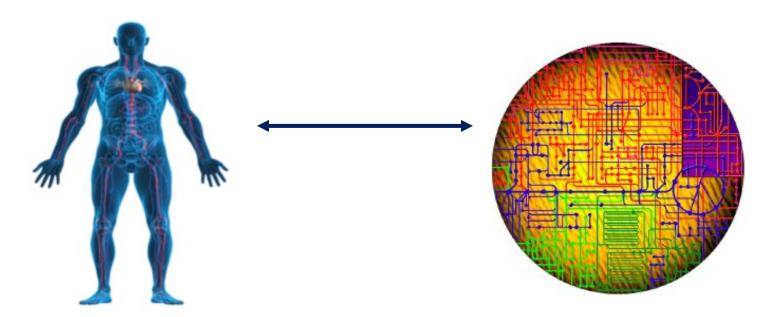


Computational methods for data integration

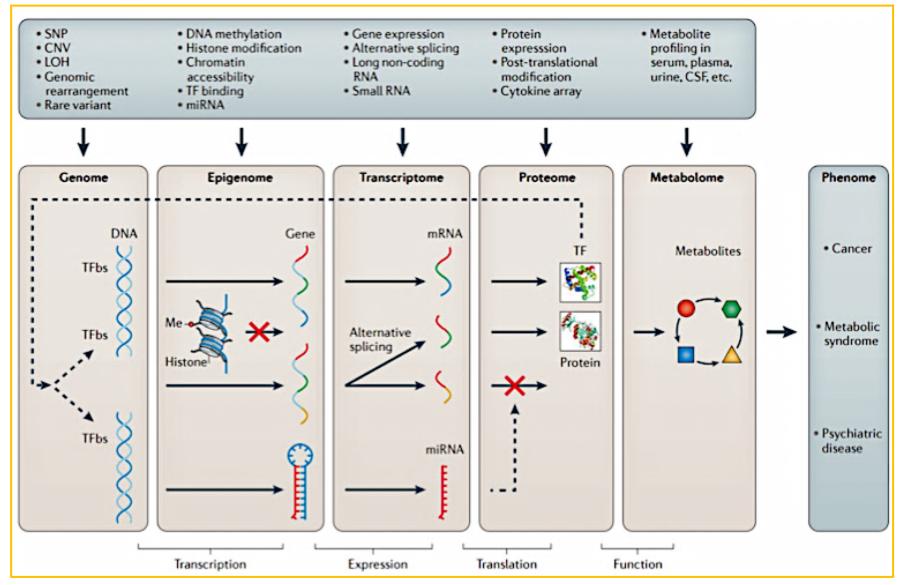
Karan Uppal, PhD

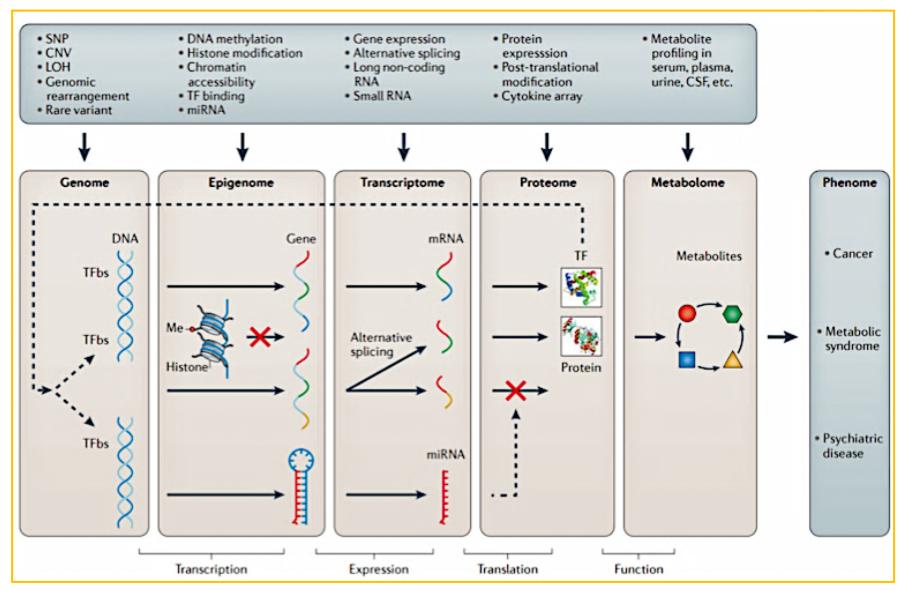

Assistant Professor of Medicine
Director of Computational Systems Medicine &
Metabolomics Lab
Emory University

Learning Objectives

- Understanding of different integrative network analysis approaches
- Familiarity with tools for data integration and network visualization

Introduction: A Systems Biology Framework

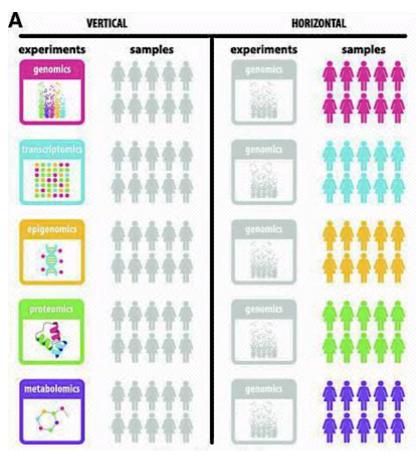

- The goal of Systems Biology:
 - Systems-level understanding of biological systems
 - Analyze not only individual components, but their interactions as well and emergent behavior


Exposures
Internal measurements
Disease states

Systems Biology "Integrative approach in which scientists study pathways and networks will touch all areas of biology, including drug discovery"

Integrative omics: dissecting the biological system via -omics

"Information Overload": >10,000 variables per -omics experiment



Why data integration?

