
Biostatistics Department Technical 
Report 

 
 

BST2009-001 
 
 

 
Modelling Lesion Counts Data in Multiple Sclerosis 

When Patients have been Selected for Baseline Activity 
 
 
 
 
 

Charity J. Morgan, PhD 
 Inmaculada B. Aban, PhD 

 Gary R. Cutter, PhD 
 
 
 
 

May 2009 
 
 
 
 
 
 
 
 
 

Department of Biostatistics 
School of Public Health 
University of Alabama at Birmingham 
cjmorgan@uab.edu 
 



Modelling Lesion Counts Data in Multiple Sclerosis

When Patients have been Selected for Baseline Activity

Charity J. Morgan, Inmaculada B. Aban, Gary R. Cutter

Department of Biostatistics, University of Alabama at Birmingham

May 21, 2009

Abstract

The number of new gadolinium-enhancing lesions discovered via magnetic resonance imag-

ing (MRI) is a well-established outcome for multiple sclerosis studies and the negative binomial

distribution has proven to be a valuable tool for the analysis of this type of data. Due to the

high cost of MRI scans, many investigators select participants for the presence of one or more

lesions on a baseline scan. While this selection procedure has been shown to improve the power

of subsequent inferences, the effect of screening for baseline activity on parameter estimation

and interval coverage has not yet been examined. We performed computer simulations to in-

vestigate the influence of the screening process on inferences about treatment effects in two

independent samples. We demonstrate here that, while screening for baseline activity improves

point estimation, it also decreases interval coverage and inflates the Type I error rate.
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1 Introduction

The number of new gadolinium-enhancing lesions discovered via magnetic resonance imaging

(MRI) is a well-established outcome variable for multiple sclerosis (MS) studies [1, 2]. Unfortu-

nately, MRI is a relatively expensive technique, making the always important task of accurately

calculating power and estimating sample size particularly crucial. Sormani et al. [3] note that

the utilization of an appropriate parametric distribution for the number of lesions would improve

sample size and power calculations. The negative binomial distribution (NB) has been shown to

provide a good fit to this type of data [3, 4, 5], and has already begun to be used in sample size

calculations [6, 7]. A particularly informative result is the confirmation that traditional nonpara-

metric resampling methods (see for example Nauta et al. [8]) have the potential to significantly

overestimate the power of a study [3].

For many MS studies, investigators pre-screen subjects for baseline MRI activity (i.e. the

presence of one or more lesions, see for example Comi et al. [9]), the intuition being that subjects

who show no activity on a baseline scan are less likely to show activity in future scans. If this

reasoning is indeed correct, filtering out these subjects reduces the natural variation present in

the sample and thus should increase the power of inferences made using the remaining subjects.

Sormani et al. [3] investigated the result of this screening on sample size estimation and found that

screening for baseline activity did in fact increase power. However, the effect of this screening on

parameter estimates and interval coverage are unclear and previously unexamined. In this paper, we

investigate the performance of the negative binomial distribution when patients have been selected

for activity on a baseline scan.
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2 The negative binomial model for lesion count

The negative binomial distribution belongs to a family of distributions, known as the mixed

Poisson distributions, which model count data as Poisson random variables with random means.

Let yi be the number of new gadolinium-enhancing lesions for patient i. Conditional on a latent

mean λi, yi follows a Poisson distribution. We use the notation yi|λi ∼ Poisson(λi). If λi follows

a Gamma distribution with shape parameter θ and rate parameter θ/µ, denoted Gamma(θ, θ/µ),

then the marginal distribution of yi is a negative binomial:

f(y) =
∫ ∞

λ=0
f(y|λ)f(λ)dλ

=
∫ ∞

λ=0

λye−λ

y!
θθ

µθΓ(θ)
λθ−1e

− θ
µ

λ

=
Γ(θ + y)

Γ(θ)Γ(y + 1)
θθµy

(θ + µ)(θ+y)

(1)

We use the notation yi ∼ NB(µ, θ). While we note that λ may be distributed as any of a wide

range of distributions, including for example the inverse-Gaussian distribution, none provides as

clean a representation and as nice computational properties as the Gamma distribution.

