of above partial derivative equation.   
The next theorem summarizes the asymptotic likelihood-based test procedures being considered. 

Theorem 3: When 0 1p< <  and assuming im
M

 is constant as M →∞ . For the hypothesis :o oH p p=  

versus  :a oH p p≠ , an approximate levelα  test rejects for the likelihood based methods when: 
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Proof of Theorem 3 is given in theAppendix. 
 
Remark: One can easily modify the above Wald’s and score tests for one sided hypothesis. In addition,test 
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can be compared with standard normal critical values instead of 

their chi-square counterparts.  
 
4. Simulation Study and Results 
 

To compare the exact and likelihood ratio based test procedures in terms of statistical power, a series 
of Monte Carlo simulations were conducted using Fortran (Absoft Pro Fortran 10.1). Consider testing 

: 0.0005o oH p =  versus 0.0005op ≠  as an example for a very low prevalence of certain infectious disease.  
Although this may seem extreme, there are applications where such a prevalence rate is of interest such as in 
Tropical Medicine research (see for instance, Guevara et al., 2003; Yamèogo et al.,1999). Thus, it is 
important to be able to test if the prevalence is less than 5 in 10,000 or even 1 in 10,000. 
 

It is worth noting that although Theorem 3 states that the asymptotic distribution of the likelihood-
based tests being considered follows a chi-square distribution, it will require extremely large number of 
pools for the asymptotic results to provide a good approximation when p is near 0. In practice, the typical 
number of pools used is between 100 and 250. To illustrate, consider the following simulation studies where 
pool sizes were randomly drawn from a discrete uniform [25,50]. In this case, the probability of a pool 
testing positive ranged from 0.012 (when pool size is 25) to 0.025 (when pool size is 50). Varying the 
number of pools from 50 to 700, the Kolmogorov-Smironov (KS) goodness of fit test statistic values for the 
LR, Wald’s and Score statistics compared to a chi-square with 1 degree of freedom (df) are displayed in 
Table 1. As expected, the values of the KS statistic decrease as the number of pools increases indicating that 
the chi-square 1 df is a reasonable fit. However, Figure 1 and Figure 2 show that the speed of convergence is 
unsatisfactory. These graphs are quantile-quantile plots of the LR statistic compared to a chi-square with 
df=1 when the number of pools is 100 and 700. Similar observations were obtained for Wald’s and Score 
statistics as well as other cases.  Therefore, test procedures using tabulated chi-square values to define the 
critical points of the rejection region may be inaccurate in cases where p is near zero possibly leading 
researchers to erroneous conclusions.  

 
To address this issue, an alternative method to define the rejection regions for these tests is proposed.  

Simulated quantiles will determine the cut off point instead of the tabulated values based on a chi-square 
distribution. The power function based on the quantile method will be compared with the exact test and the 
standard asymptotic test as defined in Theorem 3. It is hoped that using simulated quantiles will improve the 
performance of the likelihood-based tests. 

 
Below is a summary of the simulation steps taken to obtain results in this section: 

Step 1.) For a certain number of pools such as k, generate pool sizes from a discrete uniform distribution over 
the range [25, 50]. Note that this range of pool sizes is typically required by PCR laboratory screening test. 
Step 2.) Given Type I error set at 0.05, find 1γ , 2γ  and critical values lT , rT satisfying equations (6) and (7). 
Given a value of p and the computed values of 1γ , 2γ , lT , rT , calculate exact power associated with the test 
statistic T using equation (8). 



Step 3.) Do first simulation: Generate 100,000 samples under the null.  Calculate LR, Wald’s and Score test 
statistics under each sample. Find 97.5th  and 2.5th quantiles of each test statistic. These quantiles will be used 
to define the rejection region as an alternative to the rejection region based on the chi-squared distribution. 
Thus, H0 is rejected when the test statistic value is either less than its corresponding 2.5th  quantile or greater 
than its corresponding 97.5th quantile.   
Step 4.) Do simulation two: Generate 100,000 samples under alternative. Calculate LR, Wald’s and Score 
test statistics under each sample. Compute the percent of times a test rejects the null hypothesis – either using 
the simulated quantiles or the tabulated chi-square values.  The resulting percentage is the respective 
simulated power for LR, Wald’s, and Score for that particular value of p.       
    
Remark: Samples where all pools are either positive or negative were excluded from the simulation because 
in these cases the MLE is either 1 or 0. Consequently, the test statistics associated with the likelihood ratio, 
Wald’s, and Score tests cannot be computed. When this happens, another set of sample is simulated in order 
to reach the total of 100,000. 
 

