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The screening of pools of insects to make estimates of the prevalence of infection of 
some disease in a vector species is becoming more and more common due to the 
increasing sensitivity and specificity of PCR methods. In this approach, the investigator 
collects “pools” or “groups” of the vector species. These pools are then tested using an 
assay method such as PCR and the pool is evaluated as positive or negative depending on 
whether the disease of interest is found in the pool. An early use of this approach was 
testing groups of men drafted to serve in the military for syphilis. In this case, the method 
was use to provide screening at reduced cost since if a pool was found to be negative it 
was certain that none of the men in the pool had the disease.This approach is particularly 
appropriate in the case where the prevalence is low and screening pools allows one to 
check a large number of insects with a smaller amount of labor than would be required to 
test each individual insect by dissection or some other protocol. The appropriate 
statistical model to use in conjunction with the pool screening approach depends very 
much on the way that the sampling and testing are done. Many investigators have 
considered the case of binomial sampling [ 1-5 ]. For testing individual insects (i.e., pools 
of size 1) George and Elston [6] recommended geometric sampling when the probability 
of an event was small. They gave confidence intervals for the prevalence based on this 
model. They did not, however, investigate the statistical properties of the estimator. Lui   
[7] extended their work on the confidence interval by considering negative binomial 
sampling and showed that as the number of successes required increased, the width of the 
confidence interval decreased. Lui also did not discuss point estimators, their statistical 
properties nor did he investigate the statistical properties of his confidence intervals. In 
this report we investigate these sampling models when an investigator collects and tests 
pools until some pre-determined number of positive pools is observed. We shall consider 
point and interval estimators obtained by both classical and Bayesian methods and 
investigate their statistical properties. 
 
 In what follows we shall denote the size of the pools collected by N, the 
prevalence of infection by p, the number of positive results to be observed before quitting 
by r, and the number of times the experiment is carried out by m.  If the prevalence of 
infection is p, then the probability that a pool of size N tests negative is given by (1 )Np−  
and the probability that a pool is positive is positive is [1 (1 ) ]Np− − . If we let Y be the 
number of negative pools observed prior to getting r positive pools, then Y has a negative 
binomial distribution and we take this as the probability model upon which to base our 
calculations. If  1 2, , , mY Y Y"  are the results of m such experiments we shall often denote 
them as a vector 1( , , ).T

mY Y Y= "  Following normal practice we shall generally denote 
random variables by capital letters and their realizations by small letters. 
 
Classical Methods: We begin by finding the maximum likelihood estimator of p given 
that Y has the negative binomial distribution, 
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Given the results of m replications of the sampling procedure, 1 2, , , mY Y Y"  the likelihood 
function is given by  
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If we define ( | ) ln ( | )L p Y l p Y=  we have 
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Recall that since the 1 2, , , mY Y Y"  are i.i.d negative binomial with parameters r and p, then 
T is negative binomial with parameters mr and p. Following the usual procedure we take 
the derivative of the log likelihood with respect to p, set it equal to zero and solve the 
resulting equation. We shall show that the solution is a maximum and that it is unique. 
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 is positive for 0<p<1 we need only consider the right hand factor when 

this is set to zero. Setting the right hand term to zero and solving for p yields 
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 reveals that as p 

approaches zero the u(p) tends to +∞ . Similarly, as p approaches 1, the u(p) approaches  
(-T). Because the function is continuous on (0, 1) and changes sign in the interval it 
follows from the intermediate value theorem that there is at least one root of the equation 
in the interval (0, 1). Next note that it is easily demonstrated that the left hand term in the 
expression for u(p) is strictly monotone decreasing so there is only one solution on (0, 1). 
Finally, 
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for all 0 < p < 1 and so p̂  is the unique maximum likelihood estimator (MLE) of p. 
 
 Next we consider the asymptotic properties of the MLE. It is commonly the 
custom to assume the consistency and asymptotic normality of maximum likelihood 
estimators as given when certain (generally unspecified) regularity conditions are met. 
Most basic texts in statistics do not say what these conditions are. They can be found, for 
example in Singer and Sen [10] , Serfling [11] and Furgeson [12]. The exact assumptions 



differ somewhat among the authors and some can be difficult to establish in practice. 
Wald [13] established the strong consistency of the MLE under very weak conditions 
compared to those given in general. On the other hand, when the MLE is available in 
closed form as it is here, it is often possible to establish these properties directly and that 
approach is taken here.  
 