Aban et al. [10] extended this model to allow for the parameterization of a treatment effect, and

developed tests and confidence intervals for use in MS trials that were based on the negative binomial

likelihood. These procedures assume that a treatment affects only the location parameter µ of the

negative binomial distribution and not the shape parameter θ. Suppose we apply a treatment to

patient i such that the average number of gadolinium-enhancing lesions with treatment becomes

γλi. We refer to γ as the treatment effect and note that yi is still marginally distributed as a

negative binomial:
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yi|λi ∼ Poisson(γλi)

f(y) =
∫ ∞

λ=0
f(y|λ)f(λ)dλ

=
∫ ∞

λ=0

(γλ)ye−γλ

y!
θθ

µθΓ(θ)
λθ−1e

− θ
µ

λ

=
Γ(θ + y)

Γ(θ)Γ(y + 1)
θθ(γµ)y

(θ + γµ)(θ+y)

yi ∼ NB(γµ, θ)

(2)

The results of the baseline scan contain information about a patient’s unobserved mean, and

we can use this baseline value to update our knowledge of this latent parameter. Let y
(0)
i be the

number of lesions present on patient i’s baseline scan. From Bayes theorem,

y
(0)
i |λi ∼ Poisson(λi)

f(λi|y(0)
i ) ∝ f(y(0)

i |λi)f(λi)

∝ λy
(0)
i e−λ

y
(0)
i !

θθ

µθΓ(θ)
λθ−1

i e
− θ

µ
λ

∝ λ
y
(0)
i +θ−1

i e
− θ+µ

µ
λ

∴ λi|y(0)
i ∼ Gamma(y(0)

i + θ,
θ + µ

θ
)

(3)

Now assume that any individual exhibiting zero lesions on the baseline scan is removed from the

sample. Conditional on the fact that a subject passed the screening and remains in the sample,

that subject’s latent mean is no longer distributed as a Gamma random variable.

f(λi|y(0)
i > 0) =

P (y(0)
i > 0|λi)f(λi)∫∞

0 P (y(0)
i > 0|λ)f(λ)dλ

=
(µ + θ)θ

(µ + θ)θ − θθ

θθ

µθΓ(θ)
λθ−1

i

(
e
− θ

µ
λi − e

− θ+µ
µ

λi

) (4)
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Consequently, the number of gadolinium-enhancing lesions is no longer marginally distributed as

a negative binomial. The true distribution is much less easier to manipulate than the negative

binomial distribution and thus, despite this screening, it is tempting to use the negative binomial

distribution to perform sample size calculations and estimate treatment effects.

3 Methods

We implemented a procedure similar to that of Sormani et al. [3] and performed a series of

simulations to investigate the effect of screening for baseline activity on these calculations. For a

sample of size 2n and treatment effect γ, we repeated the following procedure 10,000 times.

1. Create a pool of potential subjects by drawing their latent means from the Gamma distribu-

tion

λ∗k ∼ Gamma(θ, θ/µ), k = 1, . . . , N. (5)

(N should be sufficiently large that at least 2n of the potential subjects will exhibit baseline

activity. We used N = 2000. We used the values of µ and θ that Aban et al. [10] estimated

from actual data, µ̂ = 1.646, θ̂ = .256).

2. Simulate the results of the baseline scan:

b∗k ∼ Poisson(λ∗k), k = 1, . . . , N. (6)
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3. Out of the subjects such that b∗k > 0, randomly select n and assign them to the control

group and label their latent means as λ1, . . . , λn. Randomly assign another n subjects to the

treatment group and denote their latent means as λn+1, . . . , λ2n.

