Use of mass spectrometry spectrometry in the study of enzymes enzymes

Stephen Barnes, PhD MCLM 452 sbarnes@uab.edu

Overview of class

- **Modification of the enzyme to regulate its activity**
- **Examining the chemistry of enzyme:substrate intermediates**
	- **Locating the site of inactivation of suicide inhibitors**
- **Reaction mechanism**
	- **Measuring all substrates and products**
	- **Enzyme kinetics**
	- **Stopped flow**
- **BAT, my kinda 'zyme**

Mass spectrometry and the study of enzymes enzymes

Enzymes often undergo posttranslational modifications in order to be active under the conditions in a cell

- • **for example, many enzymes in the signal transduction pathways are activated by phosphorylation on serine, threonine and tyrosine residues**
- **EGF receptor (tyrosine kinase), TGF beta type I receptor (serine kinase)**
- **sites of phosphorylation can be determined by mass spectrometry because of the increase in mass of** *m/z* **80 of peptides containing each phosphate group**

Enzymes Enzymes and Mass Spec

Enzymes may undergo changes in structure once activated (see above) or during the reaction they catalyze

- **- this could be probed by H-D exchange experiments**
- **- simulation of phosphorylation may be necessary by mutating serine and threonine groups to aspartate and glutamate, respectively**

Enzymes can be inactivated by suicide substrates these come into the active site and undergo a covalent reaction, thereby blocking the approach of other substrate molecules

- to locate the region of the enzyme to which the suicide substrate is bound, carry out a trypsin digest and look for a peak that has undergone a molecular weight change (consistent with the structure of the suicide inhibitor)

Reaction of chymotrypsin with tosylphenylalanylchloromethylketone tosylphenylalanylchloromethylketone (TPCK) in His57 (TPCK) in His57

CGVPAIQPVL SGLSRIVNGE EAVPGSWPWQ VSLQDKTGFH FCGGSLINEN 50 WVVTAAHCGV TTSDVVVAGE FDQGSSSEKI QKLKIAKVFK NSKYNSLTIN 100 NDITLLKLST AASFSQTVSA VCLPSASDDF AAGTTCVTTG WGLTRYTNAN 150 TPDRLQQASL PLLSNTNCKK YWGTKIKDAM ICAGASGVSS CMGDSGGPLV 200 CKKNGAWTLV GIVSWGSSTC STSTPGVYAR VTALVNWVQQ TLAAN

CH3

 $0 = \text{S} = 0$

NH

C H <u>C—C—C</u>

O

C H_{2} **Cl**

 H_{2}

Chymotrypsin has a catalytic triad consisting of Asp102, His57 and Ser195

His57 is the site of reaction of chymotrypsin with TPCK to form a stable covalent bond, thereby acting as a suicide inhibitor

Possible proteases for locating TPCK-peptide Possible proteases for locating TPCK-peptide

Trypsin Trypsin

CGVPAIQPVL SGLSRIVNGE EAVPGSWPWQ VSLQDKTGFH FCGGSLINEN 50 WVVTAAHCGV TTSDVVVAGE FDQGSSSEKI QKLKIAKVFK NSKYNSLTIN 100 NDITLLKLST AASFSQTVSA VCLPSASDDF AAGTTCVTTG WGLTRYTNAN 150 TPDRLQQASL PLLSNTNCKK YWGTKIKDAM ICAGASGVSS CMGDSGGPLV 200 CKKNGAWTLV GIVSWGSSTC STSTPGVYAR VTALVNWVQQ TLAAN

Glu-C

CGVPAIQPVL SGLSRIVNGE EAVPGSWPWQ VSLQDKTGFH FCGGSLINEN 50 WVVTAAHCGV TTSDVVVAGE FDQGSSSEKI QKLKIAKVFK NSKYNSLTIN 100 NDITLLKLST AASFSQTVSA VCLPSASDDF AAGTTCVTTG WGLTRYTNAN 150 TPDRLQQASL PLLSNTNCKK YWGTKIKDAM ICAGASGVSS CMGDSGGPLV 200 CKKNGAWTLV GIVSWGSSTC STSTPGVYAR VTALVNWVQQ TLAAN

