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Mechanisms of Phenotypic Variation

Genome

Phenotype
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Source: CDC Behavior Risk Factor Surveillance System

Obesity Trends* Among U.S. Adults
BRFSS, 1999 - 2010

(*BMI ≥30, or ~ 30 lbs. overweight for 5’ 4” person)

2960 Genetic Associations for Obesity  in Humans* 
Only a tiny proportion of the genetic variation is explained by a specific 

association.

*Retrieved 3/29/2018, NHGRI-EBI  GWAS Catalog

Obesity and its comorbidities (metabolic syndrome- MetS) 
have both genetic and environmental influences

Outline

• The Fly as a MetS model

• Unlocking the black box of 
MetS using systems 
biology

• Determining genetic basis 
of Genotype x Diet 
Interactions

• Other environmental 
effects on MetS

Tori Nelko
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Fly-Human Homology

• Insulin signaling and other metabolic 
pathways largely homologous

• 77% OMIM human disease genes have 
cognates in Drosophila

Rulifson, et al. (2002). Science 296 , 118-20
Reiter et al. (2001) Genome Research 11: 1114-1125

Hotamisligil (2006) Nature 444, 860-867
O’Neill et al.,(2012) Biochemical Society Transactions 40:721-727;

Environmental Heterogeneity

How to Measure GxE

Wild Population

Inbred Lines

Environmental
Variation

Genetic 
Variation
Genetic 
Variation
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Normal Control High Glucose High Fat
Diets

Phenotypes
Weight

Blood Sugar
Lipid Storage

Survival

Metabolomics
GC-MS 

quantification of 
over 180 

metabolites 

Gene Expression
Whole Genome 

Expression 
Profiling

146 Isolines in 
initial screen

20 Isolines for 
Systems Analysis

20 Isolines
for Systems 

Analysis

20 Isolines
for Systems 

Analysis

Stephanie Williams, Kelly Dew-Budd, Kristen Davis, Julie Anderson, Kenda Freeman, Mastafa Springston

W
ei

gh
t

Possible Outcomes
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Weight Genetic Variation

Reed et al., Genetics, 2010

Weight GxD

Reed et al., Genetics, 2010

Proportion of 
Variance Explained

18.9% Genetic
1.9 % Dietary

12% GxD
n = 14800

Significant 
decanalization on 
the high fat diet
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Genetic x Diet

Diet

Genetic

MetS-like traits
Genetic and GxD effects 
greater than diet alone

Expression and 
metabolite 
principal 

components do 
NOT correlate

GxD > diet for most MetS traits

Reed et al., Genetics 2014

Transcriptome and 
metabolome 

significant GxD effects 
diet more important for 

metabolome
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Expression Metabolites

Weight
TAG

Sugar

Weight

Williams et al, G3 2015
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• Lack of conservation of 
correlated gene 
transcripts by diet

Ruth Bishop, Dana Davis, Katie Bray, Lauren Perkins, Joana Hubickey

Are Molecular Mechanisms for Phenotypes 
Conserved Across Environments?
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Metabolite PC2 highly predictive of MetS-like phenotypes

Arrhythmia Index correlated 
with MetPC2 and MetS 

phenotypes
Reed et al. 2014 Genetics

MetPC2
L-dopa

N-arachidonoyl
dopamine
glucose
valine

leucine
isoleucine

glycine 
methionine

phenylalanine

Branched Chain AA

Ocorr et al. Trends in Cardiovasc Med. 2007 17:177-182

What Links MetS Phenotypes?

Eigenvector 
Metabolite Analysis 

(EvMA)

Clare Scott Chialvo
Ronglin Che
David Reif
Alison Motsinger-Reif

Scott Chialvo, Che, Reif, Motsinger-Reif, Reed 2016 Metabolomics

What Links MetS Phenotypes?
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Number of 
Correlated 

Genes 
 

Enriched GO Terms 
 

Overt Phenotypes 
 

0 -- Weight, Larval Survival 
 

845 respiratory electron 
transport chain 

 

Sugar, Weight, Pupal 
Survival 

688 response to 
temperature stimulus, 
response to hypoxia 

 

Weight 

3134 Mitochondrion, 
generation of 

precursor metabolites 
and energy, cellular 

respiration, TCA cycle 

Sugar, Lipid, Weight 

9 -- Larval Survival, Pupal 
Survival, Development Time 

3013 Mitochondrion, 
structural constituent 

of ribosome 
 

Weight, Development Time 
 

0 -- -- 
 

227 ribosome biogenesis, 
rRNA metabolic 

process 

Larval Survival, Pupal 
Survival, Development Time 

Fatty Acids 
(un- & saturated, l-dopa)

Sugars
(disaccharides, maltose)

Amino Acids 
(BCAA, proline, serine)

Mixing Pot 
(monosaccharaides, 

NADA, tyrosine)

Mixing Pot 
(unsaturated FA, AA)

Fatty Acids 
(unsaturated FA)

Amino Acids

Mixing Pot 
(sugars, FA, AA)

EvMA across all diets
What Links MetS Phenotypes?