4. Simulate the experimental results:

yi ∼ Poisson(λi), i = 1, . . . , n

yi ∼ Poisson(γλi), i = n + 1, . . . , 2n

(7)

Aban et al. [10] note that the skewed distribution of the maximum likelihood estimate of the

treatment effect, γ̂, resulted in inferences that were not invariant to the labeling of treatment and

control groups and recommended using the log(γ̂) for inference. We follow this recommendation

and use the following generalized linear model to estimate the treatment effect:

yi ∼ NB(ηi, θ),

log(ηi) = β0 + β1xi, i = 1, . . . , 2n

(8)

where

xi =





1 if i ≥ n + 1

0 if i ≤ n

(9)

Note that with this model yi ∼ NB(eβ0 , θ) for a patient in the control group and yi ∼ NB(eβ0eβ1 , θ)

for a patient in the treatment group. Thus eβ0 and eβ1 correspond to µ and γ in our original

parametrization. We perform all inferences using β0 and β1 instead of µ and γ; for ease in interpre-

tation, we report results in terms of γ, rather than β1, where appropriate. This approach has the
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added benefit of allowing us to take advantage of the wide range of software already available for

fitting generalized linear models. For each replication, we fit this model to the data via maximum

likelihood using the ‘glm.nb’ routine already implemented in SPlus [11].

For each replication, we calculated the estimated treatment effect, γ̂ = eβ̂1 , and recorded

whether the 95% confidence interval for γ contained the true value of γ, where the confidence

interval for γ was calculated by creating a Wald confidence interval for β1 and exponentiating.

For each value of n and γ, we counted the number of replications for which the null hypothesis

H0 : β1 = 0 was rejected at a significance level of α = .05. We performed this procedure for γ =

0.4, 0.5, and 0.6 and n = 20, 30, . . . , 100 as well as n = 150 and 200. In order to estimate the Type

I error rate, we also performed this procedure for these values of n and γ = 1; we then calculated

the proportion of replications in which the null hypothesis of no treatment effect was erroneously

rejected.

For the purposes of comparison, we repeated this procedure without screening for baseline

activity. That is, in Step 3, 2n subjects were selected from the entire pool of potential subjects,

rather than just those with positive baseline values.

4 Simulation results

4.1 Bias

For each value of γ and n, we averaged the estimated treatment effect, γ̂, over the 10,000

replications. Figure 1 shows the average estimated treatment effect plotted against sample size.

We see that γ̂ is positively biased. This bias is present both when patients are screened for baseline

activity and when no screening is performed, although the bias is less pronounced in the presence
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Figure 1: Average estimated treatment effect. Dotted lines indicate the true treatment effect. Av-

eraging across replications, we find that, regardless of whether patients are screened for baseline

activity, γ̂ shows positive bias. This bias decreases as the sample size increases and screening for

baseline activity appears to reduce the bias.
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of screening. For both procedures, increasing the sample size reduces the bias in the estimated

treatment effect.

Figure 2 displays the average bias of γ̂ for n = 50 and varying values of γ. We find that,

on average, the bias increases with γ. This instability is likely a consequence of the fact that

our estimate of the treatment effect is obtained by exponentiating β1; while β̂1 and γ̂ are both

asymptotically unbiased, for small n, it can be shown that the bias of γ̂ is approximately a linear

function of of γ:
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Figure 2: Average bias for the estimated treatment effect. For small sample size (here, n = 50), γ̂

is positively biased. This bias increases linearly with γ. This instability in the estimation of γ is

more pronounced when subjects have not been screened for baseline activity.
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E (γ̂) = E
(
eβ̂1

)

≈ eβ1 + eβ1E
(
β̂1 − β1

)

≈ γ + γBias
(
β̂1

)

Bias (γ̂) ≈ γ ·Bias
(
β̂1

)

(10)

Screening for baseline activity provides some stabilization in the estimation of γ.

4.2 Coverage

The true coverage of the 95% confidence intervals for γ are displayed in Figure 3. We see that

coverage is slightly less than 95% for both the screened data and unscreened data, and that screen-

ing for baseline activity slightly reduces coverage. This result is not surprising since, as shown

above, the data resulting from this type of screening is not distributed as negative binomial, and

therefore confidence intervals based on the negative binomial distribution will not be entirely accu-

rate. Nevertheless, the negative binomial model appears to be relatively robust to this misspecified

distribution.

