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Topics

Qualitative changes in the predicted
proteome

— Posttranslational modifications
* Isolation and characterization
« Making using of the chemistry of the modification

Quantitative aspects

— Isotope labeling
« ICAT, 180/1¢0, 15SN/'“N
« Chemical labeling

— Absolute measures
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General classes of modification

Biochemical event involving peptide processing

Biochemical event stimulated by enzymes

Chemical event driven by reactive species

Chemical event determined by investigator
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Examples of peptide
processing of polypeptides

Head groups of membrane proteins

The family of proteins in HIV that are
manufactured as one protein and then
hydrolyzed by a protease

Secretogranin - a brain protein consisting
of several bioactive peptides

Formation of f-amyloid
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Enzymatic modifications

Phosphorylation/dephosphorylation

— On serine, threonine, tyrosine
Glycosylation

— N-glycosylation (asparagine)

— O-glycosylation (serine, threonine)
N-Acetylation/deacetylation

— On lysine

N-Methylation

— On lysines - mono-, di- and trimethylation
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Phosphorylation of proteins

in some cases, proteins are normally found in a
stable, hyperphosphorylated state, e.g., casein

In many cases, it is a transient event that
causes 10-100 fold increase in enzyme activity.
This is the way signals are propagated through
a signal transduction pathway. However, the
molar abundance of phosphorylation at an
individual site may only be 1-2%.

Steve Barnes 2-20-04



Chemistry of phosphorylation
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Mass spectrometry of proteins

Adds H,PO, (+98)
 Eliminates water (-18)
* Net change +80

 if the phosphate ion is released (i.e., in
negative ion spectra), it is seen as m/z 79
and/or m/z 63

e Can be confused with sulfate and 81Br
substitution
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Mass spectrometry of proteins

Mass spectrometry has several advantages
over other techniques

- itis very accurate

- it can eliminate ambiguity by defining the site of
phosphorylation

- itis very fast

- it does not require 32P labeling

But it is not nearly as sensitive as 3?P labeling
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Limitations of mass spectrometry

Although it can deliver sensitivity in the low
fmol to high attomole range (similar to
immunological methods), because it is a
universal detection method, finding the
needle in the “haystack” of all the other
peptides is a challenge

Recovering the phosphopeptides from the
matrix of the sample is more important than
the mass spectrometry measurement
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Finding a phosphate group

Several methods are in current use for
detection of phosphopeptides

- use of parent ion scanning
- phosphatase sensitivity

- affinity methods for enrichment of
phosphopeptides

- antiphospho-Ser/Thr/Tyr antibodies
- metal ion affinity
- chemical reaction/biotin affinity
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Parent ion scanning to detect
phosphopeptides

The procedure depends on the detection of the m/z 79 ion
fragment (PO;-) during collision-induced dissociation in a triple
quadrupole instrument operating in the negative ion mode

Parent ion scanning is a reversal of the more familiar daughter
ion MS-MS where the parent ion is selected (in Q1) and a mass
spectrum of the daughter ion fragments is obtained by scanning
in Q3

In parent ion scanning, the daughter ion fragment (in this case
m/z 79) is held constant in Q3 and a mass spectrum of parent
ions that give rise to the daughter ion obtained by scanning in
Q1.

having identified the phosphopeptides, the sample can be re-
analyzed to obtain daughter ion MS-MS spectra on selected ions
in the positive ion mode
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Parent ion scan to detect phosphopeptide
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Tandem MS of phosphopeptide 1
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Phosphopeptide 2
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Unknown casein phosphopeptide
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Recovery of phosphopeptides from yeast
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Approach to isolation of phosphopeptides
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Identifying phosphorylation on myosin
V during mitosis
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Recovery and enhancement of
phosphopeptides

The biggest problem in the detection of phospho-
peptides is how to convert the initial sample matrix into a
form suitable for mass spectrometry analysis.

