Proteomics and Mass Spectrometry (BMG 744)

Mitochondrial Proteomics March 15, 2005

Shannon M. Bailey Department of Environmental Health Sciences Ryals 623 Phone: 4-7070 Email: sbailey@uab.edu

Mitochondria function

"Classical"

- ATP
- Heme & porphyrin synthesis
- Urea cycle
- β-oxidation of fatty acids
- $H_2O_2 \rightarrow Oxidative Damage$

"Novel"

- Generation of $H_2O_2 \rightarrow$ redox cell signaling
- NO-cytochrome c oxidase signaling pathway
- Necrosis & Apoptosis

Mitochondria Dysfunction Leads to Disease

- Diabetes
- Ischemia/Reperfusion Injury
- Major neurodegenerative diseases Parkinson's, Alzheimer's, ALS, Multiple Sclerosis, Huntington's
- Cardiomyopathy
- Sepsis
- Cancer
- Alcohol-induced liver disease & other tissues
- Aging

Outer membrane - quite permeable; contains pores, which allow diffusion of molecules <1000 molecular weight

- Inner membrane invaginations called cristae; site of oxidative phosphorylation system - metabolite transport across membrane - specific carriers
- Matrix contains enzymes of tricarboxylic (Kreb's) cycle, enzymes for fatty acid oxidation, some enzymes for amino acid oxidation; these enzymes involved in energy metabolism; mtDNA and mtRibosomes

Nature. 1981 Apr 9;290(5806):457-65.

Sequence and organization of the human mitochondrial genome.

Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG.

12S, 16S rRNAs 22 tRNAs COX I, II, and III ATPase 6 and 8 Cytochrome b 7 complex I subunits

Respiratory Complexes are Coded by Nuclear and Mitochondrial DNA

www.mitomap.org

- 10-12 copies per mitochondrion
- In the matrix (bound to the IMM)
- Maternally inherited
- Virtually "intron-less", 93% coding

13 polypeptides:
7 subunits of Complex I
3 subunits of Complex IV
2 subunits F₀ ATP synthase
Cytochrome b

mtDNA Mutations → Disease

Point mutations of tRNAs or OXPHOS genes Maternally inherited Decreased OXPHOS activity, pyruvate & fatty acids accumulate,

leading to lactate acidosis and accumulation of TGs

Rate of ATP synthesis is decreased – muscle weakness and exercise intolerance

• Leber's Hereditary Optic Neuropathy (LHON)

Single base change in genes encoding 3 complex I subunits (ND1, 4, 6) resulting in decreased complex I activity

Mitochondrial Encephalomyopathy, Lactic Acidosis,

Stroke (MELAS) – mutation tRNA for leucine

- Myoclonic Epilepsy and Ragged Red Fibers (MERRF) mutation in tRNA for lysine
- Kearn's-Sayre Syndrome (KSS)
- Neuropathy Ataxia Retinitis Pigmentosa (NARP)
- Hypertrophic Cardiomyopathy
- Leigh's Syndrome

Organization of Oxidative Phosphorylation Complexes

Courtesy of PS Brookes

Glycolysis, TCA cycle, and β -oxidation of fatty acids make NADH & FADH₂ (reducing equivalents)

"Oxidative Phosphorylation"

1. Electrons from dehase's are transported to NADH and $FADH_2$

2. These electron are then passed into the electron transport chain, where through the reoxidation of NADH and FADH₂, they participate in several sequential oxidation-reduction rxns. before reducing O_2 to H_2O . 3. In this process H⁺ are pumped across the inner mito. membrane

4. The free energy stored in the resulting electrochemical gradient that drives the synthesis of ATP from ADP + P_i via Oxidative Phosphorylation.

