Protein identification by peptide mass fingerprinting and tandem mass spectrometry

Stephen Barnes, PhD 4-7117 sbarnes@uab.edu

Lecture Overview

- Introduction
- Applications
- Peptide Mass Fingerprinting
 - Databases
 - homework
- Peptide fragmentation processes
 - In triple quadrupole
 - In FT-ICR cell
 - homework

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)

Advantages of MALDI-TOF

- A) More tolerant to common buffers than ESI
- B) High degree of sensitivity, moderate mass accuracy, and mass resolution
- C) High mass compounds, i.e. proteins, PEG...

Common Applications of MALDI-TOF

- A) Mass of large proteins, and other compounds
- B) Enzymatic digestion profiles of proteins

Increased sensitivity in reflector vs. linear mode

Factors from conventional experiments that impact MALDI analysis

- Buffers used in sample preparation
 - NaCl up to 150 mM
 - Urea up to 2-3 M (carbamoylation!)
 - Guanidinium-HCI up to 2 M
- Detergents
 - SDS up to 0.05%
- Staining Protocols
 - Whole proteins form adducts with Coomassie
 - Silver staining modifies selected peptides

Benefit of removing salt from tryptic digest

Peptide mass fingerprinting

- This method has been developed because of the availability of predicted protein sequences from genome sequencing
- Proteins do not have to have been previously sequenced - only that the open reading frame in the gene is known - the rest is a virtual exercise in the hands of statisticians, bioinformaticists and computers

From genes to proteins

Sequencing proteins pre-1995

N-terminal amino acid sequencing of an isolated polypeptide by a chemical procedure *(Edman degradation)* without fragmentation of the polypeptide

Sequencing of DNA was carried out using a similar strategy

From DNA to peptide fragments .ATG.CTT.CCT.CAC.GGT.AAA.TCG.TAT.GCT.... NH₂-Met.Leu.Pro.His.Gly.Lys.Ser.Tyr.Ala.... Trvpsin NH₂-Met.Leu.Pro.His.Gly.Lys-COOH

From Proteins to Sequence Tags

- If each protein (average 500 residues) had a cleavage site every 10 residues, then about 1.5 million peptides describe the expressed products of the human genome
- Each peptide has a <u>molecular weight</u> value that is its individual <u>sequence tag</u>
- Any modification will increase the peptide's molecular weight

Peptide information needed for protein identification

- Peptide-mass fingerprinting and the ideal covering set for protein characterization. M. Wise et al. <u>Electrophoresis</u> 18:1399-1409, 1997
- Purpose: To determine the efficiency and nature of protein identification by the use of endoproteinases and mass spectrometry to create and identify the resulting peptides

Setup

Database of 128,719 non-redundant protein entries

Assumptions:

- 1. Digestion is always perfect (value of being *in silico*)
- 2. Cleavage always occurs on the carboxy terminal of each amino acid
- 3. Fragment masses were accurate to the nearest dalton, i.e., <u>+</u> 0.5 Da

Theoretical proteolysis of derived protein database

In silico endoproteinases

- All possible single amino acid sites
- Biochemical endoproteinases: chymotrypsin, trypsin and Glu-C

Results for chymotrypsin

Database entries:	128,719
# of peptide fragments:	3,086,608
# of distinct fragments	14,778
Size of largest fragment:	243,718 Da
Max # of entries for a particular fragment	20,926 (260 Da)
Average # entries for a given fragment:	209
Average number of fragments for an entry:	24
# of uncut entries:	3,059
Average size of uncut entries:	3,194 Da
Max size of uncut entry:	65,243 Da

of entries defined by X fragments

X=1:	2,900
X=2:	88,118
X=3:	26,369
X=4:	952
X=5:	48
X=6:	13
X=7:	2
X=8:	1
X=9:	1

Average # of fragments to define a protein: 2.216

Summary of digestion data

Amino acid	Distinct Fragments	Avg # fragments	#Uncut	Avg ident
A alanine	15.372	21.45	3.468	2.13
C cvsteine	38.661	6.40	21.525	1.91
D aspartate	17,163	16.15	6,936	2.05
E glutamate	16,960	18.43	6,555	2.08
F phenylalanine	21,642	12.92	7,788	2.00
G glycine	16,490	20.42	3,531	2.13
H histidine	28,695	7.72	18,104	1.96
l isoleucine	18,227	17.36	6,735	2.08
K lysine	19,821	17.50	6,673	2.07
L leucine	12,490	26.19	3,598	2.23
M methionine	29,873	7.88	14,409	1.95
N asparagine	19,765	14.41	8,077	2.03
P proline	19,437	15.34	6,590	2.04
N glutamine	20,182	12.84	8,062	2.01
R arginine	18,754	16.07	6,633	2.07
S serine	13,829	21.51	3,446	2.15
T threonine	15,455	18.21	4,451	2.11
V valine	15,089	19.61	5,084	2.11
W tryptophan	39,643	5.09	26,214	1.91
Y tyrosine	24,343	10.79	9,738	1.98
Glu-C	11,291	30.88	2,808	2.28
Chymotrypsin	14,780	25.42	2,822	2.22
Trypsin	10,846	30.37	2,418	2.34