 In what follows we will denote the MLE by ˆmp to emphasize that it is the 
estimator based  m replications of the sampling process. We begin by proving the 
following result. 
 
 
Theorem 0: ˆmp  is a strongly consistent estimator; that is, . .ˆ   as  a s
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expand the right hand side of this expression in a Taylor series about c. Thus we can 
write that 
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m

m

X
V

W
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 and note that 

. .  as 
0

a s
m

c
V v m⎛ ⎞

⎯⎯→ = →∞⎜ ⎟
⎝ ⎠

. Also define the function  

[ ] [ ]
1 11 1( ) m N N

m m m m m m m
rWg V X h W X r h W
N

− − −= − − + −  

( )mg V  is clearly a continuous function of its arguments and hence is a Borel function. 
Hence by general convergence results for Borel functions we have  
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This completes the proof. 



 We are also interested to asymptotic behavior of the moments of ˆmp .To this end, 

consider the function ( )
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derivatives of ( )f t . To this end we note that ( )f t  can be written in terms of the product 

of two functions; 
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also utilize Leibnitz’s rule for taking the s-th derivative of a product of two functions. 
That is, 
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 It is straight forward to show that  
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and that 
 

( ) ( )
0

11 1

0

( ) 11 1 (1 )
k k kk k N NN

k
jt t

d v t j mr p
dt N

− ⎛ ⎞ +− +⎜ ⎟
⎝ ⎠

==

⎡ ⎤⎛ ⎞ ⎡ ⎤= − + − −⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎣ ⎦
∏  

 
Similarly, we have that  
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This is used in conjunction with Leibnitz’s rule, equation (1), to calculate all needed 
derivatives. As it happens, examination of the first few of these reveals a pattern and so 
the general k-th derivative can be expressed in closed form. To this end, we consider 
several cases: 
 
Case i:  (s = 1) 
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Case ii: (s = 2) 
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which after plugging in the parts and gathering terms is 
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But the term in braces on the right hand side of the equation is divisible by 1 (1 )Np⎡ ⎤− −⎣ ⎦  
leading to the final result 
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Examination of several more derivatives (s = 3,4 and 5) lead to the general result, 
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where we have made the rule that 
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now possible to expand the equation for the MLE in a Taylor series about E(T). Thus we 
have  
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That is, 
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Noting that each term in this expansion has a factor of the form 
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we see that taking the expected value of p̂  involves finding the expected value of 
averages of i.i.d. random variables. Clearly, by the way we constructed the series, 
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Similarly,  
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and finally 
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If we now take the expectation term-wise in the series for p̂  we obtain, 
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or gathering terms in powers of 1

mr  yields 

Theorem 1:  The first few terms in the expansion for ˆ( )E p  in powers of  1/m  are 
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where the ( )kg p  are defined as in equation (5). 
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 are positive and so the 

Maximum likelihood Estimator is upwardly biased. From the expansion in equation (4) 
we can also find the first few terms in the expansion for 2ˆ( )p p− , take the expectation 
with respect to T as above an obtain the second order approximation to the Mean Square 
Error for p̂ . To this end, moving p to the left hand side of equation (4) and squaring both 
sides yields, 
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Next taking the expectation on both sides of the equation and gathering terms in powers 
of 1

mr  yields, 

 
 
 
 
 
Theorem 2: The first few terms in the expansion for the Mean Square Error in powers of  
1/m are, 
 

2 1 22
2

2 2 22 2 3 2
22 2

3

1 1ˆ( ) (1 ) 1 (1 )

2 ( ) ( )1 1 (1 ) 1 (1 ) 1 (1 ) ( )
4! (2!)