Scott Chialvo, Che, Reif, Motsinger-Reif, Reed 2016 Metabolomics

High FatNormal

350 metabolites 
• 270 with IDs 
• Metabolon Inc.
Top 30 diet differentiating 
metabolites
• 9 unknowns 
• medium chain fatty 

acids
• short chain fatty 

acids
• dicarboxylic/ 

monohydroxy fatty 
acids 

• Glycolysis/TCA cycle 
metabolites

Random forest identifies metabolites that differentiate based on 
diet

*metabolites 
potentially involved in 
omega FA oxidation

*

Oza, Aicher, & Reed, Metabolomics, 2018 Vishal Oza – now postdoc Lasseigne lab
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Long/ Very long 
Chain Fatty Acids

Fatty 
Acids

Beta Fatty 
Acid 
Oxidation

TCA Cycle

Omega Fatty 
Acid 
Oxidation

E
lo

n
g

at
io

n

Carnitine
shuttle

?

?

No difference between ND and 
HFD

Elevated in HFD

? No evidence found in our 
study

Pathway suggested in this 
study

Hypothesized shift toward Omega fatty 
acid oxidation on a High Fat Diet

?

Oza, Aicher, & Reed, Metabolomics, 2018

King, McDonald, Long, 2012

Drosophila Synthetic Population Resource

raised larvae 
on normal 

and high fat 
diets

Measure phenotypes 
and genetically map 

association

What loci control genotype-by-diet interactions?
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Dew-Budd et al. in revision

Main Genetic Effect QTLs

What loci control genotype-by-diet interactions?

Male Pupae Weight

Dew-Budd et al. in revision

Genotype-by-Diet Interacting QTLs 
(Plastic QTLs)

What loci control genotype-by-diet interactions?

Male Pupae Weight
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2L 2R 3L 3R X

QTL Position (Mb)

Main Genetic Effect 
QTLs 

and Plastic (GxD) QTLs 
are different!

Dew-Budd et al. in revisionWhat loci control genotype-by-diet interactions?

Tre-G
Tre-D
TG-G
TG-D
mWt-G
mWt-D
fWt-G
fWt-D

Epistatic Interactions Occur Throughout the Genome

Dew-Budd et al. in revision

What loci control genotype-by-diet interactions?
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Male Weight- Main
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Diet 1 Diet 2

Main Genetic 
Effect (Gene A)

Main GxD Effect 
(Gene A)

Epistatic
Genetic Effect

Epistatic
GxD Effect

AA

Aa

aa

BB Bb bb

AA

Aa

aa

BB Bb bb

AA

Aa

aa

BB Bb bb

AA

Aa

aa

BB Bb bb

AA

Aa

aa

BB Bb bb

AA

Aa

aa

BB Bb bb

AA

Aa

aa

BB Bb bb

AA

Aa

aa

BB Bb bb

What loci control genotype-by-diet interactions?

Dew-Budd et al. in revision

Gene ontology enrichment 
- Many loci linked to 

metabolic functions
- miR310 cluster 

(regulation in 
hedgehog pathway)

- Pathways regulating 
growth and 
development 
(neurodevelopment)

R. Mather, A. Motsinger-Reif NCSU

NIH: West 
Coast 
Metabolomics 
Center

• Fiehn lab (GCTOF MS)

• 421 metabolites detected

• 169 with confirmed 

chemical ids

raised larvae 
on normal 

and high fat 
diets

What loci control metabolite profiles?

23

24



13

Metabolite 1

Gene 1
Simple Genetic 

Architecture

Architecture of Main Genetic Effect mQTLs

Hub Gene

Metabolite 2 Metabolite 3

Gene 1

Metabolite 1

Hub Metabolite
Gene 1 Gene 2 Gene 3

Metabolite 1

Genetic red, GxD blue Genomic Position

Most mQTLs for Genetic effects are different from 
those with GxD effect

M
et

ab
o

li
te

 In
d

ex

2L 2R 3L 3R X

What loci control metabolite profiles?