Mitochondrial Ca²⁺ handling

- Ca²⁺ uptake transporter Sensitive to cytosolic [Ca²⁺] Essentially non-saturable
- 2. Na⁺/Ca²⁺ exchanger Always works at V_{max}
- 3. Na⁺/H⁺ exchanger Always works at V_{max}

- Δ cytosolic [Ca²⁺] mirrored by Δ matrix [Ca²⁺]
- Control of ATP synthesis Ca²⁺ activates Krebs' cycle Increase NADH supply to respiratory chain Increase ATP generation

Mitochondria and Calcium Toxicity

Fig. 1. Two-hit hypothesis for mitochondrial Ca^{2+} in physiology and pathology. Under physiological conditions, Ca^{2+} is beneficial for mitochondrial function. However, in the presence of an overriding pathological stimulus, Ca^{2+} is detrimental. Similarly, Ca^{2+} can potentiate a subthreshold pathological stimulus, resulting in pathogenic consequences. See text for full explanation. $[Ca^{2+}]_m$, mitochondrial matrix Ca^{2+} concentration; ROS, reactive oxygen species.

AJP 287:C817, 2004

Mitochondrial sites of reactive oxygen species production

- < 5% electrons "leak" from etc to form O_2^{-1}
- ROS damage proteins, lipids, and mtDNA
- Complex I NADH dehydrogenase
- Complex III Ubiquinone cytochrome c reductase
- Presence of stable semiguinone intermediate in enzyme complex

Mitochondrial O₂⁻⁻ Generation – Complex I and III

Courtesy of PS Brookes

Mitochondria Function & Cell Viability & Pathology: Linked to alterations in Mitochondria Proteome

How to study the mitochondrial proteome?

Separation Techniques

2D IEF/SDS-PAGE – hydrophilic (matrix) proteins

Affinity fractionation (Lopez and Kristal)

- calcium binding proteins, glycosylated proteins, hydrophobic proteins

Sucrose density gradient centrifugation (Capaldi)

- separate intact protein complexes via sucrose gradient fractionation

Gel filtration (Mootha)

- size separation using gel filtration chromatography into 15-20 fraction, digested, and analyzed via LC-MS/MS

Immunocapture (Capaldi)

- monoclonal antibodies against complexes (complex I, ATP synthase, PDH)

BN-PAGE (Schagger & von Jagow)

- separate OXPHOS complexes intact under non-denaturing conditions (1-D) followed by denaturing conditions to separate individual polypeptides (2-D)

Sucrose density gradient centrifugation (Capaldi)

- Mitochondrial extracts (1% LM) loaded onto 10-35% step fraction sucrose gradient, centrifuged overnight, fractions collected from bottom of tube
- Large protein complexes (complex I) found in higher density sucrose fractions, whereas free proteins found in lighter sucrose fractions
- Protein fractions analyzed via 1-D or 2-D electrophoresis
- MALDI and LC/MS/MS identified 615 distinct proteins, 19% previously undefined.

Taylor et al Nature Biotech 21. 281-6 (2003)

Size dependent fractionation of mitochondrial complexes by sucrose gradient

Bovine heart 9 fractions

Mitochondria Proteome

Taylor et al Nature Biotech 21. 281-6 (2003)

Immunocapture (Capaldi) - rapid, small amts. tissue

Mitochondria treated with 1% LM

Extract incubated (10 mg) with monoclonal ND6 antibody-crosslinked to protein G-agarose beads, beads washed, immunocaptured complex I eluted, and run on 1-D and 2-D gels MALDI and LC MS/MS to identify proteins

FIG. 1. 10 μ g of immunopurified human heart complex I separated by 10–20% acrylamide SDS-PAGE. Lanes were stained with Coomassie Brilliant Blue (*lane 1*) or a mass spectrometry compatible silver nitrate staining procedure (*lane 2*).