- how to handle minute samples with minimal losses
- how to recover and detect all the phosphopeptides
- how to recover and detect the non-phosphorylated

proteins to determine the extent of
phosphorylation at individual sites
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Antibodies and phosphopeptides

* In this approach, both the phosphorylated and non-
phosphorylated forms of a protein may be recovered
from the sample matrix

e This can most easily achieved by immuno-
precipitation of the protein with an antibody that
recognizes epitope(s) that is(are) in common with
both forms

NOTE that as with all immunoprecipitation methods, the best
results will be achieved if the antibody is coupled to agarose
beads. This allows selective immuno-absorption of the
antigen, washing free of contaminating proteins, AND following

elution, minimization of the amount of antibody that is in the
eluate and therefore would be analyzed by mass spectrometry
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Variability of anti-phosphoserine and
anti-phosphothreonine antibodies

IP: anti-pThr  anti-pThr-Pro anti-pSer/Thr

IP: anti-pSer anti-pSer anti-pThr (CST) (CST) (CST)
(7TF12) (1C8) (1E11)
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Detection of phosphopeptides based
on their sensitivity to phosphatase

* An alternative source of potentially phosphorylated
proteins are individual spots on 2D-IEF/SDS gels. The
protein preparation so isolated is either hydrolyzed by
trypsin in solution (or in the gel piece) or using solid-
phase trypsin

* One portion of the resulting tryptic peptides (in 50%
acetonitrile:water) is analyzed by MALDI-TOF-MS. A
second portion is diluted into 50 mM NH,HCO, buffer
and reacted with 0.5 U calf intestinal alkaline
phosphatase at 37°C for 30 min. Sample is dried with a
SpeedVac, redissolved in 50% acetonitrile:water, and re-
analyzed by MALDI-TOF-MS
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Identifying phosphopeptides using
alkaline phosphatase

 Phosphopeptides shift down by m/z 80 (or
units of 80 in the case of multiply
phosphorylated peptides)

 The peaks identified as phosphopeptides can
then be analyzed in a nanoelectrospray
experiment where collision-induced
dissociation is used to determine the identity
of the peptide and the phosphorylation site in
the sequence
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Detecting a phosphopeptide with alkaline phosphatase
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Selective enhancement of phospho-
peptides in tryptic digests

Immobilized metal affinity chromatography (IMAC). Similar to Ni-
affinity resins used in the purification of 6xHis-tagged proteins.
The affinity phase can be charged with different metal ions (as
their chlorides)

Fe(lll) and Ga(lll), and to a lesser extent Zr(IV), were the most
effective for the recovery of two synthetic phosphopeptides

A tryptic digest containing both phosphorylated and non-
phosphorylated peptides is passed over the IMAC column at acid
pH (pH 2.5-3)

The column is washed with 0.1 M acetic acid to remove unbound
peptides

Elute with sodium phosphate (have to desalt) or with NH,OH
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Selective biotinylation of
phospho-groups
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How to identify phosphorylated
peaks by searching databases
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How to identify posttranslational
modifications at a new site

FindMod at

http://www.expasy.ch/tools/findmod/

It examines mass fingerprinting data for mass
differences between empirical and theoretical
peptides. If the mass difference corresponds to a
known modification, it also makes intelligent
guesses as to the site of modification.
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FindMod

Modifications considered are:

acetylation amidation biotinylation
C-mannosylation deamidation flavinylation

farnesylation formylation geranyl-geranylation
y-carboxyglutamic acid  hydroxylation lipoylation

methylation myristoylation N-acyl diglyceride
O-GlcNac palmitoylation phosphorylation

pyridoxal phosphate phospho-pantetheine pyrrolidone-carboxylic acid
sulfation

NOTE that none of the common chemical modifications (alkylation of
sulfhydryl groups with iodoacetic acid, iodoacetamide, 4-vinylpyridine, and
acrylamide) were included.

The list also omits nitration and the recently discovered halogenation of
peptides.