- Systems level analysis provides:
 - more detailed overview of underlying mechanisms;
 - exploration of interactions between different biomedical entities (genes, proteins, metabolites, etc.)
- Combining multiple types of data collected on the same subjects compensates for noise or unreliable information in a single data type
- More confidence in results if multiple sources of evidence pointing to the same gene or pathway

Data integration study designs

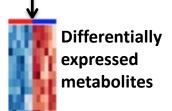
- Paired or vertical integrative analysis
 - Integrative analysis of multiple omics datasets from the same N subjects
 - Discover networks of associations or correlated variables (e.g. genes, proteins, metabolites, microbiome, epigenetic alterations, clinical variables)
 - Univariate or multivariate regression
 - Example: explaining protein abundance with respect to gene expression
- Horizontal integrative analysis
 - Meta-analysis of multiple studies/cohorts looking at the same type of data
 - Cross-laboratory or cross-platform comparisons

Eidem 2018, BMC Med Genomics

Ref: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245874/

Main approaches for data integration

- Pathway-based integration
 - Pathway information from KEGG or other databases
 - Datasets are analyzed individually (differentially expressed genes, metabolites, proteins) and integration is performed at the pathway level
 - Examples: MetaboAnalyst, iPEAP, MetScape, MetaCore
- Data-driven integration using meta-dimensional analysis
 - Integration is performed globally such that data from multiple omics layers are combined simultaneously
 - Interpretation using pathway analysis tools
 - Examples: 30mics, mixOmics, xMWAS
- Using literature-derived associations for integration
 - Using co-occurrence criteria for establishing relationship
 - Examples: Comparative Toxicogenomics Database, CoPub, ArrowSmith, SEACOIN

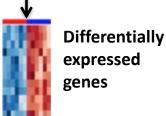

Main approaches for data integration

- Pathway-based integration
 - Pathway information from KEGG or other databases
 - Datasets are analyzed individually (differentially expressed genes, metabolites, proteins) and integration is performed at the pathway level
 - Examples: MetaboAnalyst, iPEAP, MetScape, MetaCore
- Data-driven integration using meta-dimensional analysis
 - Integration is performed globally such that data from multiple omics layers are combined simultaneously
 - Interpretation using pathway analysis tools
 - Examples: 30mics, mixOmics, xMWAS
- Using literature-derived associations for integration
 - Using co-occurrence criteria for establishing relationship
 - Examples: HiPub, CoPub, ArrowSmith

Pathway-based data integration - I

Metabolomics data (n subjects X p metabolites)

	M1	M2	-	Мр
Subject1	199	19	-	100
Subject2	10	40		90
-	ı	-		·
SubjectN	50	30	-	20

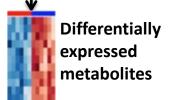


Over-represented pathways

Rank	Pathway ID (hsa:)	Pathway Title
1	04974	Protein digestion and absorption
2	02010	ABC transporters
3	00250	Alanine, aspartate and glutamate metabolism
4	00330	Arginine and proline metabolism
5	00480	Glutathione metabolism
6	00260	Glycine, serine and threonine metabolism
7	00910	Nitrogen metabolism
8	00460	Cyanoamino acid metabolism
9	00270	Cysteine and methionine metabolism
10	00770	Pantothenate and CoA biosynthesis

Transcriptomics data (n subjects X q genes)

	G1	G2	-	Gq
Subject1	19	19	-	100
Subject2	10	40	-	90
-	ı	-	-	-
SubjectN	10	40	-	50


Over-represented pathways

Rank	Pathway ID (hsa:)	Pathway Title		
1	00260	Glycine, serine and threonine metabolism		
2	00340	Histidine metabolism		
3	00480	Glutathione metabolism		
4	00450	Selenoamino acid metabolism		
5	00360	Phenylalanine metabolism		
6	00071	Fatty acid metabolism		
7	00330 Arginine and proline metabol			
8	00561	Glycerolipid metabolism		
9	00380 Tryptophan metabolism			
10	00250	Alanine, aspartate and glutamate metabolism		

Pathway-based data integration - I

Metabolomics data (n subjects X p metabolites)

	M1	M2	-	Мр
Subject1	199	19	-	100
Subject2	10	40		90
-	-	ı		·
SubjectN	50	30	-	20

Over-represented pathways

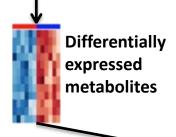
Rank	Pathway ID (hsa:)	Pathway Title		
1	04974	Protein digestion and absorption		
2	02010	ABC transporters		
3	00250	Alanine, aspartate and glutamate metabolism		
4	00330	Arginine and proline metabolism		
5	00480	Glutathione metabolism		
6	00260	Glycine, serine and threonine metabolism		
7	00910	Nitrogen metabolism		
8	00460	Cyanoamino acid metabolism		
9	00270	Cysteine and methionine metabolism		
10	00770	Pantothenate and CoA biosynthesis		

Transcriptomics data (n subjects X q genes)

	G1	G2	-	Gq
Subject1	19	19	-	100
Subject2	10	40	-	90
-	-	-	-	-
SubjectN	10	40	-	50

Uover-represented pathways

Rank	Pathway ID (hsa:)	Pathway Title	
1	00260	Glycine, serine and threonine metabolism	
2	00340	Histidine metabolism	_
3	00480	Glutathione metabolism	
4	00450	Selenoamino acid metabolism	Т
5	00360	Phenylalanine metabolism	
6	00071	Fatty acid metabolism	
7	00330	Arginine and proline metabolism	
8	00561	Glycerolipid metabolism	Т
9	00380	Tryptophan metabolism	
10	00250	Alanine, aspartate and glutamate metabolism	

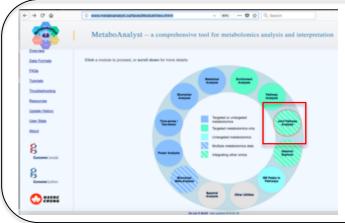

Pathway rank aggregation

Rank	Pathway ID (hsa:)	Pathway Title
1	00260	Glycine, serine and threonine metabolism
2	00330	Arginine and proline metabolism
3	00480	Glutathione metabolism