1
( )

N NN

N N NN

E p p p p
N mr

g p g pp p p g p
N mr

rm

−

−

⎛ ⎞ ⎡ ⎤ ⎡ ⎤− = − − − +⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠

⎧ ⎫⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − + − + − +⎨ ⎬⎜ ⎟ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎩ ⎭
⎛ ⎞
⎜ ⎟
⎝ ⎠
○

 
 
By combining the expansions from Theorems 1 and 2 we can find the first few terms of 
the expansion for the variance of p̂ . Carrying out this process leads to the following 
theorem. 
 
 
 
 
 



Theorem 3:  The first few terms in the expansion for the variance of p̂  are 
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Note that as we would expect, the first term in this expansion is just the reciprocal of the 
Fischer information. 
 
 We now want to consider the asymptotic distribution of p̂ . We shall prove the 
following theorem: 
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proof:  We shall again utilize a truncated Taylor expansion to demonstrate this result. In a 
manner analogous to equation (4) we can obtain 
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Next we note that the first term can be written as  
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We note that the term in the left hand bracket is just the square root of the first term in the 
expansion for the variance given in Theorem 3 while the term in the right hand bracket is 
just the reciprocal of the square root of the variance of mW . Hence we can write that, 
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We have noted previously that . (1 )
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almost sure convergence implies convergence in probability each of these converges to 
its respective limit in probability as well. Finally, consider the quantity 2

mmW . We shall 
show that this converges in probability to 0 as m tends to infinity. To this end, 
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so that 2( ) 0 as mP mW mε> = →∞ ; that is, 2

mmW  converges to zero in probability. An 
argument like to one used in Theorem 0 now shows that the second term on the right side 
of the equal sign in equation (6) converges to zero in probability. By the central limit 
theorem the first term (in brackets) on the right hand side converges in distribution to a 
N(0,1) and by symmetry of the normal so does the negative of this random variable. 
Finally application of Slutsky’s theorem completes the proof. 
 
 To summarize, we have shown that a unique maximum likelihood estimator exists 
and that it has all the usual properties we associate with an MLE. We have also obtained 
the first few terms of asymptotic expansions for the Bias and Variance of the MLE. One 



practical matter needs to be noted. That is, the MLE is well defined if the experiment is 
carried out only once. That is, in case the investigator collects and tests pools until r 

positive pools are found, the MLE is just 
1

ˆ 1
NYp

Y r
⎛ ⎞= − ⎜ ⎟+⎝ ⎠

 where Y is the number of 

negative pools tested prior to obtaining r positive pools. On the other hand, it is not 
reasonable in this case to invoke any of the asymptotic results noted above. It is 
particularly worthy of note that in the event of a very rare event, it might be of practical 
interest to set r = 1. For the rare event case, it is also important to exercise care in the 
computation of p̂ . This is because Y will be large compared to r and so the ratio 

( )
Y

Y r+  will approach 1. The ratio raised to the 1/N power is even closer to 1 and so 

there will be excessive cancellation leading to loss of precision in the computation of p̂ . 

This problem can be solved by noting that 
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using the McClaurin expansion  
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. Then the 

McClaurin expansion 
2 3
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eξ ξ ξξ− = − + + +"  is used to calculate p̂  without loss of 

precision due to cancellation.  
 
 To get a sense of the asymptotic behavior of the MLE, we note that the key factor 
in each term of the expansions given in Theorems 2 and 3 is the quantity  rm. Table I 
shows the effect of rm on the bias for several values of p when the pool size N = 50. 
From the table it is clear that they key number from an asymptotic point of view is the 
number of positive cells observed (rm).  
 
 It can also be noted here that the results of Theorems 2 and 3 still hold if the 
experiment is changed so that at each site the investigator collects specimens until 

, 1, 2, ,ir i m= "  are observed. That is, if the sites are indexed as 1,2, ,i m= " , the 
investigator observes ir  positive pools at the i-th site. In this case the log likelihood 
function is   
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and the maximum likelihood estimator is  
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p rm ˆ( )E p  Bias 
1 0.05125 0.05025 
2 0.00425 0.00325 
3 0.00161 0.00061 
4 0.00134 0.00034 
5 0.00125 0.00025 
10 0.00111 0.00011 
15 0.00107 0.00007 
20 0.00105 0.00005 

 
 
 
 
1/1000 = 0.001 

25 0.00104 0.00004 
1 0.00546 0.00536 
2 0.00024 0.00013 
3 0.00015 0.00005 
4 0.00013 0.00003 
5 0.00012 0.00002 
10 0.00011 0.00001 
15 0.000107 0.000007 
20 0.000105 0.000005 
25 0.000104 0.000004 

 
 
 
 
1/10,000=0.0001 

   
 
Table I: Behavior of the MLE with respect to bias as the quantity rm increases given p 
and pools of size N = 50. 
 