Figure 3 and Figure 4 display the power functions of the exact test and the likelihood-based tests 
when the number of pools is 100.  For the likelihood-based tests, the power curves in Figure 3 are based on 
the simulated quantiles while the power curves in Figure 4 were based on the chi-square distribution. 
Because the test based on the number of positive pools is exact, the power at the null hypothesized value is 
around the set significance level of 5%. A striking feature in these power curves is that only the exact test is 
unbiased, i.e., the power under the alternative at least that of the power under the null. The power curves of 
the likelihood-based tests were significantly improved by using simulated quantiles but these modified tests 
are still biased, in particular, when the alternative value is less than the null hypothesized value. Although the 
power function is higher for the modified LR test in Figure 3 relative to the power for the exact test, this is 
only true when p is greater than the null hypothesized value. Modified LR performs poorly when p is small. 
The bias problem of the likelihood-based tests is more likely due to fact that most pools are negative. 
Therefore, in cases like this, it is recommended that the likelihood-based tests not be used.  

When number of pools is increased to 350, the exact test procedure and the likelihood-based 
procedures using simulated quantiles have power curves that are very similar (see Figure 5). At the null 
value, the simulated levels are at around 5% and at any of the alternative values, the power increases as the 
alternative value gets farther away from the null. Finally, all tests are unbiased. However, these observations 
do not hold for the standard likelihood-based (see Figure 6). Score test is biased for values less than the null 
while Wald’s test has an inflated type I error rate.  

Of major interest for applied researchers is determining the number of subjects needed if they desire 
to perform a hypothesis test based on the number of positive pools. To illustrate how this can be done using 
the exact test, consider the case where all pool sizes are known uniformly ranging from 25 to 50. Let the null 
hypothesis be p=0.0005 and the significance level be set at 5%. The estimated power for varying number of 
subjects is summarized in Table 2 for different alternatives.  Based on this table, if the true prevalence is less 
than or equal to p=0.0001, then obtaining 200 pools (7493 total subjects) is estimated to provide a power of 
about 86% while increasing the number of pools to 250 (9335 total subjects) increased the estimated power 
to about 88%.   

 
Remark: The computed power values given in Table 2 are sensitive to the specific pool sizes being 
considered  
 
 



5. Conclusion  
 
Although the distribution of the number of positive pools is complex when pool sizes are unequal, it 

is no longer difficult to compute given the recursive methods explored in this research. In addition to this, 
exact test performs very well in terms of statistical power compared to all the other tests considered in this 
paper.  The standard asymptotic likelihood-based tests need to be modified to address the issue of slow 
convergence when the prevalence is near 0 by using simulated quantiles to define the critical values of the 
rejection region. In spite of the improvements due to this modification, the exact test still performed better 
than these likelihood-based tests especially when the number of pools is not large  Furthermore, calculating 
the MLE and obtaining simulated quantiles are computationally demanding to researchers.Thus, test 
procedure based on the number of positive pools is more appealing. Therefore, the  exact test based on the 
number of positive pools is recommended regardless of the number of pools. This manuscript focused on two 
sided tests. In practice, one sided hypothesis tests are more often of interest particularly in disease 
elimination programs. This will be the focus of future research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
APPENDIX  

 
Proof of Theorem 3 

Results of this theorem follow immediately by applying Bradley and Gart’s theorems which states that the 
maximum likelihood estimate ( p̂ ) is a consistent estimator of p and 0 )ˆ(M p p−  has asymptotic normal 

distribution with mean 0 and variance 
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information. And also from results of section 2.4 in their original paper, they showed that 
[ ]0 ˆ, ) log ( ,2 lo )g (L L xp x p−− has an asymptotic Chi-square distribution with 1 degree of freedom. Therefore, 

what remains to be done is to show that in this particular case, the conditions required in the Theorems of 
Bradley and Gart are satisfied. 
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Table 1: Komogorov-Smironov statistics of likelihood ratio based tests given different number of pools.  

Number of Pools 50 100 250 400 550 700 
Wald Statistics 0.3762 0.2224 0.1633 0.1312 0.1124 0.0932 
Score Statistics 0.3584 0.2261 0.1264 0.0941 0.0830 0.0700 
LR Statistics 0.5542 0.3053 0.1318 0.1268 0.0844 0.0785 

 
 
Table 2: Examples of statistical power and number of pools (subjects) for exact test under different 
alternatives against null p=0.0005, significance level=0.05, assuming pool size has discrete uniform 
distribution[25,50]. 

Number of Pools 
(Total Number  of Subjects) 

Alternative 
50 

(1906) 
100 

(3709) 
150 

(5665) 
200 

(7493) 
250 

(9335) 
300 

(11368)
350 

(12954)
400 

(14916)
450 

(16887)
500 

(19082) 
550 

(20660)
600 

(22506)
650 

(24366)

Pa=0.00002 0.063 0.148 0.380 0.863 0.884 0.979 0.982 0.997 0.998 1.000 1.000 1.000 1.000 

Pa=0.0001 0.055 0.110 0.241 0.478 0.523 0.694 0.723 0.824 0.863 0.907 0.943 0.953 0.973 

Pa=0.001 0.142 0.199 0.327 0.356 0.450 0.489 0.546 0.623 0.692 0.715 0.749 0.790 0.825 

Pa=0.0015 0.320 0.489 0.726 c0.786 0.882 0.916 0.948 0.974 0.987 0.992 0.995 0.997 0.999 



 

   
 

    
 

    
   
 
  

 


