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1 Introduction

The purpose of this report is to explore the calculation of orthogonal polyno-
mials and their derivatives. The basic method follows the approach given by
Emerson (1968)[2]. Given a set of points x1, · · · , xn, polynomials pj(xi), j =
0, · · · ,m where pj(xi) is of degree j, are found such that the matrix of values

P =


p0(x1) p1(x1) p2(x1) · · · pm(x1)
p0(x2) p1(x2) p2(x2) · · · pm(x2)
p0(x3) p1(x3) p2(x3) · · · pm(x3)

...
...

...
...

...
p0(xn) p1(xn) p2(xn) · · · pm(xn)

 (1.1)

is orthonormal; that is such that P TP = Im+1 where Im+1 is the (m + 1) ×
(m + 1) identity matrix. From this matrix of values recursion coefficients
Aj, Bj and Cj, j = 1, · · · ,m are found and used to calculate values of the
polynomials at any point x. It will be shown that the derivatives of the
polynomials can also be found recursively utilizing constants Aj, Bj and Cj

defined in the next section.
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2 Derivations of the methods

2.1 Calculation of the matrix P of equation (1.1)

We shall utilize the notation of Emerson’s paper [2]. Thus, let xi, i = 1, · · · , n
be given values of x and let wi be a weight associated with each xi. We
shall find the Aj, Bj and Cj such that at any x the values of the orthogonal
polynomials are given by the simple recursion (Equation (6) in Emerson),

pj(x) = (Ajx+Bj)pj−1(x)− Cjpj−2(x) , j = 1, 2, 3, · · · ,m < n (2.1)

where p−1(x) = 0, ∀x and p0(x) =
(√∑n

i=1wi

)−1

,∀x. In the derivation of

these recursion constants we make use of the following conditions

n∑
i=1

wipj(xi)pk(xi) =

{
1 , if j = k
0 , if j ̸= k

(2.2)

The values of Aj, Bj and Cj are then found recursively from the following
equations

Aj =


n∑

i=1

wix
2
i p

2
j−1(xi)−

[
n∑

i=1

wixip
2
j−1(xi)

]2

−

[
n∑

i=1

wixipj−1(xi)pj−2(xi)

]2


−1/2

Bj = −Aj

n∑
i=1

wixip
2
j−1(xi) (2.3)

Cj = Aj

n∑
i=1

wixipj−1(xi)pj−2(xi)

The steps in the calculation of the Aj, Bj and Cj given wi and xi, i = 1, · · · , n
can be summarized in the following steps

1. For the weights, wi calculate sw = [
∑n

i=1w(i)]
−1/2

. For i = 1, · · · , n
set p−1(xi) = 0 and p0(xi) = sw.

2. For j = 1, 2, · · · ,m
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(i) Calculate

s1 =
n∑

i=1

wix
2
i p

2
j−1(xi)

s2 =
n∑

i=1

wixipj−1(xi)

s3 =
n∑

i=1

wixipj−1(xi)pj−2(xi)

(ii) Calculate

Aj =
{
s1 − s22 − s23

}−1/2

Bj = −Ajs2

Cj = Ajs3

(iii) For i = 1, 2, · · · , n calculate

pj(xi) = (Ajxi +Bj)pj−1(xi)− Cjpj−2(xi)

3. End of loop started at step 2.

2.2 Approximating a function using the orthogonal poly-
nomials

At this point the n× (m+1) orthogonal matrix P has been calculated. Next
given observations of a function y = f(x) for x = x1, x2, · · · , xn we determine
coefficients αj , j = 0, · · · ,m such that f(x) is approximated on the range
of the xi by f̃(x) ≈

∑m
j=0 αjpj(x). This is accomplished by finding the least

squares solution of the n× (m+ 1) system of linear equations

Pα = y , y = (y1, y2, · · · , yn)T

Because of the orthogonality of P the solution is trivially found to be α =
P Ty. Noting that C1 is arbitrary and so can be set to zero, the approximation
of the function f(x) can be found for any x by setting p0(x) = sw and using
the recursion of equation(2.1) to calculate p1(x), · · · , pm(x) and then form

the linear combination f̂(x) =
∑m

j=0 αjpj(x).
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2.3 The first and second derivatives of the model func-
tion

If we wish to use the model to estimate the derivative of the approximating
polynomial function we require the derivatives p

′
j(x) , j = 0, 1, · · · ,m. Noting

that p0(x) is a constant independent of x we see that p
′
0(x) = 0 for all x and

that C1 = 0 we can find p
′
j(x) by differentiating equation (2.1) to obtain the

recursion

p
′

j(x) = Ajpj−1(x) + (Ajx+Bj)p
′

j−1(x)− Cjp
′

j−2(x) , j = 1, 2, · · · ,m (2.4)