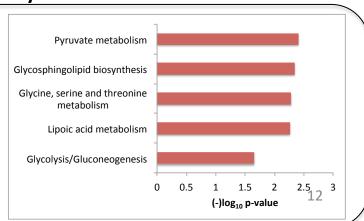
Pathway-based data integration - II

Metabolomics data (n subjects X p metabolites)

	M1	M2	-	Мр
Subject1	199	19	-	100
Subject2	10	40		90
-	-	•		-
SubjectN	50	30	-	20



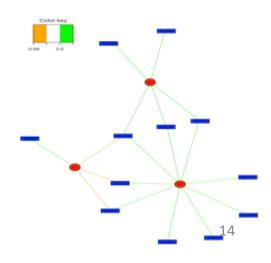
Transcriptomics data (n subjects X q genes)


	G1	G2	-	Gq
Subject1	19	19	-	100
Subject2	10	40	-	90
ı	ı	ı	ı	-
SubjectN	10	40	-	50

Differentially expressed genes

MetaboAnalyst4.0 – Joint Pathway Analysis module

Over-representation analysis in KEGG using gene and metabolite IDs



Main approaches for data integration

- Pathway-based integration
 - Pathway information from KEGG or other databases
 - Datasets are analyzed individually (differentially expressed genes, metabolites, proteins) and integration is performed at the pathway level
 - Examples: MetaboAnalyst, iPEAP, MetScape, MetaCore
- Data-driven integration using meta-dimensional analysis
 - Integration is performed globally such that data from multiple omics layers are combined simultaneously
 - Interpretation using pathway analysis tools
 - Examples: 30mics, mix0mics, xMWAS
- Using literature-derived associations for integration
 - Using co-occurrence criteria for establishing relationship
 - Examples: Comparative Toxicogenomics Database, CoPub, ArrowSmith, SEACOIN

Relevance networks

- What is a network (or graph)?
 - A set of nodes (vertices) and edges (links)
 - Edges describe a relationship (e.g. correlation) between the nodes
- What is a relevance network?
 - Networks of highly-correlated biomedical/clinical entities (Butte 2000; PNAS)
 - Metabolomics x Proteomics, Transcriptomics x Proteomics, Metabolomics x Microbiome, Metabolomics x Clinical variables/phenotypes, etc.
 - Generate a bipartite graph network using a association threshold (e.g. 0.5) to visualize positive or negative associations

<u>Circles</u>: genes Rectangles: metabolites

Methods for generating relevance networks

Univariate

- 30mics (Kuo 2013; a web-based tool for analysis, integration and visualization of human transcriptome, proteome and metabolome data)
- MetabNet (Uppal 2015; R package for performing pairwise correlation analysis and generating relevance networks)

Multivariate

- Multivariate regression techniques such as partial least squares (PLS), sparse partial least squares regression (sPLS), multilevel sparse partial least squares (msPLS) regression, etc.
- mixOmics (Cao et al. 2009, Liquet et al. 2012; R package for integration and variable selection using multivariate regression)
- xMWAS (Uppal 2018): a data-driven integration and differential network analysis
 - Availability: https://kuppal.shinyapps.io/xmwas (Online) and https://github.com/kuppal2/xMWAS/ (R)

30mics: a web-based tool for analysis, integration and visualization of human transcriptome, proteome and metabolome data (Kuo 2013, BMC Systems Biology)

Transcriptomics

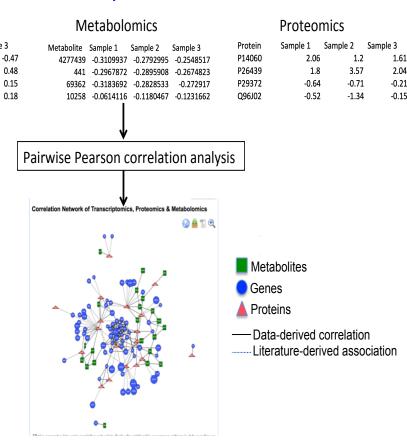
Sample 1 Sample 2

-0.3

0.24

RNPEP

-0.6


-0.3

0.85

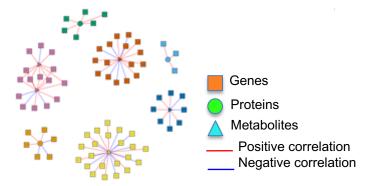
0.37

- Web-based tool
- Correlation analysis and network visualization
- Additional features:
 - Metabolic pathway analysis
 - Gene ontology enrichment analysis
 - Hierarchical clustering analysis

URL: http://3omics.cmdm.tw/

xMWAS: a data-driven integration and differential network analysis (Uppal 2018, Bioinformatics)

URL: https://kuppal.shinyapps.io/xmwas/ R package: https://github.com/kuppal2/xMWAS


Transcriptomics			Metabolomics			Proteomics				
Gene	Sample 1 Sam	iple 2 Sai	mple 3	Metabolite Sample	1 Sample 2	Sample 3	Protein	Sample 1	Sample 2	Sample 3
akap9	-0.24	-0.6	-0.47	4277439 -0.310	9937 -0.2792995	5 -0.2548517	P14060	2.06	1.2	1.61
macf1	-0.3	-0.3	0.48	441 -0.296	7872 -0.2895908	3 -0.2674823	P26439	1.8	3.57	2.04
RNPEP	0.24	0.85	0.15	69362 -0.318	3692 -0.2828533	-0.272917	P29372	-0.64	-0.71	-0.21
SDHA	0.1	0.37	0.18	10258 -0.061	4116 -0.1180467	-0.1231662	Q96J02	-0.52	-1.34	-0.15

Pairwise (sparse) Partial Least Squares regression for data integration (Cao 2009)

Approximation of Pearson correlation using PLS components

Filtering based on |r|>threshold and p-value<alpha criteria

Community (clusters) detection and centrality (importance) analysis

Sparse Partial Least Squares (PLS) regression method (Cao 2009, Liquet 2012)

- sPLS is a variable selection and dimensionality reduction method that allows integration of heterogeneous omics data from same set of samples
- Robust approximation of Pearson correlation using regression and latent (principal) variates
- Multilevel sparse PLS accounts for repeated measures
- Eg: transcriptome (matrix X) and metabolome (matrix Y) data where,