4.3 Standard Error

Figure 4 displays the average standard error of β̂1. Screening for baseline activity appears to

reduce the variability in this estimate. We can approximate the standard error of γ̂ using the delta

method:
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Figure 3: True coverage of confidence interval for the treatment effect. All confidence intervals

have a nominal coverage of 95%. For both types of procedures, coverage is slightly less than the

nominal coverage. Screening for baseline activity reduces the true coverage, however we see a slight

improvement in coverage for larger sample sizes.
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Figure 4: Mean standard errors of the estimate of log of the treatment effect. Screening for baseline

activity reduces the variability in this estimate.
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V ar (γ̂) ≈
(
eE(β̂1)

)2
· V ar

(
β̂1

)

SE (γ̂) ≈ eβ̂1 · SE
(
β̂1

)

≈ γ̂SE
(
β̂1

)
(11)

Figure 5 displays the average standard error of γ̂. As with β̂1, screening for baseline activity

reduces the variability in the estimate and the difference in variability between the two procedures

decreases as sample size increases.
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Figure 5: Mean standard errors of the estimate of the treatment effect. Screening for baseline

activity reduces the variability in estimation.
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Figure 6: Estimated power curves. Screening for baseline activity dramatically improves power.
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4.4 Power

Figure 6 shows the power curves for the screened and unscreened data. We find that screening

for baseline activity results in a dramatic improvement in power. For example, for a true treatment

effect of γ = 0.4, an estimated 2n = 180 subjects are required to obtain approximately 80% power,

if no screening is performed. In contrast, this level of power can be obtained with a sample size of

only 60 if subjects are screened for baseline activity. These results align well with those reported

by Sormani et al. [7].

4.5 Type I Error

The simulated Type I error rates are displayed in Figure 7. The probability of a Type I error

is slightly greater than 5% regardless of whether subjects are screened for baseline activity. We see
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Figure 7: Simulated Type I errors. For both procedures, the Type I error rate is larger than the

specified significance level of 5%. The probability of a Type I error decreases as sample size increases.

We also find that screening for baseline activity increases the probability of a Type I error.
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that screening for baseline activity inflates the Type I error. For both types of procedures, the true

Type I error decreases as sample size increases.

5 Application to real data

Screening for baseline MRI activity increases power because the results of the baseline scan

contain information about each subject’s unobserved mean number of lesions. Using these results

to select subjects creates a more homogeneous sample, which makes any treatment effect more

apparent. However, simply removing any subject exhibiting zero lesions at baseline uses this

information in a rather crude way. It stands to reason that incorporating the results of the baseline
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scan into the analysis should provide even stronger results.

We expand our previous model to include repeated measurements. Let yij be the number of

gadolinium-enhancing lesions observed for patient i at time j. We apply the following generalized

linear model with mixed effects:

yij ∼ Poisson(ηij)

log(ηij) = αi + βxij

αi ∼ N(0, σ2)

(12)

where xij is a vector of covariates measured on patient i at time j. Note that this model allows us

to include the results of a scan performed at baseline, as well as any other time points.

We apply this model to data from a study reported by Rudick et al. [12]. 172 patients were

assigned to either the drug Avonex or to placebo and followed for two years. MRI was administered

at baseline and at the end of each subsequent year. We consider here only those patients for whom

measurements for all three time points are available (81 of 85 subjects in the Avonex group, 79 of

87 in the placebo group). Figure 8 shows the the change in average number of lesions over time for

each group. Subjects in this study were not selected for baseline activity.

To test for a treatment effect, we consider the following model for the mean number of lesions:

log(ηij) = αi + β0 + β1xij ,

where xij =





1 if subject i is receiving Avonex at time j

0 otherwise

(13)

Under this model, the number of lesions for a subject i who is not receiving treatment at time j is

distributed as yij ∼ Poisson(eαi+β0), thus the expected number of lesions is E(yij) = E(eαi+β0) =
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Figure 8: Mean lesion count by time and treatment.
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eβ0E(eαi).1 Let µ = eβ0E(eαi). Similarly, if patient i is receiving treatment at time j, then

yij ∼ Poisson(eαi+β0+β1) and E(yij) = E(eαi+β0+β1) = eβ1eβ0E(eαi) = eβ1µ. As before, we see

that if γ = eβ1 , then we can use this model to test for a treatment effect by the testing the null

hypothesis H0 : β1 = 0, which is equivalent to H0 : γ = 1.