See the article by Wilkins et al. (1999) in J. Mol Biol. for details on FindMod
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Site for compilation of PTMs

https://www.abrf.org/index.cfm/dm.home

This site was put together by Ken Mitchelhill, Len
Packman and friends

Currently ranges from dephospho (-79) to (Hex)3-
HexNAc-(dHex)HexNAc (+1,039)
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Nitration of proteins

* Peroxynitrite is a highly oxidizing and nitrating
specie produced by the reaction of nitric oxide
and superoxide

« UAB has an important place in the identification
of nitrated proteins

— 1996 Greis et al., Arch Biochem Biophys 335:396
(Surfactant protein A)

— 1997 Crow et al., J Neurochem 69:1945 (neurofilament-L)

— 2000 Cassina et al., J. Biol Chem 275:21409 (cytochrome
C)

— 2003 Aslan et al., J Biol Chem 278:4194 (actin)
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Formation of nitrotyrosine
in the kidney is a
consequence of sickle cell
anemia, a disease due to a
point mutation in the
hemoglobin gene

In this slide, there is intense
immunoreactivity with iNOS, an
enzyme that generates nitric
oxide (NO) in the glomeruli and
the proximal and distal tubules.
Similarly, proteins containing 3-
nitrotyrosine light up in glomeruli

and the tubules.

A = human kidney

B = kidney from transgenic mouse
with the hemoglobin gene
mutation
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SCD Ctl

>

iNOS

NO, Tyr

=]

iNOS

NO,Tyr

Immunohistochemical analysis
reveals that nitration is related to
vascular events - the increase in
INOS and NO,Tyr occurs around
the central vein in the hepatocyte

NO reacts with another radical,
superoxide anion (produced by
mitochondria) to form peroxynitrite, the

chemical that causes nitration

A = human kidney

B = kidney from transgenic mouse
with the hemoglobin gene
mutation
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SDS-PAGE and
Western blot analysis

A = anti-nitrotyrosine and liver
and kidney homogenates

B = anti-iNOS

C = immunoprecitated NO,Tyr
proteins run on SDS-PAGE and
stained by Coomassie Blue

D = actin-enriched proteins run
on SDS-PAGE and stained with
Coomassie Blue

E = Western blot with anti-
nitrotyrosine of actin-enriched
proteins

F = Actin-enriched proteins
bound to anti-nitrotyrosine
affinity phase, eluted and run
on SDS-PAGE and stained with
Coomassie Blue

Aslan et al., JBC 278:4194
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MALDI-TOF analysis of
proteins from mouse liver
and kidney
Immunoprecipitated with
NO,Tyr antibody

A = 42 kDa protein from mouse
liver - actin

B = 42 kDa protein from mouse
kidney - actin

C =53 kDa protein from mouse
liver - vitamin D-binding
protein

D = 53 kDa protein from mouse
kidney - vitamin D-binding
protein

Aslan et al., JBC 278:4194



Evidence that actin and the
anti-NO, Tyr immunoreactivity
are co-localized

Tissue sections of kidney and
liver from humans (A) and
mice (B) with sickle cell
anemia

Liv

Actin is labeled in green and
NO,Tyr in red. The orange
colored regions are the sites
of co-localization of actin and
nitrotyrosine

Liv
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MALDI-TOF identification of NO,Tyr
peptides in actin

. .
Liver Kidney
100 1516.59 100 1515.36
151559
80 80
2
1517.59 B
60 g 60
E
1544.53 B
40 1560.56 40
20 20 1546.33 1560128
1500 1520 1540 1560 1580 1600 1500 1520 1540 1560 1580 1600
Mass (m/z) Mass (m/z)
1177.25
100 1177.48 100
1161.23
80
80
2
e
60 1161.53 5 80
c
=
40 40
1132.40
20 20 1132.45
1125 1139 1153 1167 1181 1195 125 1139 1153 1167 1181 1195
Mass (m/z) Mass (m/z)
1790.41
100
1790.67
100 1791.40
80
80 1791.67
2 60 1792.40
60 @
1792.66 1835.66 E 1836.37
] .
£ 40
=
20 1837.37
1175 1795 1815 1835 1855 1875 1175 1795 1815 1835 1855 1875
Mass (m/z) Mass (m/z)

