Modern Proteomics: Locating the targets in drug action

Stephen Barnes, Ph.D.

Department of Pharmacology & Toxicology
Senior Scientist,
Comprehensive Cancer Center Mass
Spectrometry Shared Facility

Outline of talk

- Reminder about proteins in biochemistry
- The collapsing gene-disease-drug paradigm
- Protein networks
- What is 2D-proteomics?
- Peptide fingerprinting and protein identification
- Doing MALDI-TOF experiments and bioinformatics
- The Q-tof and peptide sequencing
- Realities, the future and closing remarks

Basics of biochemistry

Proteins in a cell or excuse me, I'm just a target

The proteomics numbers challenge

Expressed proteins
+
all the modified
forms
n = 50,000-100,000

Interactions between proteins n = ??

Building a drug and rediscovering how it works

Collapse of the single target paradigm

Old paradigm

Diseases are due to single genes - by knocking out the gene, or designing specific inhibitors to its protein, disease can be cured

But the gene KO mouse didn't notice the loss of the gene

New paradigm

We have to understand gene and protein networks - proteins don't act alone - effective systems have built in redundancy

Proteins aren't random in cells

So, who's binding to whom?

Proteins (and spies) don't act alone

Signal transduction complex lying in anticipation

http://www.bind.ca

How to discover protein brotherhoods

Old method: Yeast 2-hybrid screen New method: Recover protein complexes

SDS-PAGE

IEF/SDS-PAGE

Affinity isolation of EGF-responsive proteins Pandey et al., PNAS 97: 179-184 (2000)

EGF-induced tyrosine phosphorylation in HeLa cells. Serum-deprived HeLa S3 cells (5 x 109) were either left untreated or treated with 1 μg/ml EGF for 5 min. Cleared cell lysates were immunoprecipitated with a mixture of monoclonal anti-phosphotyrosine antibodies, washed, and resolved by SDS/PAGE. The gel was then silver-stained. Numbers indicate the positions of the bands that were excised for enzymatic digestion by trypsin and subsequent mass spectrometric analysis.

EGF-stimulated, tyrosine-phosphorylated proteins identified by mass spec

See protein interactions at www.bind.ca

Limitations of proteomics

- Unlike its mRNA counterpart, proteomics doesn't have a PCR equivalent
- It's limited by Avogadro's number 1 fmol is 6 x 10⁸ molecular ions
- If a cell has a 100 copies of a protein, then at a minimum you need to have 6 x 10⁶ cells - in reality, you need much more
- Fourier Transform-MS using trapped ions may be the solution
- Beware of Western blots

What are the proteomics methods?

- I. 2-dimensional electrophoresis (2-DE) & mass spectrometry
- II. Liquid chromatography & mass spectrometry (LC-MS or LC/LC MS/MS)

III. "Chip" technology:

2-D array of recombinant polypeptides or antibodies on a single microscope slide; the entire chip is probed with a labelled "ligand" (protein, lipid, drug); SELDI-TOF analysis

What 2-D electrophoresis involves:

1st dimension: Isoelectric focussing

(separation according to charge)

2nd dimension: (SDS)-PAGE

(separation according to size)

Separating proteins in two dimensions

SDS-PAGE

Find this and other 2-D gels at http://www.expasy.org

Basic protein mass spectrometry:

From a band on a gel to a "tryptic peptide fingerprint"

MALDI-TOF mass spectrometry

Proteolysis generates sets of peptides that are a "fingerprint" for that polypeptide

So, polypeptides of identical mass can have nonidentical tryptic "fingerprints."

From Proteins to Sequence Tags

- If each protein (average 500 residues) had a cleavage site every 10 residues, then about 1.5-3.0 million peptides describe the expressed products of the human genome
- Each peptide has a <u>molecular weight</u> value that is its individual <u>sequence tag</u>
- Any modification will increase the peptide's molecular weight, e.g., a nitro group adds 45

Matrix-Assisted Laser Desorption Ionization (MALDI)

MALDI-TOF mass spectrum of tryptic digest of p22 band purified by 6xHis-tag

Probability Based Mowse Score

Score is -10*Log(P), where P is the probability that the observed match is a random event.

Protein scores greater than 71 are significant (p<0.05).


```
Accession
                     Score Description
              Mass
1. gi|548939
              20840
                      108 FKBP-TYPE PEPTIDYL-PROLYL CIS-TRANS ISOMERASE SLYD (PPIASE) (ROTAMA
2. gi|13384624 46931
                      45 myocyte enhancer factor 2C [Mus musculus]
                      44 (AF137308) phytochrome B [Lolium perenne]
3. gi|5257384
              43424
                      44 MADS box transcription enhancer factor 2, polypeptide C (myocyte enhan
4. gi|4505147
              50305
              44552
                      43 (U52596) nucleocapsid protein [Avian infectious bronchitis virus]
5. gi|1515365
6. gi|6093850
             49443
                      42 PRESENILIN 2 (PS-2)
7. gi|15225198 47999
                      42 hypothetical protein [Arabidopsis thaliana]
                      41 NITROGENASE IRON-IRON PROTEIN ALPHA CHAIN (NITROGENASE COMPONENT I)
8. gi|113854
              58376
9. gi|13928425 13831
                      40 (AB040419) envelope protein [Bovine immunodeficiency virus]
                      40 Chain Z, Crystal Structure Of The Complex Between Escherichia Coli Glycerol
10. qi|4389228 56064
```

