2D separations and analysis of proteins in biological samples

Helen Kim 934-3880 helenkim@uab.edu McCallum Building, room 460

Learning objectives

2-D electrophoresis: What it involves: **2D** separation image, statistical analysis MS Other types of 2D protein separations; MUDPIT 2D LC-LC Other types of protein analysis technologies: protein arrays antibody arrays

Initially: The objective of protein separation in proteomics was to get a protein "spot" or "band", for mass spectrometry analysis, to identify the protein/its modifications

MALDI-TOF mass spectrometry

ID of parent polypeptide

Types of high-throughput separation & analysis technologies

I. 2-dimensional electrophoresis (2-DE)

- A. "regular" IEF/SDS-PAGE
- B. 2D-blue-native electrophoresis
- C. Visualization methods

II. 2-dimensional liquid-based LC/LC

- III. Free-flow electrophoresis
- IV. "Chip" technology: arrays of ligands for proteins

Parameters that govern the choice of protein separation method

- Purity of protein
- Speed of purification
- Quantity of protein
- What is the question:most important
 - Discovering a new protein/proteome
 - Identifying protein-protein interactions
 - Identifying potential modifications of known proteins

The Elements of any 2-D separation in proteomics

- The experiment!! that generates the "signal"
- Subfractionation to enrich for suspected proteins
- (Trypsin-digestion to generate peptides of the parent proteins)
- Sample work-up
- 2-D separation
- Image or other analysis to identify gel "spot" differences between untreated & treated
- MS of (trypsin-digests) spots/proteins/peptides of interest, to identify and characterize the protein

Sample preparation for 2DE:

Harvest, rinse, and pellet the cells;

or

Dissect out tissue, organ, or fluids;

•Homogenize/lyse in buffer that *unfolds the proteins w/o* adding or disturbing the charges:

•High urea usually 5-8 M---unfolds the protein

•Sometimes 2 M thiourea--unfolds the protein

1-4% detergent--solubilizes hydrophobic components

•Beta-mercaptoethanol or other reductant, such as TBP, DTT

Inhibitors: of proteases, kinases, & phosphatases

•Clarify by centrifugation to get rid of insoluble matter;

Jai Pitotein assay to know how much and how concentrated

What 2-D electrophoresis involves:

• 1st dimension: Isoelectric focussing

• 2nd dimension: (SDS)-PAGE

A real 2-D gel

Find this and other 2-D gels at http:www.expasy.org

Lewis et al., [2000] Molec. Cell, 6)

(from Natalie Ahn's lab)

The pattern itself is information; a change in intensity of a spot is not meaningful unless you know it is the same spot.

Critical part of 2-D gel proteomics: Image analysis

Types of information:

- Jan 18, 2
- ----- Upregulation of gene
 - ---- Posttranslational modificatiion
 - -- Downregulation of gene
 - Aberrant processing

Elements of image analysis of "regular" 2D gels:

- 1. Compare the 2D displays of spots
- 2. Determine total spot number for each display
- 3. Quantify spot intensities, identify differences
- 4. Identify spots that may have "moved" horizontally; these are candidates for those may have alterations in charge.

Ultimate and simple goal of image analysis to answer the question, "What is changing, and by how much?"

A pair of 2D gels representing rat brain protein changes induced by ingestion of grape seed pH 4 pH 7

Control

Categories of data generated by 2D gel image analysis

Jan 18, 2005

Principal Components analysis assists in determining whether the gel patterns distinguish between the experimental

chain

Jan 18, 2005

Single biggest bottleneck, even with DIGE: even commercially made gels (1st dimension, 2nd dimension) are not perfect. 2D displays of proteins across large datas

Jan 18, 2005

Database obtained from proteomics analysis of breast cancer cell lines

Sample	Spot#	Protein Name	MOWSE	Accession#	Obs:	Pred:	Obs:	Pred:
					kDa	kDa	pI	pI
MCF-7	BR-8	Cytoskeletal keratin-7	132	gi12803727	20.7	51.3	8.6	5.3
	BR-9	Alpha-1 anti-trypsin	90	gi1942953	19.7	44.3	9.6	
	BR-1	Human	94	gi87303	56.2	53.5	5.9	5.6
MCF-		Cytoskeletal keratin-8						
10AT	BR-6	Human	74	gi18573275	23.4	24.1	6.3	
	BR-5	hypo:XP109048	60	gi5106591	18.1	6.4	5.7	
		IgG heavy chain						
	BR-7	variable region	105	gi1942953	37.0	44.3	6.9	
		Intact recomb: alpha-						
	BR-4	1 antitrypsin mutant	65	gi5106591	10.0	6.4	4.6	
		F-L						
		IgG heavy chain						
		var:reg						
MCF-	BR-3	Human cytokeratin-8	65	gi87303	56.0	53.5	5.8	5.6
10A	BR-2	DNA replication	58	gi1705520	22.8	96.5	6	6.6
		silencing factor MCM-						
		4						

(Deshane, Johanning, and Kim, unpublished data)

Metabolic labelling can enhance 2D gel analysis: i.e. ³⁵S-methionine-labelling

Make use of databases and the internet:

I. Check existing databases and web-links: www.expasy.org many are annotated helpful links: proteomics tools II. Keep up with the literature/ competition: Electrophoresis Proteomics Molecular & Cellular Proteomics J. Proteome Research

III. Use genomics information when available: The polypeptide sequence (from the cDNA) can predict electrophoretic parameters-- m.w. & pl; helpful in setting up 2D gel conditions

Jan 18, 2005

2D-Blue-Native gels: for hydrophobic proteins

What questions does BN electrophoresis address:

(a) Which proteins are actually interacting with which?

When would you see the same protein in two lanes on the 2nd

Jan 18, 2005

Take home message

- Use of proteomics technologies enables global analysis of protein changes ;
- 2D electrophoresis can indicate both differential expression or posttranslational modifications;
- Choice of separation governed by
 - Abundance of sample
 - Question being asked
 - Technology available to you
 - Cost is a factor;

Issues in 2D gel analysis:

I. Now you see it, now you don't:

Probable answers/what are the solutions:

- 1. Protein not solubilized by IEF buffer
- 2. Not enough protein!!!
- 3. Modification lost during preparation?

II. I see the band on my 1D gel that runs with my western blot band; Why do I need to run a 2D gel anyway?

2D-LC-LC

1st dimension: chromatofocussing (like IEF, but *in solution*, so can take higher protein loads)