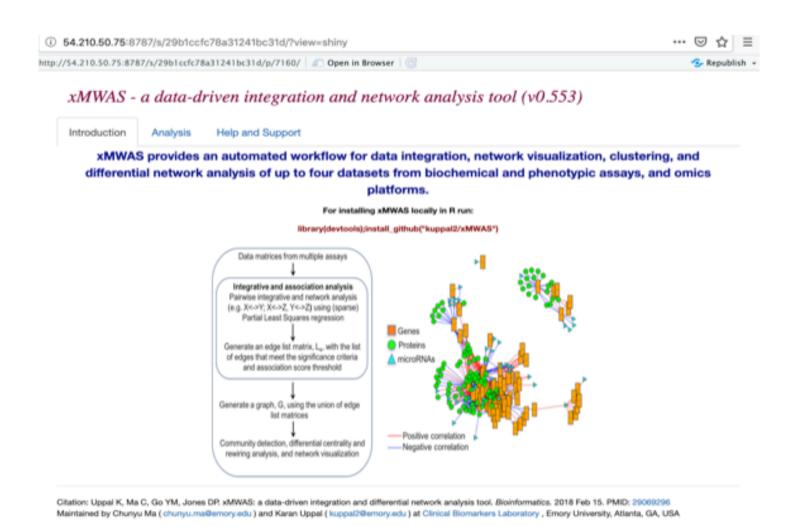
matrix X is an $n \times p$ matrix that includes n samples and p metabolites matrix Y is an $n \times q$ matrix that includes n samples and q genes

```
Objective function  \max cov(X_{u_i}Y_v)  where  u_1, \, u_2...u_H \text{ and } v_1, \, v_2...v_H \text{ are the loading vectors}  H is the number of PLS-DA dimensions
```

A Lasso based optimization is used to select most relevant variables

Association matrix using the PLS components

	X1	X2	-	Xn
Y1	0.4	0.9	-	0.3
Y2	0.7	0.1	-	0.5
Y3	0.1	0.6		0.8


Community detection

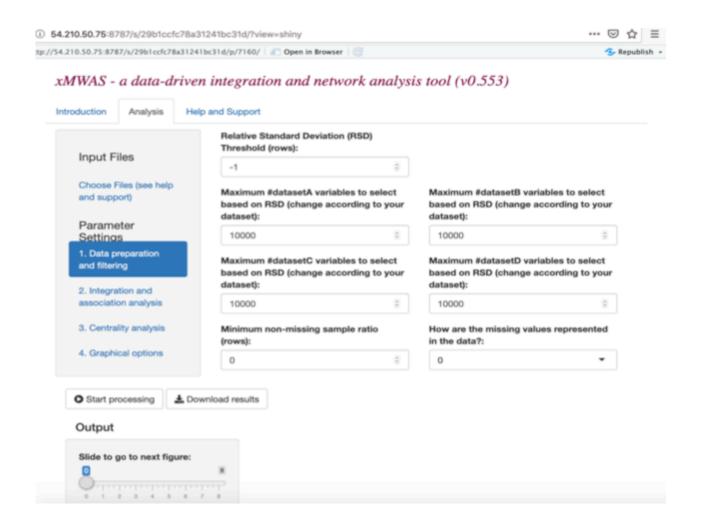
- Community: set of densely connected nodes that have more connections with the nodes in the same community as compared to nodes in other communities
- Multilevel community detection: a multi-step procedure
 - 1) each node is assigned to a different community
 - 2) each node is moved to a community with which it achieves the highest positive contribution to modularity
 - 3) Step 2 is repeated for all nodes until no improvement can be achieved
 - 4) Each community after step 3 is now considered a node and step 2 is repeated until there is a single node left or the modularity can no longer be improved

Centrality analysis

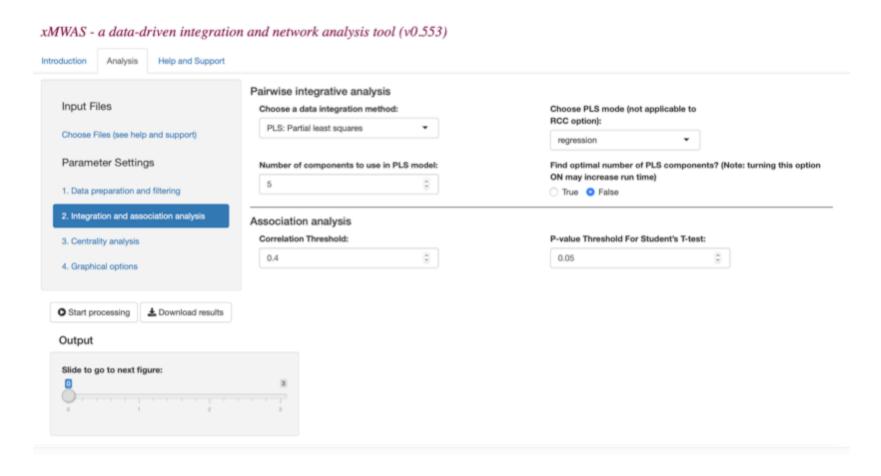
- Centrality: measure of importance of a node in the network
- Common centrality measures
 - Eigenvector: based on the number and quality of connections
 - Betweenness: based on the extent to which a node lies on the path between other nodes
 - Degree.count: based on the number of connections
 - Degree.weight: based on the magnitude of edges (association scores)
 - Closeness: based on the closeness of a node to all other nodes
- Differential centrality analysis: delta centrality between two conditions (e.g. |centrality_{exposed} – centrality_{control} |