E. coli: FKBP-TYPE PEPTIDYL-PROLYL CIS-TRANS ISOMERASE

Nominal mass of protein (Mr): 20840

```
1 MKVAKDLVVS LAYQVRTEDG VLVDESPVSA PLDYLHGHGS
41 LISGLETALE GHEVGDKFDV AVGANDAYGQ YDENLVQRVP
81 KDVFMGVDEL QVGMRFLAET DQGPVPVEIT AVEDDHVVVD
121 GNHMLAGQNL KFNVEVVAIR EATEELAHG HVHGAHDHHH
161 DHDHDGCCGG HGHDHGHEHG GEGCCGGKGN GGCGCH
```

Tryptic fragments detected by MALDI-TOF-MS

```
132-140 FNVEVVAIR
```

- 6- 16 DLVVSLAYQVR
- 58- 78 FDVAVGANDAYGQYDENLVQR
- 96-131 FLAETDQGPVPVEITAVEDDHVVVDGNHMLAGQNLK

Silver-stain detection of soy-induced protein changes in brain proteins

Soy + isoflavones

Soy - isoflavones

Helen Kim

2D-proteomics of HL-60 cells differentiated with DMSO

HL-60 cells were treated with DMSO for 7 days, causing their differentiation into a neutrophil phenotype

2D-proteomics analysis revealed spots that both increased and decreased in amount

This spot was absent in control HL-60 cells

Tracy D'Alessandro

MALDI-TOF analysis of trypsinized spot from 2D-analysis of DMSO-differentiated HL-60 cells

DMSO-treated HL-60 cell spot analysis

 DMSO-induced spot was shown to be S-100 (or calgranulin A) - a calcium binding protein

- BLAST showed that the sequence of S-100 is shared by migratory inhibitory factor related protein 8
- Two of these entries have a pdb entry (4-letter alphanumeric descriptor) - this means there is a molecular structure available

Problems in all proteomics work

- Non-stoichiometric recovery from the tissue/cell matrix
- Failure of proteins to absorb into or elute from IEF or SDS-PAGE gels, or column packing materials
- Non-linear response of the detecting method coomassie blue, Sypro ruby, silver stain, etc.

Complexes in lipid membranes

(Paul Brookes, Pathology)

Options in proteomics analysis

- Methods for protein separation and identification
 - 2D-electrophoresis of proteins
 - Reverse phase nanoLC-MSMS of peptides
 - Ion exchange/reverse phase LC-LC-ESI-MSMS
 - Isotope-coded affinity tagging LC-ESI-MSMS
 - CE- or reverse phase nanoLC/MALDI-TOF-MS
- Radical methods on the horizon

Electrospray Ionization (ESI)

- 1. Solvent evaporation
- 2. Coulombic repulsion

Triple quad versus Q-tof and sensitivity

The quadrupole analyzer (Q3) is slow and insensitive - it's a filter - thus throws away large amounts of data

TOF detector

TOF detector collects all ions generated and yields fmol rather than pmol sensitivity

Also gives far greater mass accuracy - from 1000 ppm on the triple quad to 5-10 ppm on the Q-tof

Crucially important for automated interpretation of MS-MS spectra to yield amino acid sequence

Reverse phase nanoLC-MSMS

 Peptides are separated on an acetonitrile gradient using columns with i.d.s of 0.05-0.30 mm. These operate at 200-2000 nL/min

 Peptides are introduced by electrospray and analyzed on a Qqtof. lons are selected by a quadrupole filter, collisiondissociated and analyzed by time-of-flight (accuracy 5-10 ppm)

Fragmentation of peptide ions

Tryptic peptides are charged at each end

Site-specific nitration of a tyrosinecontaining peptide using CID MS-MS spectra

When to use which technology?

2-D gels (& MS):

- Available today; NCRR grant to Helen Kim for robotics
- Is the only method that readily indicates posttranslational modifications;
- **▶** Least high throughput for the whole proteome, but the most informative

LC/LC-MS/MS: To catalogue a new proteome; HIGH THROUGHPUT; possible quantitation - at a price

Protein Chip: To identify all possible targets of a drug, or ligand, or protein; HIGH THROUGHPUT

Affinity methods for recovering complexes

Summary

- Powerful proteomics and bioinformatics tools exist to separate and identify proteins
- 2D-proteomics and tandem mass spectrometry enables detection of protein modifications
- Protein-protein interactions are readily determined, even for membrane-associated complexes
- Proteomics has the power to assess where drugs act and where they shouldn't

Visualization at the whole cell level

Mass Spectrometry website

http://www.uab.edu/proteomics

Acknowledgements

Helen Kim Lab

Lisa Chaves

Patti Hall

Robert Mills

Kiran Varma

Barnes' Lab

Mindan Sfakianos

Tracy D'Alessandro

Amanda Foxwell

Steven Burke

Colleagues:

Joe Beckman (Oregon St.)

Paul Brookes (UAB)

Peter Prevelige (UAB)

Proteomics & MS Facility:

Marion Kirk

Lori Coward

Tivanka DeSilva

Scott Isbell

Ramu Vempati

Support:

NCI

NIDDK

NIH-NCCAM-ODS

United Soybean Board

UAB-HSF-GEF