Proteomics: Can it really tell what's going on? Part I:

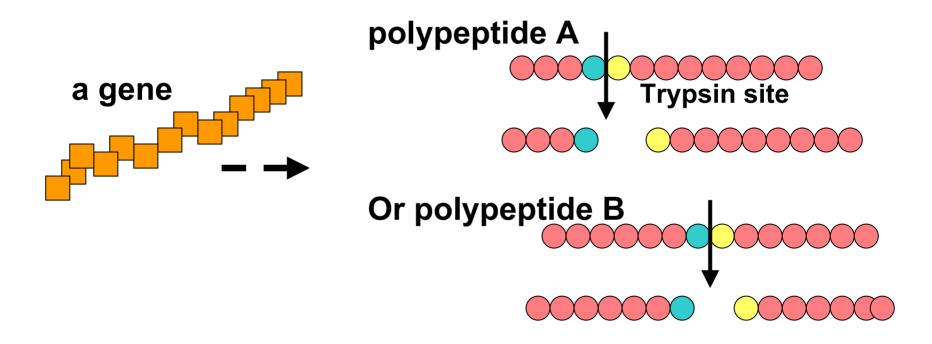
Helen Kim, Ph.D.

Department of Pharmacology & Toxicology 2-DE Proteomics Lab; Comprehensive Cancer Center Mass Spectrometry Shared Facility

University of Alabama at Birmingham

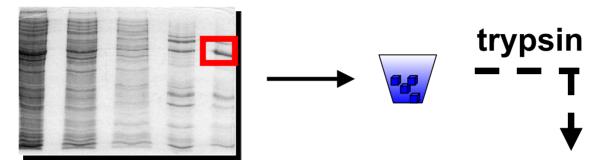
How can proteomics help in free radical biology research?

- Separation and identification of proteins
- Need to identify posttranslational modifications
 - Nitration, chlorination, bromination, 4-HNE, carbonyls
 - Mostly analyzed by GC-MS after hydrolysis to nitrotyrosine, chlorotyrosine, bromotyrosine, etc.
 - Current methods result in loss of information as to which amino acid residue is modified

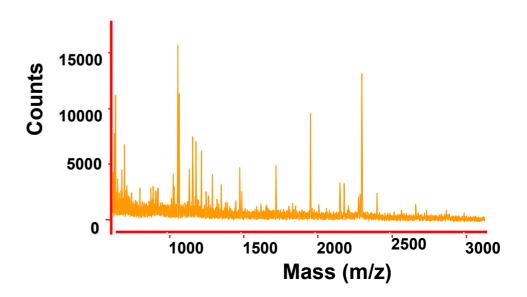

What is Proteomics?

- Genome: the complement of genes that defines a biological system;
- Proteome: the complement of proteins encoded by a genome
- Current definition of a proteome-the complement of proteins that defines a
 biological system, or compartment, such as
 the mitochondrial proteome.
- Thus, PROTEOMICS = study of patterns of protein expression or modification in a biological system.

Types of Proteomics Technologies


- 2-dimensional electrophoresis (2-DE) & mass spectrometry
- II. Liquid chromatography & mass spectrometry (LC-MS or LC/LC MS/MS)
- III. "Chip" technology:
 - 2-D array of recombinant polypeptides or antibodies on a single microscope slide; the entire chip is probed with a labelled "ligand" (protein, lipid, drug)

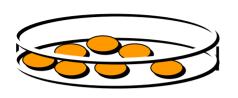
Proteolysis generates sets of peptides that are a "fingerprint" for that polypeptide



So, polypeptides of identical mass can have nonidentical tryptic "fingerprints."

REVIEW: basics of protein mass spectrometry: From a band on a gel to a "tryptic peptide fingerprint"

MALDI-TOF mass spectrometry



So, why do we need "proteomics"?

