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Metabolomics is the comprehensive measurement of
biological chemical space
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Presentation Notes
Metabolomics is the comprehensive measurement of biological chemical space. This includes the small molecules present in tissues and cells of organisms, many of which are endogenous metabolites while others are from the environment (i.e., the metabolome and exposome). In this figure, we see where metabolomics and exposomics fits in the central dogma of biology. Genes are expressed to yield transcripts, that are translated to yield proteins which in turn perform the chemical reactions that produce many of the metabolites observed in oru experiments. These metabolites also greatly impact the activity of the genome, transcriptome, and proteome.
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Metabolomics is the comprehensive measurement of
biological chemical space
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MASS SPECTROMETRY


Presenter Notes
Presentation Notes
Another notable distinction is the technologies used for studying these entities. On the left, sequencing of one form or another is used to analyze these samples. Chemical space on the other hand is measured primarily using mass spectrometry-based techniques. 
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Additionally, most experiments couple chromatography to mass
spectrometry meaning multiple spectra for each sample. Data becomes
complex quickly.
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Reproducibility issues in LC-MS metabolomics data processing
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Top Four Reasons for Poor Reproducibility

* High rate of correspondence errors in large data

e Spurious number of low-quality peaks,

confusion of sensitivity
» Peak detection not transparent enough

* Too many parameters, too dependent on local expertise
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Article \ Open access | Published: 11 July 2023

Trackable and scalable LC-MS metabolomics data
processing using asari

Shuzhao Li®™, Amnah Siddiga, Maheshwor Thapa, Yuanye Chi & Shujian Zheng

Nature Communications 14, Article number: 4113 (2023) | Cite this article

 Detailed account of technical issues

* Trackable data structure at every level in asari
* New algorithms, new build

* A useful set of quality control metrics

* Performant, easy to deploy, easy to scale
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Many Low-Quality Peaks Due to Low Mass Selectivity

Log Peak Height
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Goodness of Peak Shape

1.0 4

0.8 1

0.6

0.4 1

0.2 1

0.0 A1

15

Many Low-Quality Peaks Due to Low Mass Selectivity

Log Peak Height

20 25 30

15 20 25 30

1.0 A

0.8 1

| ;IVIZmine_L
| 4958

rigs
0.4 =ty

0.2 A

0.0 o

Many features but many are
low quality.

Kernel Density

XCMS MZmine -
m/z rtime |m/z rtime
760.5857 73  |760.5807 68 . Fals.ely resolved
760.5833 73  |760.5817 72 | isobaric features due
760.5815 67  |760.5826 72 to poor mass
760.5837 72 alignment
760.5847 73
‘ XCMS MZmine Asari
dO dS ﬁO dO 03 lb d4 d6 d8 1b

Mass Selectivity




Asari Leverages High Resolution Mass to Improve Data Quality
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Asari Leverages High Resolution Mass to Improve Data Quality
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Asari Leverages High Resolution Mass to Improve Data Quality
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Asari Leverages High Resolution Mass to Improve Data Quality
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asari (6319)
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Goodness of Peak Shape

Asari Improves Feature Quality and Computational Performance
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Goodness of Peak Shape

Asari Improves Feature Quality and Computational Performance
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Beyond Feature Tables

Quality Control
Annotation
Reporting
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Annotation

R R R Q < <

MO

» khipu pre-annotation for both regular
and isotope tracing data. Yields empirical
compounds. Li and Zheng, 2023,

Analytical Chemistry

» JSON centric, chaining MS, MS/MS and MEVTE

authentic libraries MS/MS search by MatchMS,

accelerated with IntervalTrees

Matchms — processing and similarity evaluation of mass spectrometry data. (2020) Journal of Open
Source Software, 5(52), 2411. https://doi.org/10.21105/joss.02411



What is an empirical compound?

HzN)]\N/\/\HJ\OH N .
H Traditional techniques,

each feature is queried for

One Compound, m, +H* annotation = 6 searches!
Many Features m, +Na* More false positives
M+1C,, +H* m, +ACN*
‘ m+13C,, +H* m+13C,, +Na*
m/z |
| J
|
Empirical Compound
l Empirical compound
Inferred Neutral Mass > means one query and

fewer false positives.

mzunit, CAMERA, binner perform a similar ‘pre-annotation’ but khipu performs the regression that
allows for the inference of mass and yields a computable data structure.
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JSON Example of Chained Annotation

"kp4_166.0488": {
"interim_id": "kp4_166.04 88",
"neufral_formula_mass": 166.04884896677,
"Database_referred": [
"MoNA-export-LC-MS-MS_Negative Mode.msp", "HMDBv5"],
"identity": [["3-Methylxanthine", 0.98]],
"MS1_pseudo_Spectra”; [
{
"id_number”: "F21",
"mz": 165.0418,
"rtime": 73.72,
"isotope": "MQ",
"modification"; "M-H-",
"ion_relation": "M0,M-H-",
1.1
"MS2_Spectra™ [
{"ms_level": 2,
"precursor_ion_mz": 165.041976928711,
"list_mz"; [ 55.02987289428711, ..],
"list_intensity™ [0.010449324526009295,...],
"rtime": 69.007309953,
"precursor_ion_id": "165.041976928711_69.007309953 plasma_ID_01.mzML",
s
"list_matches": [
["C6HB6N402_166.049075",...]....
]

"Level 4":[{

"accession": "HMDB0001886",
"name": "3-Methylxanthine",
"chemical_formula": "C6HEN4O2",
"primary_db": "HMDBv5"

N

Made possible using empirical compounds
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Large Experiment QA/QC Example
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PC2 - 10.8%

Large Experiment QA/QC Example

PC2 -28.5%
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Normalized, Interpolated



Large Experiment QA/QC Example
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# Features Z-Score

Outlier and Annotation Example Results

)Failed Injections

Sample Number
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pcpfm Compound Discoverer

High MS? annotation similarity
between CD and pcpfm



PCPFM Report - dmpa_pcpfm

Timestamp
Report generated on 2023-10-04 13:30:48.567659

Feature Table Summary
A feature denotes a region of a spectrum believed to represent a ion of a compound with a retention
time and a mass-to-charge ratio. Multiple features often represent the same metabolite due to
isotopologues, adduct, multiple charges etc. and thus, the number of features is only a rough proxy
for the number of detected metabolites. Due to noise, artifacts, rare metabolites, etc. the number
of features often increases with the number of samples.