Protein analysis by MALDI 2004

Choice of peptidase

- Analogous to DNA restriction enzymes
- Tryptic peptide fingerprinting may identify several related protein candidates (e.g., actins)
- Inspection of the sequences may reveal that there is a difference at one residue that distinguishes between two candidates.
- If for instance it is a glutamate, then use of Glu-C or V8-protease may enable the two proteins to be correctly identified
- INSPECT sequences carefully

Proteolytic enzymes used to hydrolyze proteins

The choice of enzyme largely depends on the nature of the amino acid sequence and the specific issue that is being addressed

- Trypsin *cleaves at arginine and lysine residues*
- Chymotrypsin *cleaves hydrophobic residues*
- Arg-C cleaves at arginine residues
- Glu-C cleaves at glutamic acid residues
- Lys-C cleaves at lysine residues
- V8-protease cleaves at glutamic acid residues
- Pepsin cleaves randomly, but at acid pH

See http://www.abrf.org/JBT/1998/September98/sep98m_r.html

Genomics and proteins in 2004

- The human genome consists of about 30,000 genes that are expressed as proteins
- Large Scale Biology Corp has cataloged 116,000+ protein forms from human tissues, representing the expressed products of 18,000 genes
- The expected number of protein forms is expected to be in excess of 200,000

Searching databases with peptide masses to identify proteins

Best site is at www.matrixscience.com

The program (MASCOT) can search the OWL or NCBI databases using a set of tryptic peptide masses, or the fragment ions (specified or unspecified) of peptides

Presents the expected set of tryptic peptides for each matched protein

MALDI-TOF mass spectrum of tryptic digest of p22 band purified by 6xHis-tag

BMG 2-03-04

Probability Based Mowse Score

Score is -10*Log(P), where P is the probability that the observed match is a random event.

Hits -25 Ъ 20 Number 15 10 5 0 25 50 75. 100 Probability Based Mowse Score Accession Mass Score Description 108 FKBP-TYPE PEPTIDYL-PROLYL CIS-TRANS ISOMERASE SLYD (PPIASE) (ROTAMA 1. qi|548939 20840 2. gi|13384624 46931 45 myocyte enhancer factor 2C [Mus musculus] 44 (AF137308) phytochrome B [Lolium perenne] 3. gi|5257384 43424 44 MADS box transcription enhancer factor 2, polypeptide C (myocyte enhan 4. gi|4505147 50305 5. gi|1515365 44552 43 (U52596) nucleocapsid protein [Avian infectious bronchitis virus] 6. gi|6093850 49443 42 PRESENILIN 2 (PS-2) 7. gi|15225198 47999 42 hypothetical protein [Arabidopsis thaliana]

Protein scores greater than 71 are significant (p<0.05).

- 9. gi|13928425 13831 40 (AB040419) envelope protein [Bovine immunodeficiency virus]
- 10. gi|4389228 56064 40 Chain Z, Crystal Structure Of The Complex Between Escherichia Coli Glycerol