We also consider a modification of (12) that replaces the Poisson distribution used to model

the number of lesions with a negative binomial with random mean:

yij ∼ NB(ηij , θ)

log(ηij) = αi + βxij

αi ∼ N(0, σ2)

(14)

1αi ∼ N(0, σ2) and therefore eαi follows a lognormal distribution, with E(eαi) = eσ2/2.
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Table 1: Comparison of the Poisson-based and negative binomial-based models. We use the AIC to

compare the fits of these two models. According to the AIC, the negative binomial model provides

a better fit to these data.

Distribution Log-likelihood AIC

Poisson -813.05 1632.1

Negative Binomial -704.15 1416.3

Note that as before, we assume that the treatment has no effect on the shape parameter θ. The

interpretation of β0 and β1 is the same as in the Poisson-based model.

We used the SAS procedure PROC NLMIXED to fit these two models. The Akaike information

criterion [AIC, 13] and log-likelihoods are displayed in Table 1. We use the AIC to determine the

better-fitting model; The negative binomial-based model has an AIC (1416.3) closer to zero than

the Poisson-based model (1632.1), so we select this distribution as providing a superior fit and

report results specific to this model. The results for the negative binomial-based model are shown

in Table 2. We find a significant treatment effect, γ̂ = eβ̂1 = 0.301 ( p < .0001). Exponentiating

the confidence interval for β1 yields a 95% confidence interval for γ : (0.199, 0.455). The estimated

mean (standard error) number of lesions for patients not receiving treatment is µ̂ = 2.571 (0.553);

the estimated mean (standard error) number of lesions for those receiving treatment is µ̂ · γ̂ = 0.774

(0.188).

This model assumes that the effect of the treatment is constant over time. It may however

be the case that the effect of the treatment may change from Year 1 to Year 2. We can evaluate

the reasonableness of this assumption by adding another covariate to the model. Let x = (x1, x2),
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Table 2: Parameter estimates for the generalized linear model with mixed effects for the number

of lesions. Distribution of lesion count assumed to be negative binomial with random mean. SAS

estimates the parameters θ and σ2 as θ̂ = 1.101 (0.206) and σ̂2 = 2.099 (0.417). The log-likelihood

under this model is -704.15. This model assumes the effect of the treatment is constant over time.

Parameter Estimate Standard Error p-value

Intercept β0 -0.105 0.163 .519

Treatment β1 -1.201 0.209 <.0001

where x1ij = 1 if subject i is receiving Avonex at time j, and x1ij = 0 otherwise. Let x2 be an

indicator for the second year of treatment. That is, x2ij = 1 if subject i is receiving Avonex at

time j and time j is Year 2, and x2ij = 0 otherwise. The model for the mean number of lesions

then becomes

log(ηij) = αi + β0 + β1x1ij + β2x2ij , (15)

Under this model, the expected number of lesions without treatment is still eβ0E(eαi) = µ; the

mean number of lesions for a person receiving treatment is γµ for the first year and eβ2γµ for the

second year. If we let κ = eβ2 , then κ measures the change in treatment effect from Year 1 to Year

2. A value of κ less than 1 indicates that the treatment becomes more effective in the second year,

κ > 1 corresponds to a decrease in effectiveness, and κ = 1 indicates that there is no change in the

effectiveness of the treatment after the first year.

The fit of this model is shown in Table 3. There is no significant change in the treatment effect
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Table 3: Parameter estimates for the model allowing a change in treatment effect from Year 1 to

Year 2. SAS estimates the parameters θ and σ2 as θ̂ = 1.101 (0.206) and σ̂2 = 2.099 (0.416).

The log-likelihood under this model is -704.15 and thus the addition of another parameter does not

result in a significant increase in the log-likelihood.