Since the recurrence of equation(2.4) requires pj−1(x) it is necessary for any
j to first utilize the recursion of equation (2.1) and then the recursion of
equation (2.4). The justification for equation (2.4) is given in Appendix A.
Differentiation of the recursion a second time leads to a recursion for the
second derivative:

p
′′

j (x) = 2Ajp
′

j−1(x) + (Ajx+B − j)p
′′

j−1(x)− Cjp
′′

j−2(x) (2.5)

p
′′

−1(x) = 0 ; p
′′

0(x) = 0, ∀x (2.6)

It should be noted that although these yield the correct second derivatives of
the orthogonal polynomials there is no guarantee that the value calculated
are good representations of the second derivatives of the function being ap-
proximated by the polynomial model. A few examples follow which should
help to clarify this point.

3 Some examples

We shall consider three examples of approximating functions with orthogo-
nal polynomials of different degrees and the use of these models to estimate
the first and second derivative of the function. The first two of these can
be classified as “difficult” problems. They are designed to illustrate cer-
tain difficulties that can occur when approximating a general function by an
expansion in orthogonal polynomials. The third is estimating a cubic poly-
nomial based on “noisy” data. In this case, we expect the approximations to
be good and the derivatives to be correct. We shall see, however, if one fits a
polynomial of degree larger than the underlying function, then the estimates
of the derivatives (especially the second derivative) give incorrect values.
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3.1 Eample 1:

Approximating the Runge Function:

A well known example from elementary Numerical Analysis is the interpola-
tion of the Runge Function

f(x) =
1

1 + 25x2
, x ∈ [−1, 1] (3.1)

Standard divided difference interpolation based on equally spaced points fails
completely due to rapid oscillation of the polynomial approximation near −1
and 1.[1],[3] The problem is due to the equal spacing of the interpolation
data points and becomes worse as the degree of the polynomial increases.
The problem can be remedied by making the interpolation table based on
the Chebyshev points on the interval [a, b].

xj =
1

2

(
(a+ b)− (a− b) cos

[
(2j − 1)

2n
π

])
(3.2)

In this case a = −1 and b = 1. Rather than approach this problem by means
of approximation by an interpolating polynomial we shall use the methods
of least squares for approximation by a set of orthogonal polynomials based
on function evaluations at the Chebyshev points. We consider three approx-
imations based on n = 51 Chebyshev points on [−1, 1] and polynomials of
degree 10 , 20 and 30 respectively. Noting that the Runge function is sym-
metric about x = 0 we expect that only the polynomials of even degree will
contribute to the approximation and that proves to be true. Figures 1 and
2 below illustrates the fit based on polynomials up to degree 10, 20 and 30
respectively. The ANOVA table associated with the approximation based on
n = 51 points and polynomials up to degree 10 is

Source df Sum of Squares Mean Square F(11,40)
Regression 11 5.13254 0.46659 307.15556
Error 40 0.06076 0.00152
Total 51 5.19331

R2 R2 − adj
0.98829968 0.98537461
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j α̂j Sum of Squares F (1, 40) p-Value

0 1.40055 1.96154 1291.26473 0.00010
1 0.00000 0.00000 0.00000 1.00000
2 -1.33117 1.77201 1166.50126 0.00010
3 0.00000 0.00000 0.00000 1.00000
4 0.89465 0.80040 526.89629 0.00010
5 0.00000 0.00000 0.00000 1.00000
6 -0.60128 0.36153 237.99349 0.00010
7 0.00000 0.00000 0.00000 1.00000
8 0.40410 0.16330 107.49915 0.00010
9 0.00000 0.00000 0.00000 1.00000
10 -0.27159 0.07376 48.55623 0.00010

The 95th percentile point of a F distribution with ν1 = 11 and ν2 = 40
degrees of freedom is 2.03 so it is clear that the model is fitting the Runge
Function very well. Since the Runge Function is an even function, as expected
every coefficient associated with an odd power of x is zero. The p-values in the
table denoted by 0.00010 stand for probabilities less than or equal to 0.0001.
These statistics paint a far more rosy picture of the quality of the estimate
than we see when we observe a plot of the function and its approximation
over the interval [−1, 1] as given in Figure 1.
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Figure 1: Approximation of the Runge function, f(x) = (1 + 25x2)−1 by or-
thogonal polynomials of maximum degree 10 by the method of Least Squares.
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Figure 2: Approximation of the Runge function, f(x) = (1 + 25x2)−1 by or-
thogonal polynomials of maximum degree 20 by the method of Least Squares.
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Figure 3: Approximation of the Runge function, f(x) = (1 + 25x2)−1 by or-
thogonal polynomials of maximum degree 30 by the method of Least Squares.