- When you don't have a clue;
- When you have only a very small clue;
- When you knock out a gene (and hence a protein) that you're convinced is essential for life, and the animal pees as usual.
- When you know that protein modifications are involved, but
 - 1. don't know the proteins or
 - 2. don't know what the modifications are

The Elements of 2-Dimensional Electrophoresis

Biological sample preparation:

Harvest, rinse, and pellet the cells;

or

Dissect out tissue, organ, or fluids;

Homogenize/lyse in buffer that unfolds the proteins w/o adding or disturbing the charges;

Clarify by centrifugation;

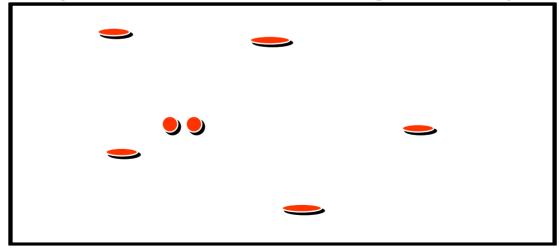
Protein assay;

Separate the polypeptides in two dimensions.

Parameters that affect detection of changes in a proteome by 2-DE

- Experimental conditions
 - Conc of stimulus; Time point of cell harvest;
- Homogenization buffer conditions;
- Electrophoresis parameters:
 - pH range
 - Acrylamide gradient or straight %
- Use of pre-exisiting data/reagents:
 - Subcellular location of protein of interest known?
 - Are antibodies available?

What 2-D electrophoresis involves:

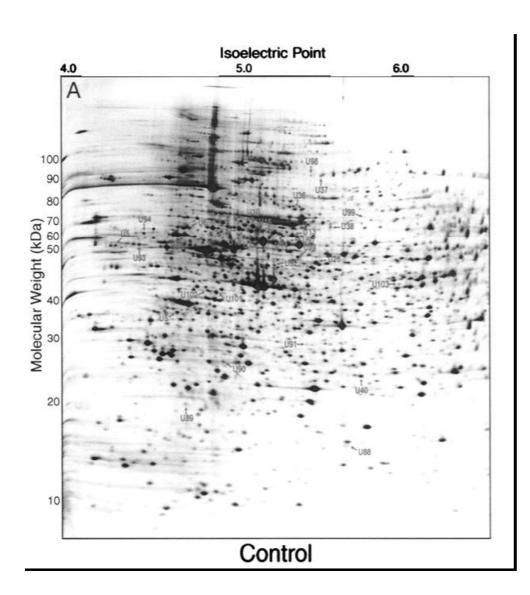

1st dimension: Isoelectric focussing

(separation according to charge)

pH 3 pH 10

2nd dimension: (SDS)-PAGE

(separation according to size)



High m.w.

Low m.w.

A real 2-D gel

Find this and other 2-D gels at http:www.expasy.org

Lewis et al., [2000] Molec. Cell, <u>6</u>)

(from Natalie Ahn's lab)

From this set of gels, 25 novel phosphorylations were identified as part of the MAP-kinase signalling pathway.

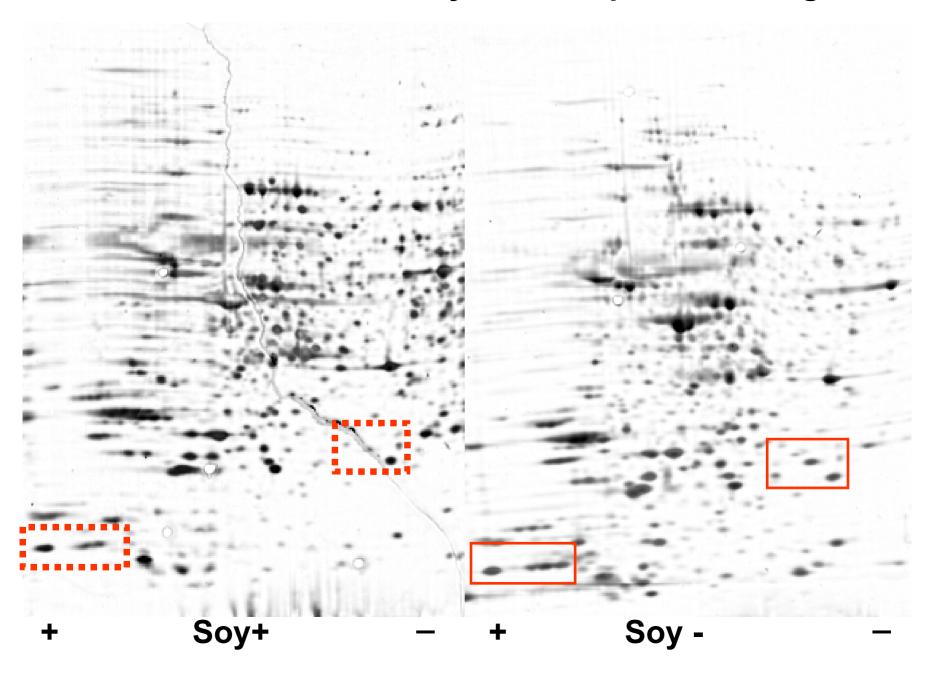
How to predict or interpret 2-D gel data:

I. Existing databases and weblinks:

www.expasy.org

helpful links:

proteomics tools


II. Keep up with the literature:

Electrophoresis

Proteomics

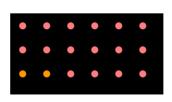
Molecular & Cellular Proteomics

Silver-stain detection of soy-induced protein changes

Results of MALDI-TOF mass spectrometry analysis

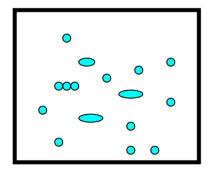
Brain proteins modulated by soy isoflavones:

Enolase


Dihydropyrimidinase-related protein-2

Hipp. Chol.Neurostim.Pept. Precursor

Change


When to use which technology?

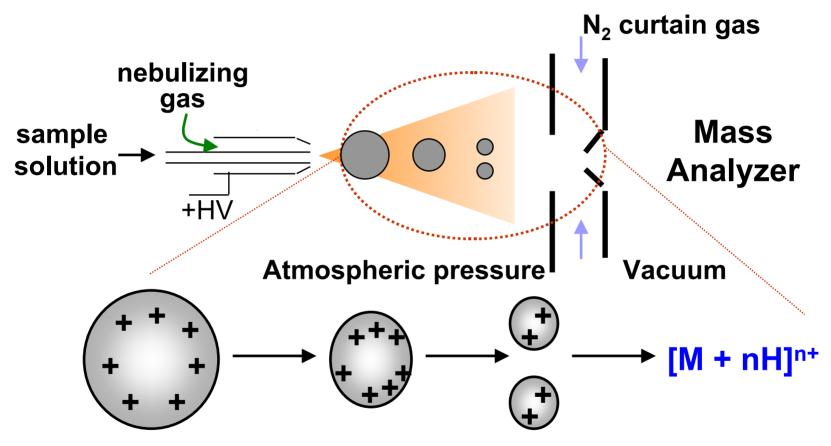
Chip: To identify all possible targets of a drug, or ligand, or protein; HIGH THROUGHPUT

LC/LC MS/MS: To catalogue a new Proteome; HIGH THROUGHPUT

2-D gels (& MS):

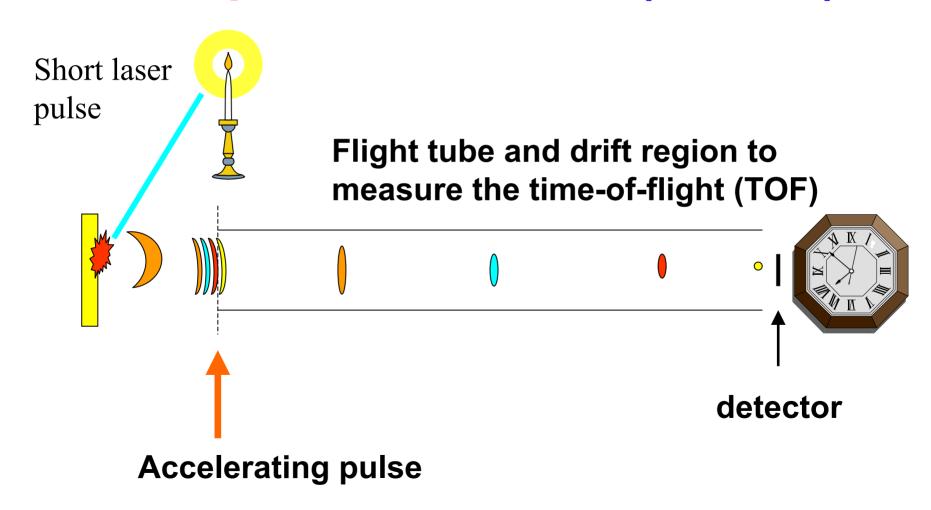
- Use in conjunction with chip data;
- Is the only method that shows the relative levels of expression of proteins;
- Is the only method that readily indicates posttranslational modifications;
- Least high throughput, but most informative?