Steve Barnes 2-20-04

SIWHHTFYNELR®

197GYSFTTTAER20

239SYELPDGQVITIGNER2

Aslan et al., JBC 278:4194



A 1007

Liver 1007 Kidney
80 1 B0+
|-W-H-H-T-F-Y-N-E-L-R |-W-H-H-T-F-Y-N-E-L-R
607 B0 ==
% nlfD
| - a0+ .
9 9
Parent I
*1ag 970" 1201 Parent forr s 126157
201 by & 20+ by *781.40 y, 112455
v, % 11245 ¥y 7 Yio
v, % sz ‘951 l g & Yy spers S By ¥g 087.40
2838.20 144772
P CEr PR ) TP I A ey | S o T I ul
100 200 500 700 1100 1300 1500 100 300 500 700 800 100 4300 1500
B m.fz miz
Parent larr
!;m Jon i * 58027
100+ P T
GY-S-F-T-T-T-AER GY-S-F-T-T-T-AE-R
Y5 ¥,
80 4 B
% 67833 678.36
60 - Ys
° e 57731
% 577.29 %
40 40 4+
476.24 an0e rfa 26
¥
20 ¥, @ ¥z 20 Ty
h 375.18 268 f o544 '3
i ‘l mmn axsa Y 175 |2] m, 355 2 31 P
\ L.Lth..ll.l W N IJ_J "
100 200 200 400 500 600 700 BOO 800 1000 500 600 Too 800 800 1000
C miz miz
S-Y-E-L-P-D-G-Q-V-I-T-I-G-N-E-R 8-Y-E-L-P-D-G-Q-V-I-T-I-G-N-E-R
Parent on e
*918.44 i)
= 100 o105
80
Ll
4 42514
80 PP i
649.63 2
ﬂjo ‘2?‘!3 % ¥, 1298.70
el
b v 12 401 ® ssas | B
“75422 ys 1208.65 296,09 80.38
68934 g
207 i Y7 v, 20+ amagnf ts o Yiq
5320 | | 80243°8) . A b,
¥y 26508 1 01201.65 Tesia i, iOEEEiumSS
17511 108858 ‘ EI fi | :
T A AT I O T IO L Labib it i L L
00 | 300 500 | 700 800 1100 1300 | 1500 = 1700 100 300 500 700 %00 400 1300 1500
miz miz

Steve Barnes 2-20-04

Confirmation of
nitrated actin peptide
identities by tandem
MS-MS from in vivo
experiments

b,ion = [57+1+163+45]

266

[87+1+163+45]
296

Aslan et al., JBC 278:4194
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Nitrated peptides formed in in vitro
experiments with peroxynitrite
parallel those found in vivo
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Key points to remember

Actin is a highly abundant protein in cells
Proteins in the 40-44 kDa range are

frequently heavily contaminated with actin
2D-IEF/SDS-PAGE can help separate actin
from other proteins

Actin can be nitrated
However, nitration is a low abundance
event

So, even detection of nitration of actin
requires a preliminary immunopurification

Steve Barnes 2-20-04



Detecting PTMs

If we don’t have any idea about what the
modification(s) is(are), how do we proceed?

We won'’t have the modification on MASCOT
or Protein Prospector

No antibodies or convenient affinity phases
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Can we approach this globally?

* It’s asking a lot
— Too many degrees of freedom
— Endless modifications

* Should we try?

— John Yates’ group has started
— MacCoss et al. PNAS 99:7900 (2002)
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MudPIT - Multi-dimensional
Protein Identification Technology

\e/

Hydrolyze everything!

For a cell expressing 5,000

proteins, this leads to >100,000

peptides

Can be fractionated, but still
10,000-20,000 to differentiate

Enormous bioinformatics
problem

| Cation exchange
1 column (H*)

?47 NH,Ac (1-250 mM step gradient)

gradient

10 mM —» ?47 0-40% MeCN
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20 mM
40 mM
60 mM

m nanolLC
» 80 mM
100 mM
250 mM

MS- MS* analysis

on Qqtof
Massive computing

John Yates




The Yates approach
- selection of “proteomes”

BioRad mixed molecular weight standards (10 pmol
each) plus 1 pmol of a phosphorylated glycogen
phosphorylase

Cdc2 protein complex isolated with TAP (15 ug)