Parameter Estimate Standard Error p-value

Intercept β0 -0.105 0.163 .519

Treatment β1 -1.176 0.256 <.0001

Year 2 β2 -0.050 0.296 .867

from Year 1 to Year 2 (κ̂ = .952, p = .867). Furthermore, the addition of β2 to the model causes

the AIC to increase to 1418.3 from 1416.3, and thus we select (14) as our final model.

Out of the 160 subjects for whom measurements at all time points were available, 72 (35 of the

79 subjects receiving the placebo and 37 of the 81 subjects receiving Avonex) exhibited zero lesions

during the baseline scan. We illustrate the effect screening for baseline activity would have had

on our conclusions by performing a hypothetical, post-hoc scan and conducting the above analyses

on the remaining 88 (44 placebo and 44 Avonex) participants who exhibited at least one lesion at

baseline.

We first compare the fits of the Poisson-based mixed effect generalized linear model (12) to its

negative binomial-based counterpart (14), using the AIC. As before, the AIC identifies the negative

binomial-based model (AIC = 1087.2) as providing a better fit than the Poisson-based model (AIC

= 1287.2), and thus we use the negative binomial distribution to perform all further analyses.

The results for the negative binomial-based model when applied to the screened data are sum-
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Table 4: Comparison of results for mixed effect generalized linear model fit to the data both with

and without baseline screening. These models assume the effect of the treatment is constant over

time.

Full Data Screened Data

γ̂ 0.301 (0.063) 0.287 (0.060)

95 % C.I. for γ (.199, .455) (.189, .434)

µ̂ 2.571 (0.553) 4.053 (0.654)

θ̂ 1.101 (0.206) 1.331 (0.244)

σ̂2 2.099 (0.417) 0.851 (0.202)

sample size 160 88
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marized and presented alongside the results for the full data set in Table 4. We again find a

significant treatment effect: γ̂ = .287(p < .0001). This value does not significantly differ from the

effect size found when all subjects are considered (p = .815).

While screening for baseline activity does not significantly change our estimate of the treatment

effect, we find a significant increase in µ̂ (p = .023), where the estimated mean number of lesions

increases from 2.571 to 4.053 for patients not receiving treatment, and from 0.774 to 1.162 for pa-

tients receiving treatment. This discrepancy suggests that, although screening for baseline activity

can accurately estimate the treatment effect with a reduced sample size, the estimated average

lesion count is not generalizable to the general population.

We then refit the model allowing for a nonconstant treatment effect. As before there was no

significant change in the treatment effect from Year 1 to Year 2 (κ̂ = .871, p = .647), and the

addition of this term to the model causes the AIC to increase (from 1087.2 to 1089).

6 Discussion

Magnetic resonance imaging is a necessary but expensive tool for identifying brain lesions in

multiple sclerosis patients. Pre-screening subjects for baseline activity and performing statistical

analyses using a negative binomial model are two tools used by MS investigators to improve the

power of their studies and consequently decrease the number of MRI scans needed to demonstrate

treatment efficacy. We also note that the decision to screen or not to screen may depend not only

on the cost of the trial but also on many other issues such as the duration of the trial and even the

proposed mechanism by which the treatment operates.

While the screening process inflates Type I error and decreases interval coverage when the

treatment effect is estimated via a negative binomial model, the effects are relatively minor, in-
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dicating that the negative binomial distribution is robust in the face of screening. This result is

crucial, as the availability of negative binomial-based generalized linear models not only facilitates

the identification of treatment effects but also allows the detection of changes in those treatment

effects over time. This aspect of MS therapy as well as other disease treatments is important for

several reasons. Using these techniques we may isolate treatment lags and in future trials where

head-to-head therapies are compared, we may be able to assess which drugs are superior based

on longer term results. These later temporal effects of treatment fidelity are very important in

treatments for chronic diseases such as multiple sclerosis, which may involve decades of therapy.

Furthermore, screening for baseline activity reduces the bias and variability in the estimation

of treatment effects. Thus, while screening for baseline activity creates a trade-off between cost

effectiveness and conservative inference that must be carefully considered, this approach, when

combined with negative binomial-based modelling, is a promising tool for the analysis of MRI-

monitored multiple sclerosis studies.
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