 
 We next consider confidence intervals produced from this modeling approach. As 
mentioned previously, George and Elston [6] considered a confidence interval for the 
case rm = 1 while Lui [7] considered the case r > 1 while m = 1. The extension of their 
results to the screening of pools is very easy. As we have previously observed, if we have 
collected specimens at m sites until r positive pools are observed at a site, and if we 
denote the number of negative pools collected at site i by iY  then the distribution of 
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the investigator has observed t  total failures, the classical confidence intervals are then 
given by solving the equations  
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A number of investigators [7-9] have shown that these sums can be replaced with 
equivalent binomial sums and hence that the sums can be found from the incomplete beta 
function. In particular, following Patil [9] let  
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is the incomplete beta function with parameters rm and t + 1. Lui then uses the known 
relationship between the beta distribution and the F-distribution to obtain closed form 
equations for the end points of the confidence interval based on critical values from the 
F-distribution. From a computational point of view, it is no easier to calculate the quantile 
values from the F-distribution than it is to calculate those from the beta distribution and 
so in our study we have used the appropriate quantiles from the incomplete beta function. 
The confidence intervals should be exact (ie, for any value of p,  ( ) 1l uP p p p α< < ≥ −  
and infimum with respect to p of such probabilities is exactly 1 α− ). Table II shows the 
coverage probabilities of the intervals for two values of the unknown parameter p and for 
a number of values of rm. 
 
 
 
 



p rm Coverage probability 
2 0.95355 
3 0.95255 
4 0.95135 
5 0.95159 
10 0.95125 
15 0.95122 
20 0.95089 

 
 
 

1/1000 = 0.001 

25 0.95045 
2 0.95091 
3 0.95039 
4 0.95018 
5 0.95025 
10 0.95013 
15 0.95002 
20 0.95009 

 
 
 

1/10,000 = 0.0001 

25 0.95006 
 
Table II: Coverage probabilities for the confidence intervals when the true values of the 
unknown parameter p are as given in the table. For this table, the pool size is N = 50. 
 
 In Table III we give results about coverage probabilities for the case N = 50, rm = 
10 and p taking on values in the interval ( )1 1

10,000 100, . 
 

p  x  104 Coverage Probability 
0.450 0.95006 
0.750 0.95006 
0.961 0.95007 
1.230 0.95009 
1.585 0.95022 
2.000 0.95003 
2.610 0.95045 
3.500 0.95035 
4.310 0.95024 
5.500 0.95086 
7.100 0.95078 
9.000 0.95067 
10.000 0.95125 

 
Table III. Coverage probabilities for 95% confidence intervals for 1 1

10,000 1000p≤ ≤  when 
the pool size is N = 50 and rm = 10. 
 
 In Table III we see the typical variation of the coverage probability with changes 
in p one expects with discrete distributions. These intervals are exact and slightly 



conservative, but not nearly as conservative as the Binomial confidence intervals, for 
example. 
 
Bayesian Methods: We now take a look at the use of the Bayesian method to find point 
estimates and confidence intervals for this sampling situation. The new decision which 
must be made here is the choice of the prior distribution. We shall assume initially that 
we have no prior experience upon which to base a decision concerning a prior 
distribution. For that reason, we shall utilize the Jeffreys prior for our analysis. It is not 
difficult to show that for our negative binomial model, this prior, g(p), is such that 
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Combining this with the likelihood  
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leads to the posterior distribution, 
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where t is the value of the random variable T actually observed. Although the classical 
concept of point estimate is not part of the Bayes approach, it is none the less possible to 
consider the mode of the distribution as analogous to a point estimate. In this case, as 
long as 2 , ( )rm pπ≥  has a single maximum on 0 < p < 1 at the point, 
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We noted earlier that the maximum likelihood estimator, p̂  is upwardly biased. It 
requires only simple algebra to show that ˆbp p<  suggesting that it might be a less biased 
estimator. This possibility was investigated numerically and as is shown in Table IV, bp  
is far less biased than p̂ . This would suggest that if bias in the point estimator is 
important to the investigator, bp  is a better choice for the point estimator particularly 
when rm is small. 
 