Goals of part 2 of this tutorial

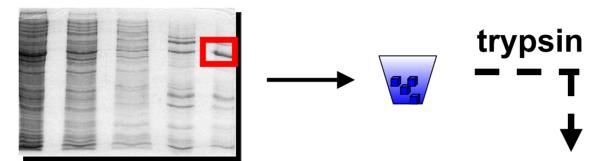

- To appreciate the two major protein/peptide ionization methods and how they can be connected to your research problem
 - Electrospray ionization (ESI)
 - Matrix-assisted laser desorption ionization (MALDI)
- How to identify a protein, determine the sequence of a peptide and the site(s) of its modification
 - Database searching
 - Collision-induced dissociation and MS-MS analysis

1990's revolution in protein sequencing by mass spectrometry

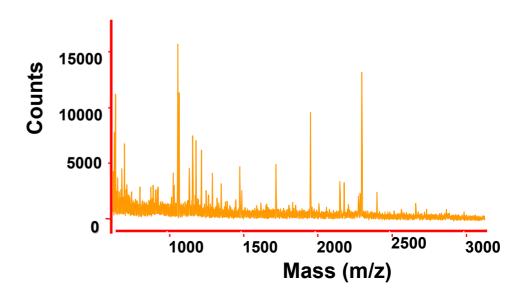
Due to several major factors

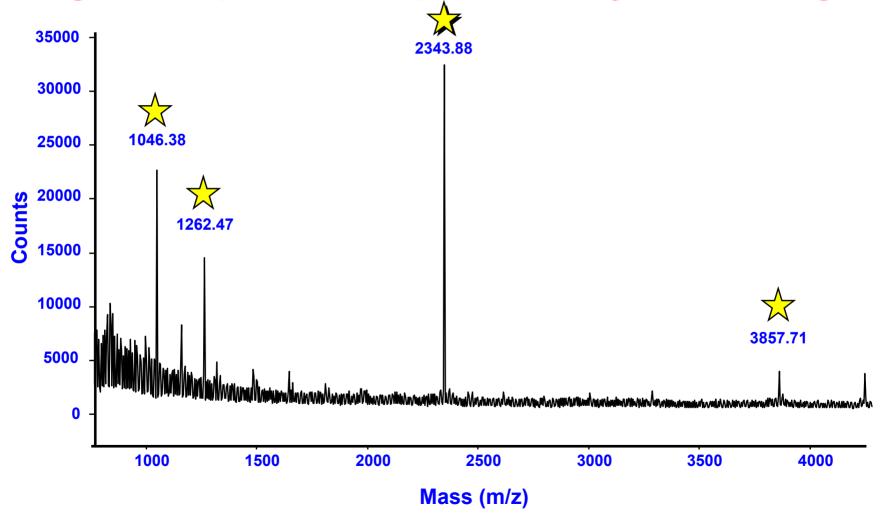

- The development of protein/peptide mass spectrometry ionization methods
- The cataloging of many genomes
- Speed and sensitivity of mass spectrometry

Electrospray Ionization (ESI)



- 1. Solvent evaporation
- 2. Coulombic repulsion


Matrix-Assisted Laser Desorption Ionization (MALDI)


MALDI-TOF analysis of a "tryptic peptide fingerprint" generated from a spot on a gel

MALDI-TOF mass spectrometry

MALDI-TOF mass spectrum of tryptic digest of p22 band purified by 6xHis-tag

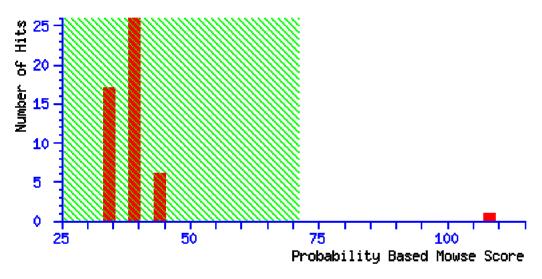
From Proteins to Sequence Tags

- If each protein (average 500 residues) had a cleavage site every 10 residues, then about 1.5-3.0 million peptides describe the expressed products of the human genome
- Each peptide has a molecular weight value that is its individual sequence tag
- Any modification will increase the peptide's molecular weight, e.g., a nitro group adds 45

