Comparison of mass spectrometers performances

Instrument	Mass resolution	Mass accuracy	Sensitivity
Quadrupole	1 x 10 ³	0.1 Da*	0.5-1.0 pmol
DE-MALDI	2 x 10 ⁴	20 ppm	1-10 fmol peptide
			1-5 pmol protein
lon trap	1 x 10 ³	0.1 Da*	10-20 fmol
FT-ICR	1 x 10 ⁶	<1 ppm	20 amole

*depends on the mass window being used

Mass spectra of peptides and proteins - and LC analysis of proteomes

Stephen Barnes, PhD

Overview

- A mass spectrum
- Electrospray MS
 - Analysis of intact proteins
 - Molecular weight calculations
 - Max Entropy
- Peptides
 - Purity
- Integration of MS with LC and CE
 - Multidimensional LC
- Tandem MS
 - Identifying modification sites
- MALDI spectra
 - Tryptic fingerprinting

A mass spectrum of several peptides from a tryptic digest

Isotope profile of individual peptide ion

Ionizing proteins and peptides

- ⁺H₃NCHR₁CO(NHCHR_nCO)_nNHCHR₂COOH is the ion that's found in dilute acid solution
- If there are internal basic residues, then the ions will be of the form [M+nH]ⁿ⁺, where n = 1, 2, etc.
- A tryptic peptide will have a N-terminal amino group and an amino group from Arg or Lys
 - If the peptide has a mol. wt. of 1000 Da, then the singly charged ion will have a m/z of 1001, whereas the doubly charged ion has a m/z of 501

Calculation of molecular weights and ion states

- For two ions in a series for a peptide of molecular weight M, the lower *m/z* value (x) will be for the n+1 ion state and the larger *m/z* value (y) will be for the n+ ion state.
 - (1) (M+n)/n = y
 - (2) (M+n+1)/(n+1) = x
- Hence
 - (3) M+n = ny and M = ny-n
 (4) M+n+1 = (n+1)x and M = (n+1)x-(n+1)
- Hence
 - ny-n = (n+1)x (n+1)
 - ny-n-xn+n = x-1
 - n(y-x) = x-1
 - n = (x-1)/(y-x)
- The value of n can then be substituted in equation (1) to obtain the molecular weight of the peptide

ESI mass spectrum of ribonuclease

Deconvolution of MS data

- When several proteins are present, then their multiply charged ion clusters overlap
- Can this be overcome yes, use the MaxEntropy program provided by micromass

MaxEnt deconvolution of MWs

LC/MS of 4HNE-Modified Cytochrome C

Use of FT-MS in ESI of proteins

- The very high resolving power of FT-MS enables a direct measure of charge state of an individual ion since each peptide or polypeptide will have several/many isotope peaks
- The distance in Da between successive isotope peaks of a multiply charged ion is the reciprocal of the number of charges

Bovine Serum Albumin (66 kDa) 4.7 T Actively Shielded Magnet

ESI-MS and purity of peptides

Guarantees of purity based on observation of "a single peak by reversed-phase HPLC" and by "it gave the correct sequence when analyzed by Edman degradation" are hollow. The lower spectrum was of a "pure" HPLC peak. The method of purification was amended and the upper spectrum was obtained

Tandem mass spectrometry on a triple quadrupole instrument

- Daughter ion spectra
 - The molecular ion is selected in Q1, collided with Ar gas in Q2, and "daughters" analyzed in Q3
- Parent ion spectra
 - All molecular ions allowed into Q1, collided in Q2, and a selected daughter ion measured in Q3
- Multiple reaction ion monitoring (MRM)
 - A single molecular ion selected in Q1, collided in Q2 and a selected daughter ion measured in Q3.
 Up to 8 pairs of parent/daughter ions

MUDPIT - MUlti-Dimensional Protein Identification Technology

S. Barnes-UAB 1/17/03

John Yates

Pros/Cons of laying down LC or EC separations on matrix plate

- Allows off-line analysis both in real time and then in a retrospective mode
- MALDI-TOF analysis is very fast
- Can do TOF-TOF MS-MS analysis
- BUT what happens chemically on the acidic environment on the surface of the plate during storage
- Also, can the laser beam cause chemical changes?

Example of MS-MS to detect a modification

- Cytochrome c, a mitochondrial enzyme was reacted with 4-hydroxynonenal, an aldehyde formed by oxidation of long chain, unsaturated fatty acids
- Site of attachment believed to be on lysine groups (to form a Schiff's base)
- However, increase in MW consistent with Michael addition
- Protein hydrolyzed with trypsin

Qtof Tryptic Digest of Control Peptide

Qtof Tryptic Digest of Modified Peptide

Conclusions of experiment

- A peptide was identified that increased its molecular weight by 156 Da
- Tandem MS revealed that the 4-HNE was attached to His-33 to form a Michael adduct

MALDI-TOF MS

- Whole proteins
- Tryptic fingerprinting
- MS-MS

Cytochrome C Modified by HNE MALDI-TOF Mass Spectrum

MALDI spectra usually contain only the **molecular ion [M+H]**⁺. This is an advantage since it maximizes the signal, but is a disadvantage in that it gives no clues as to structure.

Protein analysis by MALDI 2003

S. Barnes-UAB 1/17/03

MASCOT Search

1016.55	
1034.54	Trypsin Digest of porin-P1:
1181.59	Voltage-dependent anion-selectiv
1461.75	channel
1443.76	
1687.98	
1950.80	
2368.13	
2813.32	

can be scanned by MALDI laser nanoLC separations on Mylar - can be scanned simultaneously by fast laser

S. Barnes-UAB 1/17/03

for MS analysis

Post-source decay experiments in a TOF-mass spectrometer

Daughter fragment ions formed in the drift region are separated by the reflector. Suitable resolution only occurs over a limited range of m/z values. This can be overcome by recording individual spectra over a wide range of voltage settings (10-12) for the reflector. Alternatively, a curved applied voltage can be used to obtain the daughter ion spectrum in a single experiment.

TOF-TOF - high speed MSMS

Decomposition of -NO₂ group in MALDI-TOF MS