 
 
 



p rm ˆ( )E p  ( )bE p  
2 4.25 x 10-3 9.8450 x 10-4 

3 1.61 x 10-3 1.0004 x 10-3 

5 1.25 x 10-3 1.0002 x 10-3 

 
1/1000 = 0.001 

10 1.11 x 10-3 1.0001 x 10-3 

2 2.24 x 10-4 9.9860 x 10-5 

3 1.50 x 10-4 1.00005 x 10-4 

5 1.25 x 10-4 1.00002 x 10-4 

 
1/10,000 = 0.0001 

10 1.11 x 10-4 1.00001 x 10-4 

 
Table IV: Comparison of the Expected value of the MLE, p̂ , to the expected value of the 
mode of the Bayesian posterior distribution, bp . Calculations shown are for pool sizes of 
N = 50. 
 
 Equal tail area (1 )%α−  credibility intervals are also easily calculated given the 
posterior distribution, ( )pπ . To this end we must find values and l up p  such that, 
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That is, for lp  we must solve the equation, 
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Note that if we let 1 (1 )N

l lu p⎡ ⎤= − −⎣ ⎦  the right hand integral can be solved for lu  be 

means of the Beta distribution quantile function. lp  is then easily calculated from lu  by 
simple algebra. Computation of up  is accomplished in the same manner. Again, coverage 
probability is not a Bayesian concept but for comparison purposes Table V gives the 
calculated coverage for the 95% Bayesian credibility for a range of values of p when N = 
50 and rm = 3. 
 
 From Table V it is clear that the credibility is not exact in the sense described 
above. On the other hand, it appears to be reasonably close to the nominal level across all 
values of p considered and so should be quite useful. Before using this in a situation 
where you have prior knowledge which leads you to believe that the random variable p is 
in a particular interval, a simulation study for a moderate number of values of p in this 
interval will be valuable in assessing results. 
 
 
 
 



p x 104  Coverage Probability 
0.961 0.94984 
1.234 0.95019 
1.585 0.95010 
2.035 0.94979 
2.613 0.95049 
3.355 0.94992 
4.307 0.94925 
5.531 0.95098 
7.102 0.95131 
9.119 0.94769 
11.709 0.94712 
15.034 0.95200 
19.305 0.95480 
24.788 0.95024 

  
Table V: Coverage probabilities for the 95% credibility interval for p in the approximate  
range ( )1 1

10,000 100, . The actual values of p were chosen equally spaced on a logarithmic 
scale. For this table, the pool size N = 50 and rm = 3. 
 
General Conclusions: This method of sampling has been suggested as a 
reasonable approach to take when the population prevalence is believed to be very small. 
We have investigated the Maximum likelihood approach for finding a point estimate, 
shown that it is strongly consistent and that it is asymptotically normally distributed. We 
have found  asymptotic expansions for the bias and mean square error and have 
investigated the bias of the estimator numerically. We have also considered exact 
confidence intervals analogous to the Clopper-Pearson intervals for the Binomial 
Distribution. Finally we have considered a Bayesian analysis based on the 
noninformative Jeffreys prior. We have found that the MLE is upwardly biased and 
severely so when the number of positive pools required prior to stopping the sampling is 
small (r = 1 or 2). The confidence intervals are slightly conservative but not nearly as 
conservative as the Clopper-Pearson intervals for the Binomial sampling model. We have 
also seen that the mode of the posterior distribution, viewed as a point estimate, is nearly 
unbiased even when r is small. The Bayesian credibility intervals, although not exact, 
have nice coverage properties from a Frequentist point of view.  
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