Lens proteins from 4-yr old

Steve Barnes 2-20-04 MacCoss et al, 2002



Std mix cdc2p complex Lens proteins

10 pmol of stds 15 ug dissolved Lens blended in
and 1 pmol of Pi- in 40 pl of 8 M 0.1 ml 20 mM
protein: 8 M urea- urea-100 mM sodium phosphate
100 mM Tris-HClI, Tris-HCI, pH 8.5 buffer-1 mMMEGTA
pH 8.5 added (30 buffer - spun at
ul) 10,000g for 30 min
Supernatant
dissolved in 8 M
urea-100 mM Tris-
 / v v HCI, pH 8.5
Add 0.8 ul 100 mM DTT, Add 0.8 ul 100 mM Tris  Add DTT to 2 mM,
incubate at 50°C for 25 (2-carboxyethyl)- incubate at 50°C for 25
min phosphine, incubated at min
l room temp for 25 min l
Cool and add 1.7 Add 20 mM
!LI 100 mM . Add 1.7 ul 100 mM iodoacetamide to
iodoacetamide to iodoacetamide to alkylate
alkylate alkylate
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Preparing proteins for digestion

8 M Urea
ﬁ
unfolding
DTT to TBP
reduction of
disulfides
SR RS— |SH HS—
—

ICH,CONH,
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Hydrolysis procedures

Reduced, carboxymethylated in 8 M urea

Diluted x 3 with
100 mM Tris-HCI,

pH 8.5 ¢

100 mM CacCl,
added to 1 mM

¢

Roche trypsin 1:50,
incubated 12-24 h
at 37°C ¢

quenched with
90% formic acid
to 4%

Diluted x 3 with 4.8

M Urea-100 mM Tris-

HCI, pH 8.5

!

subtilisin added
1:50, incubated 2-3
hr at 37°C

!

quenched with
90% formic acid

to 4%
Steve Barnes 2-20-04

Diluted x 3 with
100 mM Tris-HCI,
pH 8.5

!

incubated with
elastase 1:50 12 h
at 37°C

!

quenched with
90% formic acid
to 4%
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Column construction for MudPIT

3 cm Polaris C,3 RP 5 um

100 um i.d.

fusc?d silica 3-6 cm Partisphere SAX 5 um
capillary Strong cation exchange resin

7 cm Polaris C,;RP 5 um

5 um tip
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Elution from a triphasic column

<4— sample

Wash with 5% MeCN-0.1% acetic
RP acid - elute with 80% MeCN-0.1%
formic acid

Wash with 5% MeCN-0.1% acetic
lon Ex acid - elute with 0-500 mM
(NH,),CO,

Wash with 5% MeCN-0.1% acetic
RP acid for 5 min - elute with 5-64%
MeCN-0.02% HFBA

For lens digests, the sample was
passed over a separate 3 cm RP
column - after washing, the
peptides were eluted with 80%
aqueous acetonitrile-0.1% acetic
acid
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Automated MS-MS analysis

Limit analysis to 2* or 3*-charged peptides
Delete poor quality spectra
Identify peptides with 98-Da neutral loss

Analyze the remaining spectra with SEQUEST (operating on a
31-node beowulf computer cluster) to identify proteins

Search sequences of identified proteins for PTMs by 80 (STY
phosphorylation), 42 (K acetylation), 16 (MWY oxidation) and
14 (K methylation)
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SEQUEST | =—>

Protein

database
Choice of file Virtual digest
to analyze of protein

Select peptides with
similar m/z value

Repeat allowing for
each PTM

Generate MSMS spectrum
for each selected peptide

v

«—

Compare and score
observed and theoretical
MSMS spectra
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Results

Protein standard mixture:

The three digests were combined - 83.7% and 95.4% coverage
for glycogen phosphorylase and BSA

Identified the glycogen phosphorylase phosphorylation site as
well as the two known sites (S69/S345) in ovalbumin

N-acetylation found plus many sites of methionine oxidation (?
due to work up or real)

New sites found - phosphorylation at S237/S241 in ovalbumin
and methylation at R652
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Results