Websites for identifying proteins from peptides

 Analyze the peaks detected by MALDI or electrospray at the following:

http://www.matrixscience.com (MASCOT)


http://Prowl.rockefeller.edu (PROWL)

http://donatello.ucsf.edu/ (PROTEIN PROSPECTOR)

Probability Based Mowse Score

Score is -10*Log(P), where P is the probability that the observed match is a random event.

Protein scores greater than 71 are significant (p<0.05).

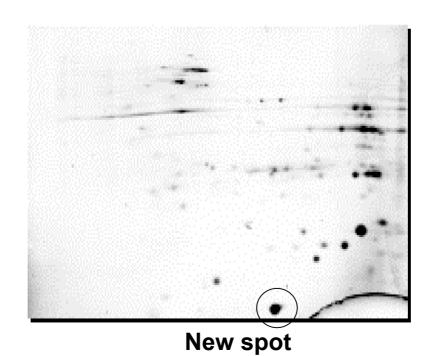

```
Accession
                     Score Description
              Mass
1. gi|548939
              20840
                      108 FKBP-TYPE PEPTIDYL-PROLYL CIS-TRANS ISOMERASE SLYD (PPIASE) (ROTAMA
2. gi|13384624 46931
                      45 myocyte enhancer factor 2C [Mus musculus]
3. gi|5257384 43424
                      44 (AF137308) phytochrome B [Lolium perenne]
4. gi|4505147
              50305
                      44 MADS box transcription enhancer factor 2, polypeptide C (myocyte enhan
5. gi|1515365
             44552
                      43 (U52596) nucleocapsid protein [Avian infectious bronchitis virus]
6. gi|6093850
             49443
                      42 PRESENILIN 2 (PS-2)
7. gi|15225198 47999
                      42 hypothetical protein [Arabidopsis thaliana]
                      41 NITROGENASE IRON-IRON PROTEIN ALPHA CHAIN (NITROGENASE COMPONENT I)
8. gi|113854
              58376
9. gi|13928425 13831
                      40 (AB040419) envelope protein [Bovine immunodeficiency virus]
10. qi|4389228 56064
                      40 Chain Z, Crystal Structure Of The Complex Between Escherichia Coli Glycerol
```

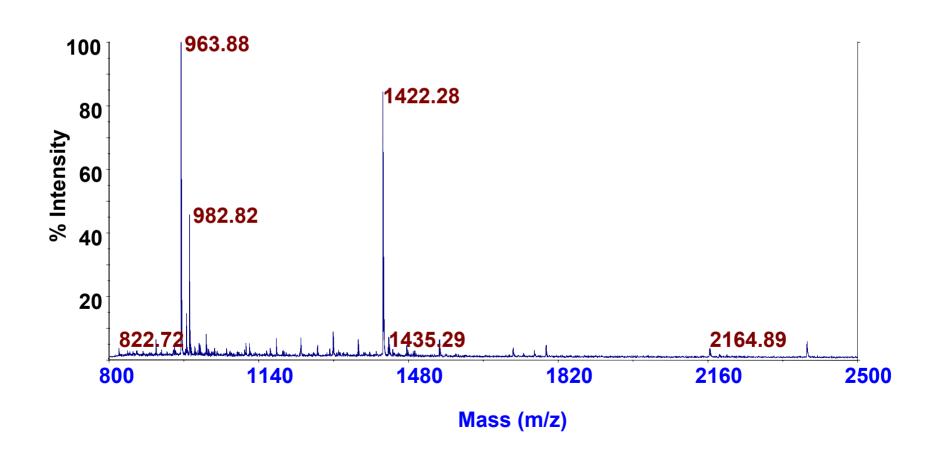
E. coli: FKBP-TYPE PEPTIDYL-PROLYL CIS-TRANS ISOMERASE