xMWAS: ShinyApp interface

Step 1. Upload data files

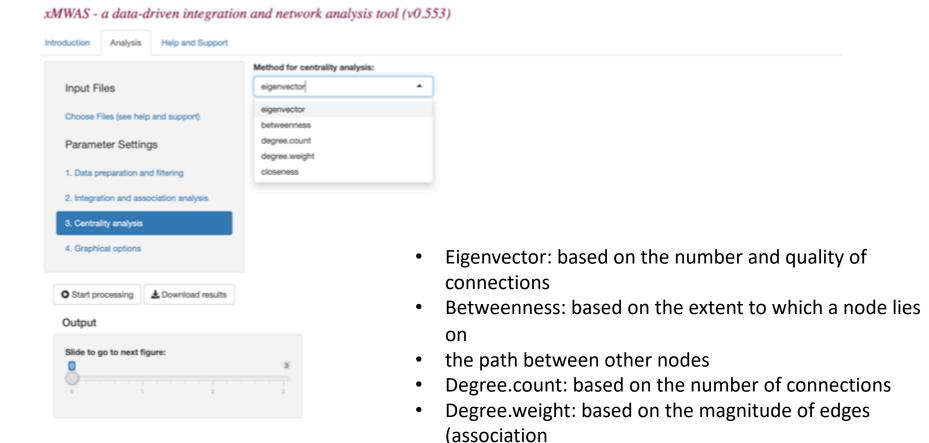

xMWAS - a data-driven integration and network analysis tool (v0.553)

	Input file for dataset A ('.csv' or '.txt', 100MB limit)	Name for dataset A:
nput Files	Browse No file selected	datasetA
Choose Files (see help and support)	Input file for dataset B ('.csv' or '.txt', 100MB limit)	Name for dataset B:
Parameter Settings	Browse No file selected	datasetB
g-	Add more datasets: + -	
Data preparation and filtering		
2. Integration and association analysis	Choose a class labels file ('.csv' or '.txt'):	
3. Centrality analysis	Browse No file selected	More Options
4. Graphical options		
Start processing	ts	
Output		
Slide to go to next figure:		
0	3	


https://kuppal.shinyapps.io/xmwas/

(See: Help & Support)

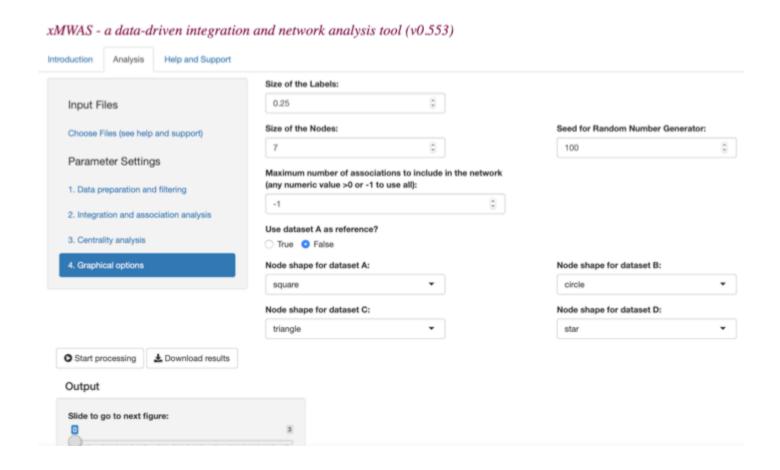
Step 2. Data preprocessing and filtering



Step 3. Set parameters for integration and association analysis

https://github.com/kuppal2/xMWAS/blob/master/example_manual_tutorial/xMWAS-manual.pdf

Step 4. Select method for centrality analysis



scores)

nodes

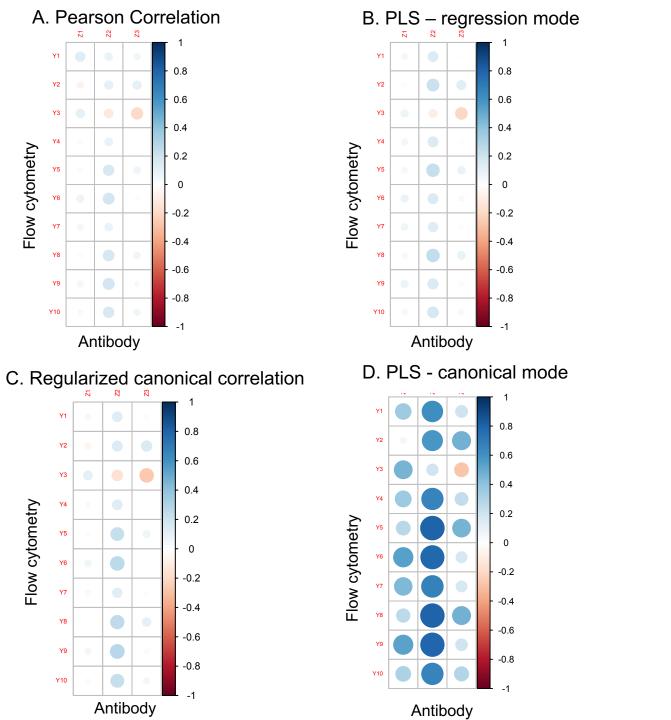
Closeness: based on the closeness of a node to all other

Step 5. Click on "Start processing" – sit back and relax for a bit

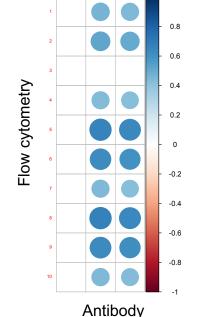
Step 6. Download the results

Additional methods

- Additional methods
 - MINT and Diablo in mixOmics R packages for horizontal and vertical data integration
 - Recent review article by Meng et al. in Bioinformatics reviewed over 20 dimensionality reduction methods for data integration