Increasing the maximum degree of the polynomials to 20 and then to
30 improves the fit to the function. This is illustrated in Figures 2 and 3.
We see that the approximation to the function improves steadily as do the
approximations to the first and second derivative. However, even when the
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maximum degree is 30 the derivatives continue to show oscillations in the
tail regions. Thus we would judge that approximation of the derivatives,
especially the second derivative, by differentiating the polynomial model is a
questionable practice.

3.2 Example 2:

Approximation of the function f(x) = π + tan−1(10x) , −3 ≤ x ≤ 3

This function has been chosen to approximate a step function at x = 0.
It is well known that approximation of a step function by a Fourier series
leads to oscillations in the regions away from the step function. These os-
cillations are called Gibbs Phenomenon. It is apparent from this example
that similar behavior occurs for this function when approximating it with
orthogonal polynomials on a evenly spaced set of points for x ∈ [−3, 3]. Fig-
ures 4 through 6 illustrate respectively the approximation of the function
by polynomials of degrees 10, 20 and 30 respectively. Even though the R2

values in each case would suggest a reasonable fit to the function, we see that
the oscillations persist even when the degree of the polynomial is m = 30.
More importantly, we note that the first derivative of the function resembles
a Dirac delta function with a single narrow spike at x = 0 and a nearly flat
contour elsewhere. The derivatives, both first and second, of the approxi-
mating polynomial are wildly different from the true function and exhibit
extreme fluctuations near the ends of the interval [−3, 3]. In figure 6 the first
derivative is plotted twice; once on the interval [−3, 3] and then again on the
subinterval [−2.64, 2.64]. This is done because the wild behavior at the ends
masks the real behavior near x = 0 because of the size of the fluctuations.
In short, the graphs tell the whole story. If the function being approximated
has regions where there is little change and a narrow area where there is an
abrupt change, then the approximation of such a function can adequately
model the function but completely miss-represent the derivatives.
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Figure 4: Approximation of the function, f(x) = π+ tan−1(10x) , x ∈ [−3, 3]
by orthogonal polynomials of maximum degree 10 by the method of Least
Squares.
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Figure 5: Approximation of the function,f(x) = π+ tan−1(10x) , x ∈ [−3, 3]
by orthogonal polynomials of maximum degree 20 by the method of Least
Squares.
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Figure 6: Approximation of the function,f(x) = π+ tan−1(10x) , x ∈ [−3, 3]
by orthogonal polynomials of maximum degree 30 by the method of Least
Squares.Note that although the model captures the rapid rise of the function
at x = 0 it still exhibits the oscillations at x− and x+. The oscillations are
even more pronounced for the first and second derivative of the modeling
polynomial
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3.3 Example 3:

Modeling a function subject to errors in the observations

In this example we consider the common problem of modeling noisy data
by a polynomial model. That is, we assume that we have n observations
y(xi) = yt(xi) + ϵi, i = 1, · · · , n where ϵi ∼ N(0, σ2) and we estimate yt by
means of a polynomial model y(xi) =

∑m
k=0 αkpk(xi) , i = 1, · · · , n where the

pk, k = 0, 1, · · · ,m are a set of orthonormal polynomials. Thus suppose that
y = (y(x1), · · · , y(xn))

T ∈ Rn and that the pk = (pk(x1), · · · , pk(xn))
T ∈ Rn

are such that

pT
j pk =

{
0 , ifj ̸= k
1 , ifj = k

then the Least Squares estimates of the αk are given by α̂k = pT
ky.

For this example we consider a pseudo-random sample, ϵ ∈ Rn, from the
Normal, N(0, 6.25) and the cubic polynomial model

y(xi) = ((0.035xi + 1.3)xi + 13.1)xi + 60.9 + ϵi , i = 1, · · · , n

We begin by examining a scatter plot of the raw data to get a feel for the
possible degree of the polynomial model. To this end we have figure 7,
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Figure 7: Scatter plot of the observed pseudo-data y(xi) = yt(xi) + ϵi , i =
1, · · · , n.