Nominal mass of protein (Mr): 20840

```
1 MKVAKDLVVS LAYQVRTEDG VLVDESPVSA PLDYLHGHGS
41 LISGLETALE GHEVGDKFDV AVGANDAYGQ YDENLVQRVP
81 KDVFMGVDEL QVGMRFLAET DQGPVPVEIT AVEDDHVVVD
121 GNHMLAGQNL KFNVEVVAIR EATEELAHG HVHGAHDHHH
161 DHDHDGCCGG HGHDHGHEHG GEGCCGGKGN GGCGCH
```

Tryptic fragments detected by MALDI-TOF-MS


```
132-140 FNVEVVAIR
6- 16 DLVVSLAYQVR
58- 78 FDVAVGANDAYGQYDENLVQR
96-131 FLAETDQGPVPVEITAVEDDHVVVDGNHMLAGQNLK
```



DMSO-induced differentiation

Differentiated neutrophil-like cells

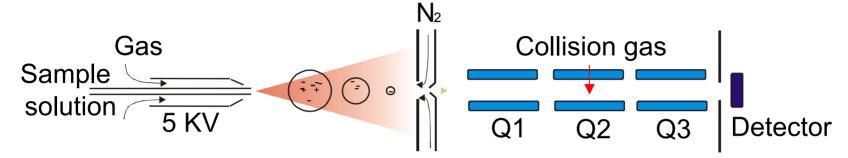
D'Alessandro

MALDI-TOF analysis of trypsinized spot from 2D-IEF/SDS-PAGE analysis of DMSO-differentiated HL-60 cells

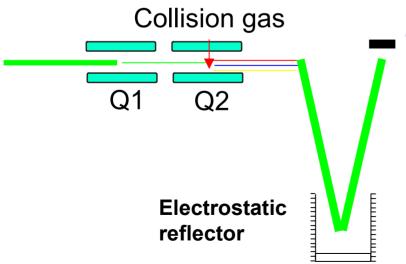
DMSO-treated HL-60 cell spot analysis

 DMSO-induced spot was shown to be S-100 (or calgranulin A) - a calcium binding protein

- BLAST showed that the sequence of S-100 is shared by migratory inhibitory factor related protein 8
- Two of these entries have a pdb entry (4-letter alphanumeric descriptor) - this means there is a molecular structure available


Options in proteomics analysis

- Methods for protein separation and identification
 - 2D-electrophoresis of proteins
 - Reverse phase nanoLC-MSMS of peptides
 - Ion exchange/reverse phase LC-LC-ESI-MSMS
 - Isotope-coded affinity tagging LC-ESI-MSMS
 - CE- or reverse phase nanoLC/MALDI-TOF-MS
- Radical methods on the horizon

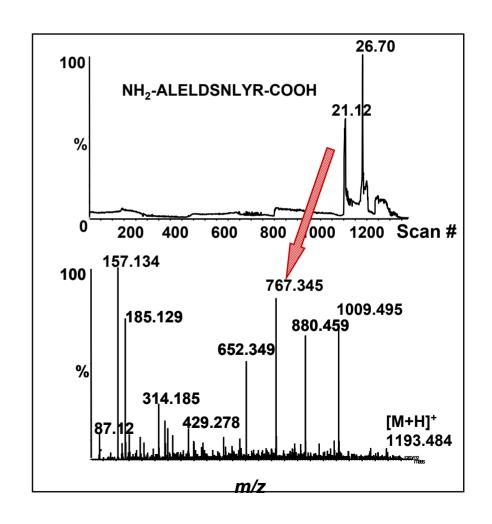

LC-ESI-MS Analysis

Triple quad versus Q-tof and sensitivity

The quadrupole analyzer (Q3) is slow and insensitive - it's a filter - thus throws away large amounts of data

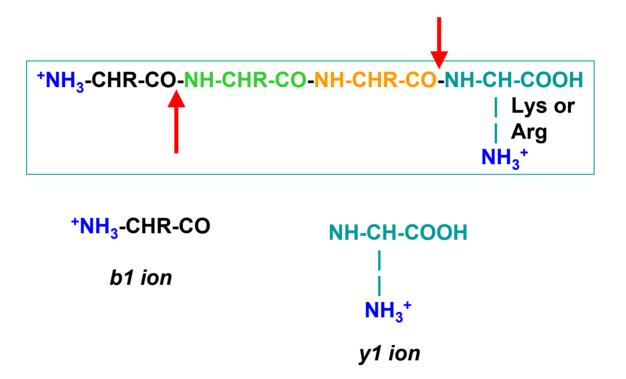
TOF detector

TOF detector collects all ions generated and yields fmol rather than pmol sensitivity