Chymotrypsin Chymotrypsin

CGVPAIQPVL SGLSRIVNGE EAVPGSWPWQ VSLQDKTGFH FCGGSLINEN 50 WVVTAAHCGV TTSDVVVAGE FDQGSSSEKI QKLKIAKVFK NSKYNSLTIN 100 NDITLLKLST AASFSQTVSA VCLPSASDDF AAGTTCVTTG WGLTRYTNAN 150 TPDRLQQASL PLLSNTNCKK YWGTKIKDAM ICAGASGVSS CMGDSGGPLV 200 CKKNGAWTLV GIVSWGSSTC STSTPGVYAR VTALVNWVQQ TLAAN

Mass spectrometry and enzyme- Mass spectrometry and enzymecatalyzed reactions catalyzed reactions

In the simplest case, an enzyme (E) reacts with a substrate (S) - an intermediate complex is formed (ES) and it is converted to an enzyme: product complex (E:P) before the product dissociates.

$E + S \rightarrow ES \rightarrow EP \rightarrow E + P$

First order reaction - some second order reactions behave like a first order reaction when there is an excess of one substrate and the conversion of the other is <10%.

Mass spectrometry and enzymecatalyzed reactions catalyzed reactions

By measuring the molecular weights of the forms of the enzyme:substrate (product) complexes, mass spectrometry can throw enormous light on the mechanism

Mass spectrometry and enzyme- Mass spectrometry and enzymecatalyzed reactions catalyzed reactions

More typical reactions involve two substrates (S1 and S2) and two products (P1 and P2). The problem in this case is the order of addition

- **- is it a random mechanism? If so, both E.S1 and E.S2 exist**
- **- is it an ordered mechanism? In this case, S1 has to bind first. So, there will be E.S1 and E.S1.S2, but no E.S2**
- **- is it a Ping-Pong mechanism? In this case, E.S1 E.P1 before S2 binds to form E.P1.S2**

Mass spectrometry and substrates Mass spectrometry and substrates and products of enzyme reactions and products of enzyme reactions

- **Most enzyme reactions are studied by measuring the appearance of a product or (more rarely) the disappearance of a substrate**
- **• If the substrate or product has a unique absorbance or fluorescence, the reaction can be followed in real time**
- **• Some substrates have no usable absorbance or fluorescence - these can be measured using a radiolabeled substrate - the product is isolated by a solvent extraction procedure, or by HPLC or TLC. These reactions cannot be observed in real time**
- **• Mass spectrometry has the advantage that it is capable of measuring all substrates and products, as well as the enzyme itself**

Sulfotransferase - a reaction with no absorbance or fluorescence to follow

Stephen Barnes BMG 744 03-02-04

Sulfation of chitobiose

Set up for the ST assay

Pi et al., Biochemistry 41:13283

- **NodST purified by Ni-affinity chromatography**
	- **dialyzed against 100 mM Tris-HCl, pH 8.0 20 mM** β**-ME**
	- **Diluted into 10 mM NH4Ac buffer, pH 8.0**
- **Incubate (25** µ**l) quenched with 100** µ**l of MeOH containing internal standard**
- **Diluted incubate (40** µ**l) introduced into ESI source at 20** µ**l/min**
- **MS on a ThermoFinnigan LCQ monitoring** *m/z* **503 and** *m/z* **468 (internal standard)**

Kinetics of chitobiose ST by ESI-MS

Pi et al., Biochemistry 41:13283

FIGURE 3: Saturation plot of V_0 vs [PAPS]. The inset is a doublereciprocal plot of $1/V_0$ vs $1/[PAPS]$ ([PAPS] = 1.25, 2.5, 3.5, 5, 12.5, 25, 40, and 50 μ M, [chistobiose] = 1 mM, [NodST] = 90 nM , and pH 8.0).

Inhibition of ST by PAP using ESI-MS Inhibition of ST by PAP using ESI-MS

Pi et al., Biochemistry 41:13283

FIGURE 5: Double-reciprocal plot of $1/V_0$ vs $1/[PAPS]$ at different PAP concentrations: $0 \mu M$ PAP (A), 0.75 μM PAP (\blacksquare), 1.5 μ M PAP (\bullet), and 3.0 μ M PAP (\bullet) ([PAPS] = 1.25, 2.5, 5, 10, 25, and 50 μ M, [chitobiose] = 1 mM, [NodST] = 90 nM, and pH 8.0).