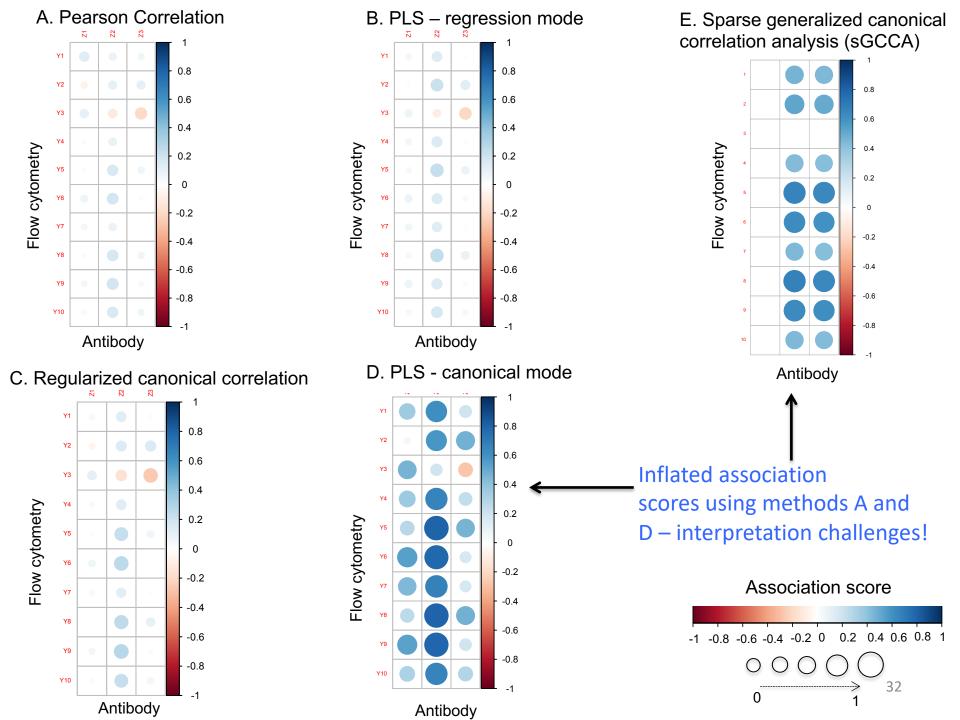

Comparison of 5 methods for assessing <u>pairwise</u> <u>associations</u> between variables implemented in MetabNet, 30mics, xMWAS, and mixOmics

	30mics	MetabNet	xMWAS	mixOmics
Pearson correlation	х	х	х	х
PLS (regression)			Х	х
PLS (canonical)			Х	х
Regularized canonical correlation analysis (RCC)				X
sparse generalized canonical correlation analysis (sGCCA)				х


T cell responses to H1N1v and a longitudinal study of seasonal influenza vaccination (TIV) - 2011

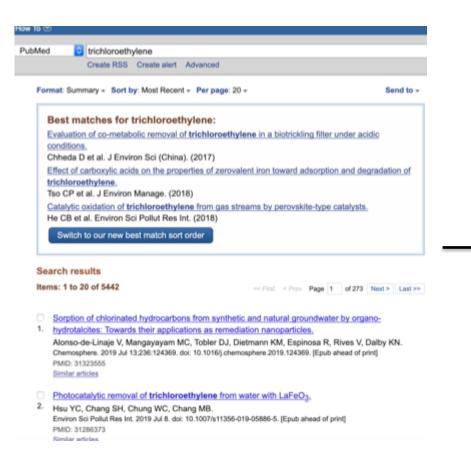
(https://www.immport.org/shared/study/SDY112)

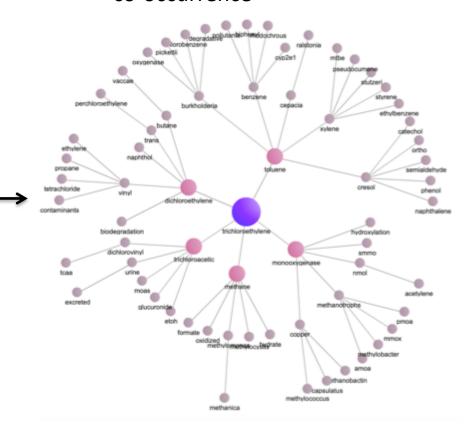
- Transcriptomics at day 0: 18,867 genes
- Flow cytometry at day 0: 24 cells
- Antibody at day 0 and 28: 3 antibodies (California, Perth, and Brisbane)
- Number of subjects:
 - Total: 89
 - 85 had matching gene expression, flow cytometry, and antibody data at day 0


E. Sparse generalized canonical correlation analysis (sGCCA)

Association score

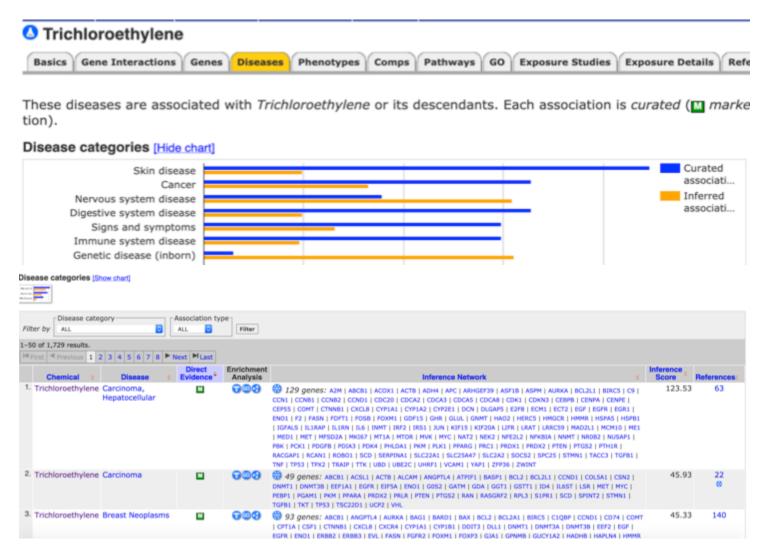
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1