From this plot it is clear that the polynomial model should be at least of
degree m=3 and possibly of a higher degree, say m=5. taking m = 5 leads
to the following Analysis of Variance table

Source df Sum of Squares Mean Square F( 6,94)
Regression 6 849254.59514 141542.43252 32170.94316
Error 94 413.57161 4.39970
Total 100 849668.16674
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R2 R2 − adj
0.99951326 0.99948736

j α̂j Sum of Squares F (1, 94) p-Value

0 916.56773 840096.40408 190944.10902 0.00010
1 13.08182 171.13399 38.89676 0.00010
2 23.75683 564.38701 128.27858 0.00010
3 91.73522 8415.34994 1912.71084 0.00010
4 1.41578 2.00443 0.45558 0.50135
5 2.30558 5.31569 1.20819 0.27450

Looking at the ANOVA table for the we see that the 4th and 5th coefficients
corresponding to the polynomial model of degree 5 are not significant p >
0.275. In figure 8 we see that the presence of the nonsignificant parameters
has an undesirable effect on the first and second derivatives.
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Figure 8: Plot of the true value of the function and it’s first and second
derivatives and the estimated value with it’s derivatives. We see that there
is some lack of fit for the first derivative but a more extensive lack of fit for
the second derivative.

Thus, in Figure9 we have a plot of the model and derivatives when the
nonsignificant parameters are not included in the model.
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Figure 9: Plot of the true value of the function and it’s first and second
derivatives and the estimated value with it’s derivatives. We see that there
is no lack of fit for the first derivative and second derivative.

For completeness we look at the polynomial model when the degree of
the polynomial is too small. In this case we choose to take m = 2 so that
the polynomial approximation is of degree 2. The analysis of variance table
in this case is
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Source df Sum of Squares Mean Square F( 3,97)
Regression 3 840831.92508 280277.30836 3076.74914
Error 97 8836.24166 91.09527
Total 100 849668.16674

R2 R2 − adj
0.98960036 0.98938594

j α̂j Sum of Squares F (1, 97) p-Value

0 916.56773 840096.40408 9222.17322 0.00010
1 13.08182 171.13399 1.87863 0.17365
2 23.75683 564.38701 6.19557 0.01451
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Figure 10: Plot of the true value of the function and it’s first and second
derivatives and the estimated value with it’s derivatives in the case where we
have underestimated the degree of the polynomial.

Not surprisingly we see in Figure 10 that if the polynomial model has degree
too small to allow capture of the shape of the data, not only are the derivative
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estimates bad but so is the fit to the data. That is, we observe a simple
quadratic curve versus the plot of the raw data and of the true function,
denoted as previously by yt. Thus we see that if we choose the degree of the
polynomial too small, the resulting polynomial model simply fails to capture
the shape of the data.

4 Summary

We have shown how to calculate the derivatives of a set of orthogonal poly-
nomials given the constants for the three term recursion which generates the
polynomial values. We have seen that these same constants can be used
in a recursion to calculate the derivatives of the polynomials and hence of
any model function based on a linear combination of the polynomials. A
down side of this approach for SAS users is that the procedure ORPOL does
not return the recurrence coefficients that are calculated by the methods de-
scribed in this report [2]. The computations for this report were done using
a program written in FORTRAN2003. A subroutine called ORPOLY.F95 is
available from the author.

Appendices

A Derivation of equation(2.4)

Note that in the construction of the recursion given in equation(2.1), the
constants Aj, Bj and Cj, j = 1, 2, · · · ,m are found recursively and once they
are found, the value of the polynomials at any point x can be found using
equation(2.1),

pj(x) = (Ajx+Bj)pj−1(x)− Cjpj−2(x) , j = 1, 2, 3, · · · , , m < n

In particular, given any x we can use the recursion to find values of the
polynomials at the points x+h where h is a small number, the by elementary
calculus we know that

p
′

j(x) = lim
h→0

pj(x+ h)− pj(x)

h

21



and from application of the Taylor expansion we can write,

pj(x+ h) = pj(x) + hp
′

j(x) + ◦(h) (A.1)

From equation(2.1) we have that

pj(x+ h) = (Aj(x+ h) +Bj)pj−1(x+ h)− Cjpj−2(x+ h)

if we now replace pk(x + h) for k = j, j − 1, j − 2 with the appropriate
expressions from equation(A.1) in equation(2.1) , subtracting equation(2.1)
leads (after considerable algebra) to

pj(x+ h)− pj(x)

h
= (Ajx+ bj)p

′

j−1(x)− Cjp
′

j−2(x) + Ajpj−1 (A.2)

+ hAjp
′

j−1 + ◦(h)

Taking the limit of both sides of this equation leads to the result given in
equation(2.4).
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