Table Name, Num Samples, Num Features
full, 47, 238069

preferred, 47, 96228
preferred_blank_masked, 47, 96228
masked_preferred_unknowns, 24, 81703
pref_gaqc_filtered_unknowns, 22, 81336
pref_normalized, 22, 81336
pref_missing_dropped, 22, 67237
pref_interpolated, 22, 67237
log_transformed_for_analysis, 22, 67237

empCpd Table Summary
are { i i representing sets of features suspected to
correspond to the same compound. Each empirical compound is a khipu, thus, the number of khipus is
an estimateof the number of detected metabolites. Each khipu represents multiple features; however,
unless singletons were added to the khipu during construction, the number of features grouped
captured by empCpds is less thanthe number of features.

EmpCpd Name, Num Khipus, Num Features
asari, 155596, 238070

preferred, 21509, 58296
HMDB_LMSD_annotated_preferred, 21509, 58296

Annotation Summary
Annotations are mappings of features / empCpds to suspected chemical entities. Annotations can be
higher or lower confidence depending on the origin in which they are generated. In general, MS1
annotated features are lower confidence than MS2 annotated features.

Feature Tables
Table Name, # Features, # MS1 Annotated Features, # MS2 Annotated Features
full, 238069, 0, 0
preferred, 96228, 0, 0
preferred_blank_masked, 96228, 0, 0
masked_preferred_unknowns, 81703, 0, 0
pref_gaqc_filtered_unknowns, 81336, 0, 0
pref_normalized, 81336, 0, 0
pref_missing_dropped, 67237, 0, 0
pref_interpolated, 67237, 0, 0
log_transformed_for_analysis, 67237, 0, 0

Example Reports

Table: preferred

PC216.2%

PCPFM Report - dmpa_pcpfm
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Example pcpfm Results

Ansone 2021 re-analysis

1,2-DPPC [H+, m+13C,] 1,2-DPPC [H+, m]
o F210226 F209589
S} 314.3245m/z @ 58.78 313.3212m/z @ 58.92s
) 26 7
l\'j — 22 ——— 22
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g 18 18 == L
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S 14 ¢ 14
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Pcpfm recapitulates the clustering of But produces different annotations.

patients from the original manuscript



Example pcpfm Results

Bowen 2023 re-analysis
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Open Source Matters

Both Asari and pipeline are open-source
Reuse welcome

Feel free to submit issues and request features

= D shuzhao-li-lab / PythonCentricPipelineForMetabolomics &

Code -) Issues 9 1 Pull requests (») Actions {1 Projects ) Security |22 Insights

. PythonCentricPipelineForMetabolomics ' rrivat Unwatch 2 ~

main ~ ¥ 1branch © 0 tag: Go to file Add file ~ <> Code ~ About

The Python Centric Pipeline for
. jmmitc06 update license and requirements 53402b1 2 utes ago O 121 commits Metabolomics is a wrapper around
various Shuzhao Li lab projects to
pcpfm added more report templates 11 minutes ago enable the complete analysis of an LC-
MS based pipeline from acquisition to
analysis (or analysis with existing
[ MANIFEST.in nstallable version that include file eeks ago software such as Metaboanalyst)

LICENSE ddate license and requirements 3 minutes ago

README.md
pcpfm_nextflow.nf
7 requirements.txt

setup.py

README.md




Conclusions
Still looking for feedback, evolving but stable enough.

Data analysis notebooks in the repository.
https://github.com/shuzhao-li-lab/PythonCentricPipelineForMetabolomics

Link to other tutorials and examples.
https://github.com/shuzhao-li-lab/pcpfm tutorials (work in progress)

Data repo for datasets
https://github.com/shuzhao-li-lab/data/

Contact me at: joshua.mitchell@jax.org


Presenter Notes
Presentation Notes
Will push new version to pypi with new name before conference.

https://github.com/shuzhao-li-lab/pcpfm_tutorials
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A comment on

b webofstories.com

WEB of
STORIES

A STORY LIVES FOREVER

Glycolosis, cancer and metabolomics
James Watson Scientist

Metabolomics from 2009

So, you know, the molecular biologists don't think
biochemistry. And so the cancer field is now controlled by
molecular biologists. You know, whereas, you know, when
| was a boy, molecular biologists didn't exist and the big

people that everyone respected were the good
biochemists, starting with Warburg.

~

/

Transcript

of glycolysis. Sg
biologists~

cawreer field is now contrc

biclogists. You know, whe

when | was a boy,
exist and the big
respected were th
with Warburg. An
DMNA is made and
and, you know, th
learned it. There
if it's interfered wi
into a rational exp
working on cance
metabolism and thi

metabolomics, where yol
the small molecules

So you know, if | were, you know, doing a PhD, I'd

do it metabolomics, you know, if you wanted to
be a biochemist because you're likely to get a
good job afterward, 'cause everyone will see the
need for it.
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