0 0 0 0 0 31

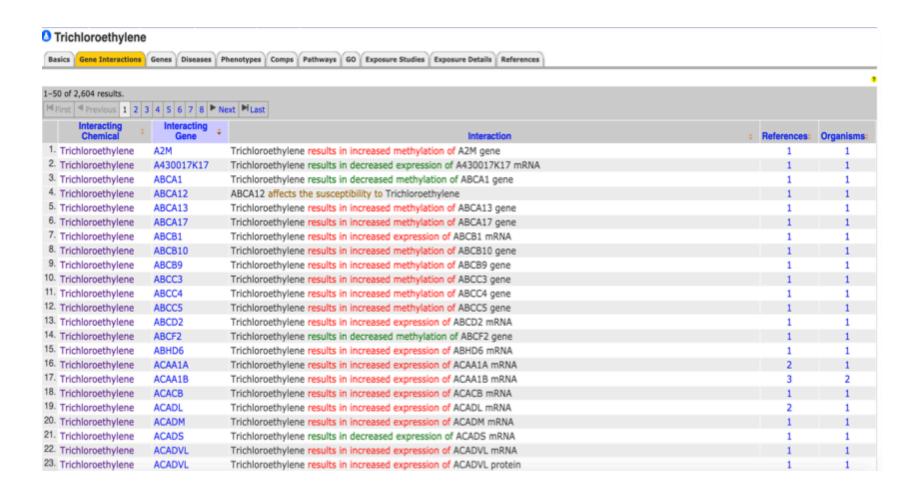

Main approaches for data integration

- Pathway-based integration
 - Pathway information from KEGG or other databases
 - Datasets are analyzed individually (differentially expressed genes, metabolites, proteins) and integration is performed at the pathway level
 - Examples: MetaboAnalyst, iPEAP, MetScape, MetaCore
- Data-driven integration using meta-dimensional analysis
 - Integration is performed globally such that data from multiple omics layers are combined simultaneously
 - Interpretation using pathway analysis tools
 - Examples: 30mics, mixOmics, xMWAS
- Using literature-derived associations for integration
 - Using co-occurrence criteria for establishing relationship
 - Examples: Comparative Toxicogenomics Database, CoPub, ArrowSmith, SEACOIN

Text mining tools for literature-based relation discovery biomedical text



Association mining based on co-occurrence

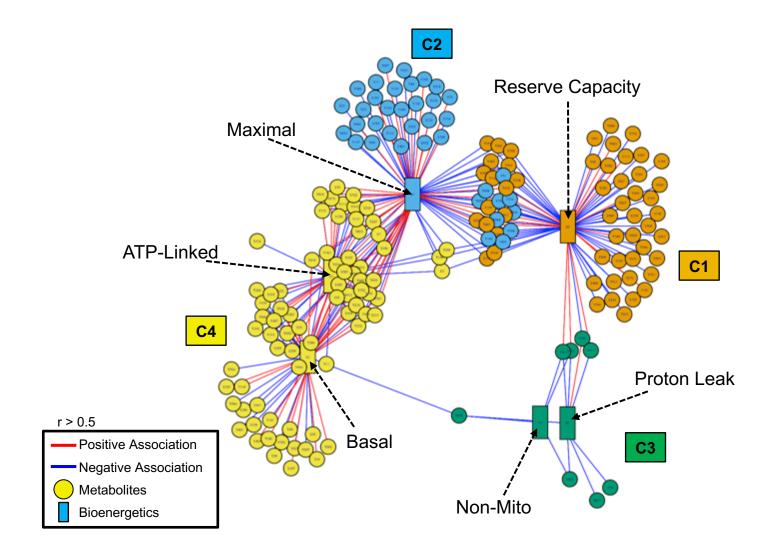


SEACOIN2.0 Uppal, Lee, et al.

Comparative Toxicogenomics Database: Chemical x Disease associations

Comparative Toxicogenomics Database: Chemical x Gene associations

Case Study: Integrative analysis of platelet metabolome with mitochondrial bioenergetics


N=13 healthy volunteers

<u>Mitochondrial bioenergetics</u>: 6 energetic parameters (ATP-linked, basal, proton leak, maximal, non-mitochondrial, and reserve capacity OCR)

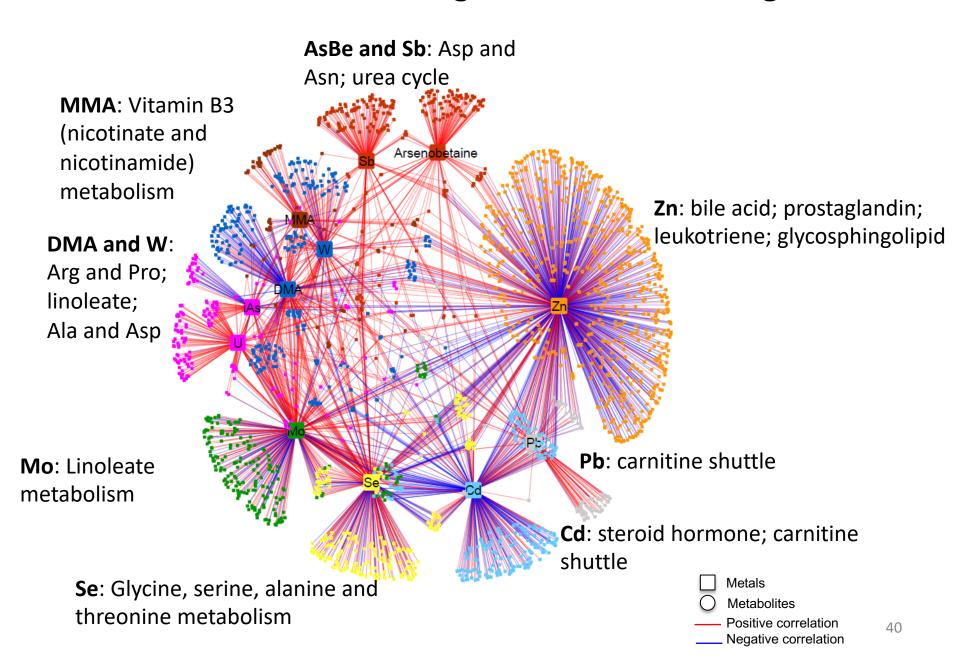
<u>High-resolution metabolomics</u>: 2,705 metabolic features