Non-covalent enzyme:substrate Non-covalent enzyme:substrate complexes complexes

- **• Shifting the enzyme from neutral pH conditions to the acidity of the spraying solution may break down the complex**
- **• Spraying at neutral pH will increase the observed** *m/z* **values (the protein is less charged with protons)**
- **• The larger** *m/z* **ions can be observed with an electrospray-TOF or a Qq TOF**

Schematic diagram of a stop-flow system

Stopped flow set up

Effect of the delay between V1 and V2 in a stopped flow experiment

Following a reaction using substrate and products ions in stopped flow ESI-MS

These data are from the conversion of chlorophyll A to pheophytin A (loss of Mg and gain of two protons).

The upper traces (A) are from the ESI-MS analysis. The lower traces (B) are from absorbance changes.

Stephen Barnes BMG 744 03-02-04

Kolakowski and Konermann (Anal Biochem 292:107)

Unfolding kinetics of myoglobin by stopped-flow **ESI-MS**

The upper trace (A) is the 14th charge state of holo-myoglobin [M+14]14+ (*m/z* **= 1255.9)**

The reaction is created by a pH jump from 6.0 to 3.0. The lower trace (B) is the absorbance at 441 nm.

The estimated time constants for the bi-exponential process are 0.29/2.8 sec for A and 0.33/3.1 sec for B

Stephen Barnes BMG 744 03-02-04

Kolakowski and Konermann (Anal Biochem 292:107)

Summary of the use of (real time) Summary of the use of (real time) ESI-MS to follow enzyme reactions ESI-MS to follow enzyme reactions

- **The pros:**
	- **All the substrates and products (as well as the enzyme itself) can be studied simultaneously**
	- **It's applicable to compounds with no absorbance or fluorescence**
- **The cons:**
	- **The buffer for the reaction has to be chosen very carefully**
	- **Ammonium salts are the best candidates, but they may have an effect on the reaction rates**

A practical example of use of MS A practical example of use of MS in enzymology - the enzyme BAT

- **Johnson et al., J Biol Chem, 266: 10227-10233, 1991 (human BAT enzyme - purification)**
- **Falany et al., J Biol Chem, 269: 19375-19379, 1994 (human cDNA cloning and expression)**
- **Falany et al., J Lip Res, 38: 86-95, 1997 (mouse cDNA cloning and expression)**
- **He et al., J Lip Res, 44: 2242-2249, 2003 (rat cDNA cloning, expression and localization)**
- **Sfakianos et al., J Biol Chem, 277: 47270-47275, 2002 (mechanism of human BAT)**

First let's remind ourselves ourselves of some basic biochemistry biochemistry

Stephen Barnes BMG 744 03-02-04

Bile acid N-acylamidate formation (in hepatocytes) (in hepatocytes)

Characterization of BAT Characterization of BAT

- **Purified from human liver cytosol 465-fold to a single protein band - retained the same ratio of glycine:taurine activity during purification**
- **Partial amino acid sequence and specific polyclonal antibody led to isolation of** λ**gt11 clone from human liver cDNA library**
- **hBAT is a 418-aa protein; when expressed using a pKK233-2 vector in bacteria, it makes both glycine and taurine conjugates (and FBAL)**

Stephen Barnes BMG 744 03-02-04

Sequence comparisons of mouse, rat and human BATs

 ***235**

- **r 65% SLLASHGFATLALAYWGYDDLPSRLEKVDLEYFEEGVEFLLRHPKVLGPGVGILSVCIGA 238**
- **m 63% SLLASRGFATLALAYWNYDDLPSRLEKVDLEYFEEGVEFLLRHPKVLGPGVGILSVCIGA 237**
- **h 100% SLLASRGFASLALAYHNYEDLPRKPEVTDLEYFEEAANFLLRHPKVFGSGVGVVSVCQGV 238**
- **r EIGLSMAINLKQITATVLINGPNFVSSNPHVYRGKVFQPTPCSEEFVTTNALGLVEFYRT 298**
- **m EIGLSMAINLKQIRATVLINGPNFVSQSPHVYHGQVYPPVPSNEEFVVTNALGLVEFYRT 297**
- **h QIGLSMAIYLKQVTATVLINGTNFPFGIPQVYHGQIHQPLPHSAQLISTNALGLLELYRT 288**

 ***328**

- **r FEETADKDSKYCFPIEKAHGHFLFVVGEDDKNLNSKVHAKQAIAQLMKSGKKNWTLLSYP 358**
- **m FQETADKDSKYCFPIEKAHGHFLFVVGEDDKNLNSKVHANQAIAQLMKNGKKNWTLLSYP 357**
- **h FETTQVGASQYLFPIEEAQGQFLFIVGEGDKTINSKAHAEQAIGQLKRHGKNNWTLLSYP 358**