Hub Metabolite

Hub 
Gene

Simple QTL

Mather et al., in prep

Fiehn lab (GCTOF MS)  421 metabolites detected (169 chemical ids)
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Genomic Position

N
L

P

2L 2R 3L 3R X

Linking Metabolites through mQTLs

• mQTL shared between 
glycolic acid and citrulline

• pyruvate kinase rate limiting 
step in glycolysis

glycolate phosphoenolpyruvate pyruvate

pyruvate kinase

citrulline

Mather et al., in prep

Met 1 
unknown

Met 2 
known

Met 3 
unknown

Met 4 
known

Met 5  
known

Gaussian Graphical Model

Correlation 
Structure

Conditional 
Dependence 
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Normal Diet 
GGM

High Fat Diet 
GGM

Phospholipid 
subnetworks

Dipeptide 
subnetworks

Fatty acid 
subnetworks

Overlaid Network

Gaussian graphical models by diet reveals distinct portions 
of sub-networks 

Oza, Aicher, & Reed, Metabolomics, 2018

Correlation networkGaussian graphical 
model

Edges in the GGM are between biologically (and chemically) similar 
metabolites, but correlation network misses known biological 

relationships  

R > 0.9235

C (8:0) C (10:0) C (12:0)

Fatty Acid Synthesis
“positive control”

Oza, Aicher, & Reed, Metabolomics, 2018
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Unknown

Dipeptide “pathways” - GGM Dipeptide “hairball” - correlation

R > 0.9235

*GGM provides 
testable 
hypotheses

Oza, Aicher, & Reed, Metabolomics, 2018

Treatment Control

TreadWheel

Sean Mendez

Uses negative 
geotaxis to exercise 

adult flies 

Rachel Hill

Exercise

Mendez et al. 2016 PlosOne
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Control Exercise
Control Exercise

p =10-7.52 p =10-2.10

p =10-4.27 p =10-46.66

Exercise Works in Flies

Control ExerciseControl Exercise

Mendez et al. 2016 PlosOne

1.7

1.9

2.1
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2.5

2.7
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3.1
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Control Exercise

p =10- 36.87

Climbing Performance 
Improves

Nicole Riddle, Louis Watanabe, Maria DeLuca UAB 

Mendez et al. 2016 PlosOne

• Exercise interacts with genetic line and sex 
• Mitochondrial function genes show exercise and 

genotype-by-exercise interactions
• Adult exercise interacts with larval diet and genotype

ExerciseControl

Normal High Fat Normal High Fat

Exercise Works in Flies
(for some better than others)

Nicole Riddle, Louis Watanabe, Maria DeLuca UAB 
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g
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g

h
t

Lowman et al, in prep Genotype x Diet x Exercise p=5.7e-17
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www.motherjones.com

Larval bacterial communities from natural 
conditions are interact with genetic and 
dietary effects

Bombin et al, 2020, Microorganisms 8(12), 1972

P,NS

P,S

PA,S
PA,NS

R,NS

R,S

100 most abundant 
microbial ZOTU

Discriminate analysis

1. Maternal microbes shape bacterial community
2. Community on natural peach diets differ from lab and 

autoclaved diets  
3. Genotype-by-diet interactions on bacterial 

communities
4. Correlations between dominant taxa and metabolic 

traits (consistent with the literature)

High Fat (NS) High Sugar (NS)

Bacterial communities more strongly influenced by 
environmental bacteria on a high fat diet 

Bombin et al, in prep

Autoclaved Peach

Lab and non-
autoclaved 
peach

The bacterial species correlated with metabolic 
phenotype vary with diet and maternal microbes 
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• Flies are great models!

• Genotype-by-diet interactions are a 
substantial contributor to MetS 
variation

• Metabolite profiles have predictive 
power for MetS phenotypes 

• Quantitative data can be used to 
categorize unknown compounds 
and hypothesize new pathways

• Loci for genetic and genotype-by-
diet interactions are different

• Additional environmental factors 
can be modeled in Drosophila Tori Nelko

The Take Home Messages

lreed1@ua.edu flygxe.ua.edu

Flies, More Flies, and Statistics….

flygxe.ua.edu
lreed1@ua.edu
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Reed Lab Motto: When it comes to 
genes, our flies are always open.
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Mengting Sue
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Cole Kiser
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The Genomics Education Partnership: 

A community of practice that enhances research 
opportunities for students and faculty at diverse 

institutions

Funded by the National Science Foundation, National Institutes of Health, HHMI

With continuing support from Washington University in St Louis 

and the University of Alabama
Copywrite 2020, Genomics Education Partnership

thegep.org

Copywrite 2019, Genomics Education Partnership

GEP Membership Distribution

• nationwide collaboration of 160+ institutions 

• > 2000 students participate annually

• core team provides computational, scientific, and pedagogical support - facilitates 
implementation

• uses comparative genomics to study the evolution of genes and genomes

• implementation of takes many forms

– Several-week modules to entire semester

• removes the technical barriers – all GUI and web-based

• students gain confidence in their ability to “do” science

Course-based 
Undergraduate Research 

Experience (CURE)

thegep.org

thegep.org
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Gene annotation workflow

thegep.org*looking for new education and scientific partners
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