Murray et al JBC 278:13619, 2003

 $F_{i}B$ S_{i} $S_{$

21 protein spots - mostly hydrophilic subunits

Immunopurified human heart complex I By 2-D IEF/SDS-PAGE - 10 ug, 1-D linear pH 3-10 strip, 2-D 15% gel (Sypro ruby), MALDI

Immunocapture - ATP synthase

Human Heart – 16 subunits

p^{+} p° heart β $-\gamma$ b OSCP d^{+} a^{+} a^{+}

FIG. 5. Immunoprecipitation of F_1F_0 from mitochondria of fibroblast MRC5. 1 mg of fibroblast mitochondria from ρ^+ (lane 1) and

FIG. 2. Human F_1F_0 ATPase immunocaptured by the anti-F1F₀ mAb 12F4AD8AF8 is active as an ATPase and is sensitive to oligomycin inhibition. Human heart mitochondria were solubilized

Immunocaptured ATP synthase is active

Aggeler et al. JBC 277:33906, 2002

Application of mitochondrial proteomics:

Chronic alcohol-induced mitochondrial dysfunction & liver disease

Effects of Chronic Ethanol Consumption on Mitochondrial Energy Metabolism Structural abnormalities

Normal mitochondria

Alcoholic mitochondria

Effects of Chronic Ethanol Consumption on Mitochondrial Energy Metabolism - Functional abnormalities

Decrease in state 3 respiration by 25-40%

- \downarrow NADH-linked substrates & fatty acids
- ↓ succinate-driven
- \downarrow cytochrome oxidase

Decrease in the rate of ATP synthesis

Defects in complexes I, III, IV, and ATP synthase

In ethanol mitochondria, there is a decrease in the concentration of all 13 mitochondrial-encoded polypeptides

H⁺

V

ATP

Decreased translation capacity of mitochondrial ribosomes due to chronic alcohol-associated modifications in the structure and function of mitochondrial ribosomes (Arch Biochem Biophys 398:41, 2002)

Damage to mtDNA by chronic alcohol (JBC 279: 22092, 2004)

Chronic alcohol-induced lesions

<u>Decreased</u> Activity & heme of IV cytochrome b Fe-S centers of I ATPase and ATP-P_i (F₀) $\frac{No change}{Cytochrome c and c_1}$ Ubiquinone Succinate dHase $Catalytic F_1 portion$ ANT & carriers

Protein Changes with Chronic Ethanol Consumption

Venkatraman et al. JBC 279:22092, 2004

Proteins with different abundances in liver mitochondria following chronic ethanol consumption – identification of proteins from 2-D IEF/SDS-PAGE gels.

Protein	Mass calc. (kDa)	MOWSE score	Mean fold change ^a	
acyl-Coenzyme A dehydrogenase, very long chain	70.7	72	1.31	
acyl-Coenzyme A dehydrogenase, medium chain	46.5	94	0.78	
acyl-CoA dehydrogenase, short-chain specific	44.9	67	0.81	β -oxidation
β-ketoacyl CoA thiolase	41.8	84	0.12	
Δ^3 , Δ^2 -enoyl-CoA isomerase	32.2	100	1.58	
2,4-dienoyl-CoA reductase (NADPH)	36.1	78	1.70	
oxoglutarate dehydrogenase (lipoamide); α -ketoglutarate dehydrogenase	116.0	64	2.87	related
Glutamate dehydrogenase	61.4	101	0.56	J
Respiratory Complexes I,III,IV,V				
ATP synthase beta subunit	51.1	144	0.65	
Chain A, Rat liver F ₁ -ATPase (alpha aubunit)	55.2	156	0.71	
Ubiquinol-cytochrome c reductase iron-sulfur subunit	27.7	108	0.48	
ubiquinol-cytochrome c reductase, core protein II precursor	48.3	67	0.21)
60kDa heat shock protein (Hsp60)	60.9	115	0.84	
dnaK-type molecular chaperone grp75 (Hsp70/GRP75)	73.7	121	1.80	FtOH
aldehyde dehydrogenase	48.2	75	0.44	
3-hydroxyisobutyrate dehydrogenase	35.3	67	1.41	
3-mercaptopyruvate sulfurtransferase	32.9	78	1.82	AA catabolism

^a Mean fold change was determined by averaging the fold change observed from 5 pairs of control and ethanol-fed animals.

^b p values were determined using a two-tailed paired Student's t-test on the normalized protein spot densities obtained using PDQuest.