Cdc2p complex:
— 200 proteins - 20 showed >40% sequence coverage

— Expected Y15 and T167 phosphorylation sites on Cdc2p
found

— New phosphorylation sites found on cyclin partners
Cdc13 and Cig1p

— Multiple methylation sites on Cdc2p
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Results

Lens proteins:

Found 272 proteins - 52 had >40% sequence coverage
90% are crystallins

PTMs accumulate over your lifetime

Used 18-step MudPIT because of complexity

73 different PTMs found on the 11 crystallins

Found the 13 of 18 PTMs previously described in all
species

Found 60 other new PTMs in phosphorylation, oxidation,
acetylation and methylation
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PTMs in a-crystallin

aa-Crystallin
ab-Crystallin

aa-Crystallin
ab-Crystallin

aa-Crystallin

ab-Crystallin

Known

S45, $122
S19, S45, S59

Steve Barnes 2-20-04

New

T13, T140
S53, S76

Y18, Y34, M138
Y48, W60, M68

K70, K78, K88, K145

R1, K88
K92

R22, R50

MacCoss et al, 2002



What MudPIT missed

MudPIT detected proteins with MWs from <10 kDa
to >200 kDa

But it missed all the protein dimers, trimers,
tetramers and higher species of the a-crystallins

These oligomers contain difunctional PTMs
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How to best use SEQUEST

SEQUEST is computer software to ease the burden of
interpreting MS-MS data

SEQUEST does not make an absolute judgement on the
truth of an identification

— For a given protein, there will be several peptides that should
be identified

— The overall score improves with greater sequence coverage

— PTMs can cause confusion since they will imply a m/z value of
a non-PTM peptide
— The PTM can be accounted for if known
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Quantitative proteomics

 Use of isotopes
— ICAT (d_/dg) and ICAT 13C,/'3C,

— latter needed because of deuterium
isotope effects on LC-MS mobility

— d,/d,, propionic anhydride (N-terminal
labeling
— 1SN/'N (whole cell labeling)

— 180/150 (trypsin)
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Isotope-coded affinity technology
(ICAT)

o

HN NH ° N X o
X X
WN o > \/\OMﬁ
s H X X
X X

Thiol-specific

biotin Linker region (heavy or light) ]
reactive group

This reagent reacts with cysteine-containing proteins (80-85% of proteome)

Labeling can be replacement of hydrogens (X) with deuterium, or better to
exchange '2C with 13C in the linker region (this avoids chromatography issues)

Steve Barnes 2-20-04



Principle of ICAT labeling

Cell state 1 Cell state 2
(all Cys labeled (All Cys labeled
with light ICAT) with heavy ICAT)

\/

Combine, fractionate and proteolyze

'

Affinity isolation with StreptAvidin of
ICAT labeled peptides

'
'

Mass spectrum with double vision

Analyze by LC-MS
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Quantitative phosphorylation

Phosphoprotein digest

!

Guanidination of Lys with methylisourea

Spllt 1:1

— T

Dephosphorylation Control

l |

D:-propionyl labeling D,-propionyl labeling

\ n
» Recombine —

Treat with hydroxylamine
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LC-MS analysis of D, and D;
labeled peptides

phosphopepﬁgg
| L
e N
Guanidinylated peptides
S\
..... SV T —
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Relative Intensity

Quantitative phosphorylation by MALDI

Tg T:'IE‘
1163.6
100~ Tooas 1030.6
T,, 1011.6 l
Ty 1007.5
823.4 \
% T,
Tao 885.6
727.4 l
6 I._L‘ " "‘. lL. 1 1 1 ' 1 : : ' ' : iz
TOD g00 SoD 1000 1100 1200 1300 1400

miz

100 2000 2100 2200 2300 2400
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MAP kinase phosphorylation

2205.6

100 (a)
2219.7
2224.7

2200.

28% - actual 25%

1360.6

Wwwwn —— 'WW "TJ \'ﬁﬁ“"’f u...,,,,JW l'«*'*fl "vr»-wn{ mmwﬁrmuh;wh«n

i 2219.7 22247
1o
(b)
2205.6 o o
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— 2200.6
l 23060.6
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