 ***362 *372**

- **r GAGHLIEPPYSPLCSASRMPFVIPSINWGGEVIPH-AA 395**
- **m GAGHLIEPPYTPLCQASRMPILIPSLSWGGEVIPHSQA 395**
- **h GAGHLIEPPYSPLCCASTTHDLR--LHWGGEVIPH-AA 393**

Site-specific Cys mutations Site-specific Cys mutations

- **Mutations were prepared for the two conserved Cys residues (C235 and C372) in BATs**
- **C235Y hBAT had no enzyme activity**

• **C372A hBAT had low activity**

ESI-mass spectrum of hBAT products

Stephen Barnes BMG 744 03-02-04

LC-MS of C372A hBAT product

Metabolism in *E. coli* **expression system**

Stephen Barnes BMG 744 03-02-04

Sfakianos et al.

hBAT Related Proteins from BLAST Search (Courtesy of Alexey Murzin, MRC lab)

- **PLCTE AHGRR-KPQIICYPETGHYIEPPYFPLCRASLHALVGSPIIWGGEPRAH-AM 393**
- **PTE-Ia AHGKE-KPQIICYPETGHHIEPPYFPLCKASLNSLVGGPVIWGGEPRAH-AM 404**
- **DLHp AKGFAHKVSHLAYPDAGHTAGMPALMGGSDK-----GADEAVGGTVEGN-RF 304**

The Protein Structure Modeling of hBAT

Courtesy of Alexey Murzin, Center for Protein Engineering, MRC Cambridge, UK

Cys235→**Ser, what will C235S-BAT be, transferase or thioesterase?**

 235

kan-1 SLLASHGFATLALAYWGYDDLPSRLEKVDLEYFEEGVEFLLRHPKVLGPGVGILSVCIGA 238 mBAT SLLASRGFATLALAYWNYDDLPSRLEKVDLEYFEEGVEFLLRHPKVLGPGVGILSVCIGA 237 hBAT SLLASRGFASLALAYHNYEDLPRKPEVTDLEYFEEAANFLLRHPKVFGSGVGVVSVCQGV 238 MTE-I SLLAGKGFAVMALAYYNYDDLPKTMETMRIEYFEEAVNYLRGHPEVKGPGIGLLGISKGG 276 CTE-I SLLAGKGFAVMALAYYNYDDLPKTMETMRIEYFEEAVNYLRGHPEVKGPGIGLLGISKGG 235 CLCTE SLLAGKGFAVMALAYYNYDDLPKTMETMRIEYFEEAVNYLRGHPEVKGPGIGLLGISKGG 235 PLCTE SLLAGKGFAVMALAYYNYEDLPKTMETLHLEYFEEAMNYLLSHPEVKGPGVGLLGISKGG 235 PTE-Ia SLLAGKGFAVMALAYNNYEDLPKDMDIIHLEYFEEAVTYLLSHPQVTGSGVGVLGISKGG 246 DLHp KPFAEQGYAVLALSYFAAPGLPATAEELPLEYFDRAVAWLAAQPSVDPKAIGVYGVSKGA 138

Charge Relay Mechanism shared by hBAT, thioesterases, and a large group of hydrolases

Stephen Barnes BMG 744 03-02-04

Sfakianos, JBC 277:47270

PQE 31 \leftarrow **Purification of hBAT with 6x His-tag**

- • **Impure hBAT**
- • **Inactivated by imidazole in elution buffer**

Stephen Barnes BMG 744 03-02-04

Sfakianos et al.

pET21a(+) Purification of hBAT with Purification of hBAT with Avi-tag

Stephen Barnes BMG 744 03-02-04

Sfakianos et al.

Kinetics of transferase and thioesterase activities of wild-type hBAT with glycine

Kinetics of transferase and thioesterase activities of C235S hBAT variant with glycine

LC-ESI-MS-MRM Analysis of Reaction Products

Stephen Barnes BMG 744 03-02-04

Bile acid Bile acid CoA:amino acid N-acyltransferase :amino acid N-acyltransferase

- **Has a ping-pong reaction mechanism**
- **Bile acid CoA undergoes a thioester interchange with Cys235-BAT**
- **Ser can replace Cys, but the complex is less stable**
	- **This can either lead to lowered activity, or increased turnover**