MASCOT SEARCH SUMMARY

1. gi|548939 Mass: 20840 Score: 108 FKBP-TYPE PEPTIDYL-PROLYL CIS-TRANS ISOMERASE SLYD (PPIASE) (ROTAMA Observed Mr(expt) Mr(calc) Delta Start End Miss Peptide 1046.38 1045.37 1045.59 -0.22 132 -140 0 FNVEVVAIR 1262.47 1261.46 1261.70 -0.24 6 - 16 0 DLVVSLAYQVR 2343.88 2342.87 2343.08 -0.20 58 - 78 0 FDVAVGANDAYGQYDENLVQR 3857.71 3856.70 3856.89 -0.19 96 -131 0 FLAETDQGPVPVEITAVEDDHVVVDGNHMLAGQNLK 2. gi|13384624 Mass: 46931 Score: 45 myocyte enhancer factor 2C [Mus musculus] Observed Mr(expt) Mr(calc) Delta Start End Miss Peptide 1046.38 1045.37 1045.50 -0.13 263 -271 0 NTMPSVNQR 3857.71 3856.70 3856.76 -0.06 178 -218 0 NSMSPGVTHRPPSAGNTGGLMGGDLTSGAGTSAGNGYGNPR No match to: 1262.47, 2343.88 3. gi|5257384 Mass: 43424 Score: 44 (AF137308) phytochrome B [Lolium perenne] Observed Mr(expt) Mr(calc) Delta Start End Miss Peptide 1046.38 1045.37 1045.54 -0.17 380 -389 0 GIDELSSVAR 3857.71 3856.70 3856.72 -0.02 86 -122 0 SPHGCHAQYMANMGSIASLVMAVIISSGGEDEHNMGR No match to: 1262.47, 2343.88 4. gi|4505147 Mass: 50305 Score: 44 MADS box transcription enhancer factor 2, polypeptide C (myocyte enhan Observed Mr(expt) Mr(calc) Delta Start End Miss Peptide 1046.38 1045.37 1045.50 -0.13 265 -273 0 NTMPSVNQR 3857.71 3856.70 3856.76 -0.06 180 -220 0 NSMSPGVTHRPPSAGNTGGLMGGDLTSGAGTSAGNGYGNPR No match to: 1262.47, 2343.88

E. coli: FKBP-TYPE PEPTIDYL-PROLYL CIS-TRANS ISOMERASE

Nominal mass of protein (Mr): 20840

MKVAKDLVVS LAYQVRTEDG VLVDESPVSA PLDYLHGHGS
41 LISGLETALE GHEVGDKFDV AVGANDAYGQ YDENLVQRVP
81 KDVFMGVDEL QVGMRFLAET DQGPVPVEIT AVEDDHVVVD
121 GNHMLAGQNL KFNVEVVAIR EATEEELAHG HVHGAHDHHH
161 DHDHDGCCGG HGHDHGHEHG GEGCCGGKGN GGCGCH

Tryptic fragments detected by MALDI-TOF-MS

- 132-140 FNVEVVAIR
 - 6- 16 DLVVSLAYQVR
 - 58- 78 FDVAVGANDAYGQYDENLVQR
 - 96-131 FLAETDQGPVPVEITAVEDDHVVVDGNHMLAGQNLK

Other web sites for peptide analysis

- http://prowl.rockefeller.edu/
 - Choose ProFound
- http://prospector.ucsf.edu/
 - Choose MS-fit

Further information on identified protein

- Take the protein identifier number:
 - For this example it is gi|548939
 - Go to <u>http://www.ncbi.nlm.nih.gov</u>
 - Under Entrez, paste in the gi number
 - A link to the protein will appear
 - Click on Blink this is similar to BLAST, but better
 - Select 3D-structures on this page to get Protein Data Base record(s) of crystal structure data of the nearest protein - this will yield 1IX5
 - Go to Structure (top of web page) and enter 1IX5 and click on its icon on the next page
 - To view a 3D-image of the protein, first download Cn3D from the NCBI site

Examples for homework (due Feb 10th)

- Identify the following proteins from these MALDI ions (corrected for isotope effects):
 - 968.47, 1060.67, 1095.54, 1156.67, 1292.72, 2081.20 (human)
 - 932.57, 1023.61, 1088.63, 1121.68, 1433.83, 1836.90 (rat)
 - 937.60, 964.57, 1049.64, 1209.73, 1508.78, 1844.98 (rat)
- Set the number of tryptic cuts to 0 and try varying the mass accuracy from 0.1 to 1.0 Da. How does this alter the MOWSE score?

Sequencing of peptides

- Using tandem mass spectrometry in a triple quadrupole, Q-tof, or ion trap instrument, the parent ion is first selected in the first quadrupole
- The parent ion is collided with argon gas and it breaks into fragments (daughter ions)
- By identifying the daughter ions, the peptide amino acid sequence is inferred

Fragmentation of parent ion

Identification of daughter ions and peptide sequence

Amino acid residues masses

Alanine	71.037	Leucine	113.084
Arginine	156.101	Lysine	128.094
Asparagine	114.043	Methionine	131.040
Aspartic acid	115.027	Phenylalanine	147.068
Cysteine	103.009	Proline	97.053
Glutamic acid	129.043	Serine	87.032
Glutamine	128.058	Threonine	101.048
Glycine	57.021	Tryptophan	186.079
Histidine	137.059	Tyrosine	163.063
Isoleucine	113.084	Valine	99.068

http://www.matrixscience.com/help/fragmentation_help.html

Sequencing O-GIcNAc peptides by ECD FT-ICR-MS

Casein kinase II - AGGSTPVSSANMMSG

Fragment ions of a small 5-mer peptide

Homework - write down the masses of the b and y ions