Visualization of ³⁵S-labeled mitochondrial encoded subunits

A. 1-D SDS-PAGE B. 2-D IEF/SDS-PAGE

Bailey et al. FRBM 38:175, 2005

Solution... Functional 2D Proteomics: BN-PAGE

1-D Blue Native gels

Specific Protein Subunits Decreased by Chronic Alcohol

Cytochrome c

5 Kd

Venkatraman et al. JBC 279:22092, 2004

2-DBN-PAGE - Loss of OXPHOS subunits by chronic alcohol

Oxidative phosphorylation

NADH dehase	Ubiquinol-cyto c reductase	Cytochrome c oxidase	ATP synthase
ND1	Core protein 1	Subunit I	α&β
ND2	Core protein 2	Subunit II	γ
ND3	Heme protein	Subunit III	B-chain
ND4	Fe-S subunit	Subunit IV	OSCP
ND4L	14 kDa protein	Subunit V	D-chain
ND5	Cyto b	Subunit VI	F-subunit
ND6		Subunit VII	ATPase 6 & 8
			Bailey et al. FRBM 38:175, 2005

Role of oxidative stress in Alcoholic Liver Disease

Bailey and Cunningham, Alcohol Clin Exp Res 23:1210, 1999

Mitochondrial ROS production

Unpaired electron transferred to molecular oxygen to form the superoxide anion free radical

Semiquinone form of ubiquinone

Complex III

Hepatic Redox State:

ADH and ALDH reactions use NAD+ and produce NADH Increase in the NADH/NAD+ ratio in the cytosol and mitochondria Effect – disruption of liver metabolism, lead to toxicity

Reoxidation of NADH necessary for maintenance of normal liver function

- There is a need to reoxidize NADH back to NAD+
- NADH is reoxidized by the mitochondrial electron transport chain

Ethanol stimulates ROS production at Complex I and III

Role of post-translational modifications in alcoholic liver disease

Mitochondria & Protein Thiol Status

Changes in mitochondrial protein thiol status

- ✤ MPT
- Cell death
- Oxidative stress
- NO responsiveness
- TNFα signaling
- Regulation of respiratory chain function

Hypothesis

Post-translational modification to mitochondrial protein thiols disrupts mitochondrial function and contributes to cell injury in response to chronic alcohol.

Labeling Mitochondrial Protein Thiols with IBTP

IBTP Labeling to Mitochondrial Protein Thiols in Cells

Lin et al. J. Biol. Chem. 277: 17048-17056, 2002

Experimental Design – IBTP labeling of mitochondrial protein thiols Mito isolated from liver of control and ethanol-fed rats Mito (1 mg/mL) in respiration buffer (succinate/ADP) Incubation with IBTP (5 μ M) for 10 min Reaction stopped with iodoacetate Mito centrifuged, pellets stored -80°C Gel electrophoresis and immunoblotting with anti-TPP

Immunoblot detection of IBTP-labeled proteins

Decrease in labeling indicates oxidized/modified thiols

Labeling of Mitochondria Protein Thiols with IBTP

Gel

Blot

Decreased IBTP Immunoreactivity in GRP78 and ALDH

Mitochondrial proteins identified as containing IBTP-reactive thiols

Spot no.

- 1 Pyruvate carboxylase
- 2 GRP78
- 3 Hsp60
- 4 Glutamate dehydrogenase
- 5 Protein disulfide isomerase

6 ALDH

7 Acetyl-coenyzme A acyl

		No. peptides	
Mass	MOWSE	matched/un-	Fold change
<u>(kDA)</u>	<u>score</u>	matched	<u>ethanol</u>
129.6	195	28/49	1.43(0.2)
72.1	194	28/74	0.57(0.1)
60.9	90	8/13	0.91(0.1)
56	98	8/15	0.53(0.2)
56.9	123	10/9	
53	135	12/15	0.56(0.1)
41.8	79	7/13	1.67(0.7)

Chronic alcohol decrease low K_m ALDH activity

Irreversible oxidation to active site Cysteine

Protein Thiols As A Molecular Switch

Cooper et al. Trends Biochem. Sci. 2002

Mitochondria Proteomic Approaches

- 1. Abundances
- 2. PTMs