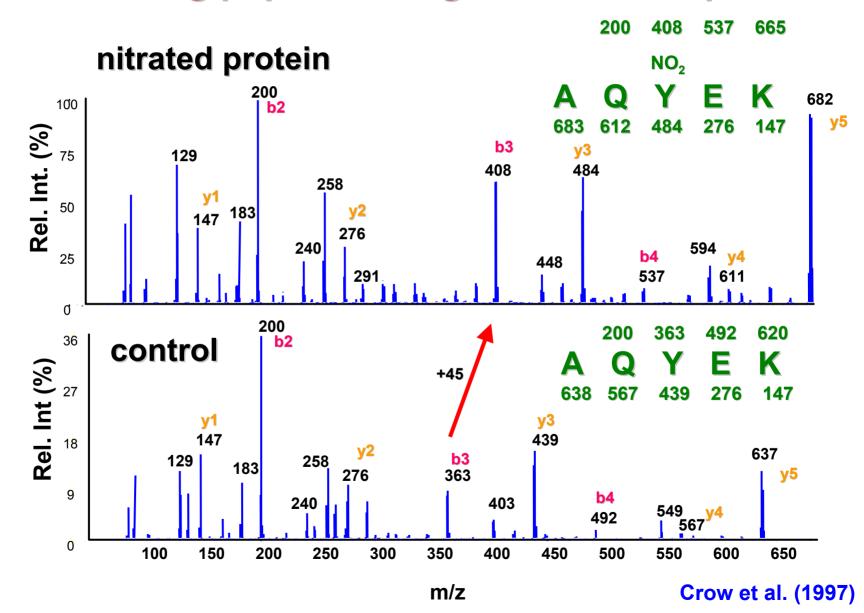

Also gives far greater mass accuracy - from 1000 ppm on the triple quad to 5-10 ppm on the Q-tof

Crucially important for automated interpretation of MS-MS spectra to yield amino acid sequence

Reverse phase nanoLC-MSMS


 Peptides are separated on an acetonitrile gradient using columns with i.d.s of 0.05-0.30 mm. These operate at 200-2000 nL/min

 Peptides are introduced by electrospray and analyzed on a Qqtof. lons are selected by a quadrupole filter, collisiondissociated and analyzed by time-of-flight (accuracy 5-10 ppm)



Fragmentation of peptide ions

Tryptic peptides are charged at each end

Site-specific nitration of a tyrosinecontaining peptide using CID MS-MS spectra

Limitations of proteomics

 Unlike its mRNA counterpart, proteomics doesn't have a PCR equivalent

 It's limited by Avogadro's number - 1 fmol is 6 x 10⁸ molecular ions

 If a cell has a 100 copies of a protein, then at a minimum you need to have 6 x 10⁶ cells - in reality, you need much more

So, where do we go next?

- Which are the players in the proteome of your system?
- How and where is your favorite protein modified?
- How does the modification affect the biochemical and biological properties of this protein?
- Do the other proteins care?

Acknowledgements

Kim Lab:

Lisa Chaves Patti Hall Robert Mills

Kiran Varma

Barnes' Lab

Brenda Boersma

Mindan Sfakianos

Tracy D'Alessandro

Amanda Foxwell

Steven Burke

Michelle Smith

Colleagues:

Virginia M.Y.Lee (U. Penn.)

Lester I. Binder (Northwestern U.

Karen Hsiao (U. Minn.)

Tom Clarkson (Wake Forest)

Y.L. Pan (Wake Forest)

Peter Prevelige (UAB)

Joe Beckman (Oregon St.)

Proteomics & MS Facility:

Tivanka DeSilva

Lori Coward

Marion Kirk

Scott Isbell

Ramu Vempati

Support:

NCI

NIDDK

NIH-NCCAM-ODS

United Soybean Board

UAB-HSF-GEF