Chacko BK, Smith MR, Johnson MS, Benavides G, Culp ML, Pilli J, Shiva S, Uppal K, Go YM, Jones DP, Darley-Usmar VM. Mitochondria in precision medicine; linking bioenergetics and metabolomics in platelets. **Redox Biol. 2019**

Collaboration between Emory and UAB

Case Study: Application of xMWAS for integrative network analysis of metabolome and metallome datasets from the Strong Heart study

N=145 (12 American Indian communities; free of type-2 diabetes)


Metallome: arsenobetaine (AsBe), monomethylarsonate (MMA), dimethylarsinate (DMA), inorganic arsenic (iAs), cadmium (Cd), lead (Pb), antimony (Sb), tungsten (W), uranium (U), zinc (Zn), selenium (Se), molybdenum (Mo)

Metabolome: High-resolution metabolomics data for 8,810 features

Tiffany R. Sanchez, Xin Hu, Nancy Loiacono, ViLinh Tran, Jinying Zhao, Young-Mi Go, Dean P. Jones, Ana Navas-Acien, Karan Uppal (In preparation)

Metallome-metabolome integrative network using xMWAS

Case Study: Integrative network analysis of clinical, biomolecular (metabolites, microRNAs, plasma protein markers, and cytokines), and environmental exposure data from a dataset of 66 service personnel post-deployment

Juilee Thakar, Thomas H. Thatcher, Matthew Ryan Smith, Collynn F. Woeller, Douglas I. Walker, Mark J. Utell, Philip K. Hopke, Timothy M. Mallon, Pamela L. Krahl, Patricia Rohrbeck, Young-Mi Go, Dean P. Jones, and Karan Uppal (under revision)

Collaboration between Emory, Rochester, and Department of Defense

Input data for xMWAS

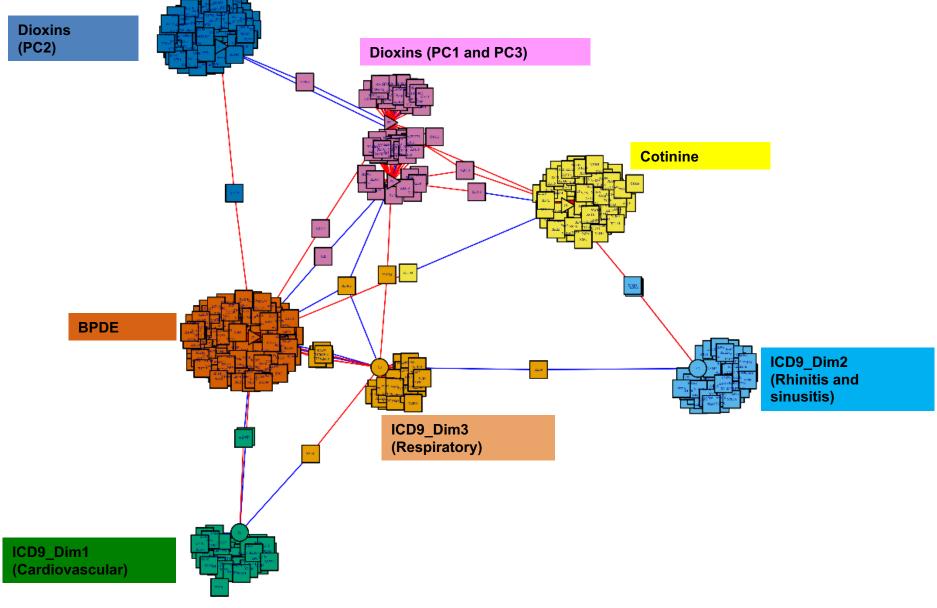
1. **Molecular data**: metabolites, miRNAs, cytokines, and proteins

(3,274 molecular variables x 66 subjects)

	Subject1	Subject2	-	Subject N
Metabolite1	199	19	-	100
-	-	-		-
miRNA1	50	30	-	20
-	-	-		-
Cytokine1	33	12	-	39

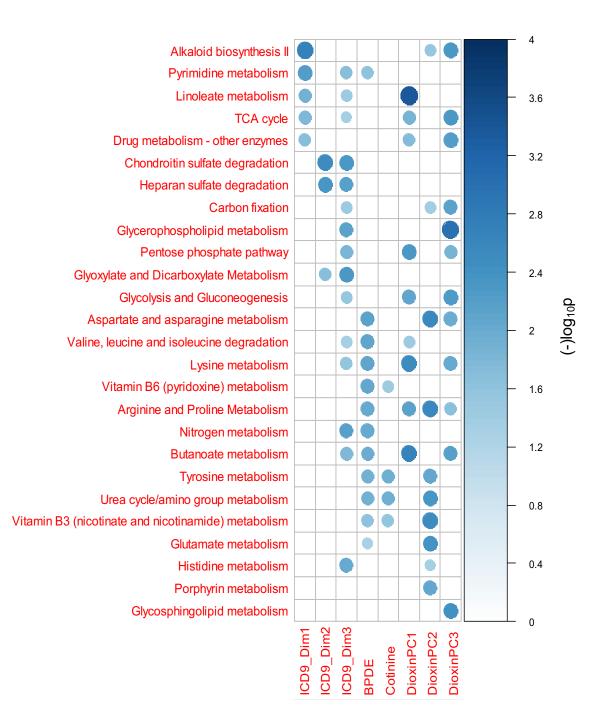
2. **Environmental chemicals** (5 variables x 66 subjects)

	Subject1	Subject2	-	Subject N
DioxinPC1	3	2.5	-	13
DioxinPC2	5	1.4	-	10
DioxinPC3	2	13	1	5
Cotinine	1	4	-	9
Benzo(a) pyrene diol epoxide	5	3	-	2

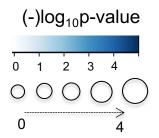

3. **Health outcomes**: ICD-9 codes (49 cardiopulmonary ICD-9 codes x 66 subjects)

	Subject1	Subject2	-	Subject N
4019	0	1	-	0
4011	1	1	-	0
-	-	-	-	-
49301	1	0	-	0

Multiple correspondence analysis (8 dimensions x 66 subjects)

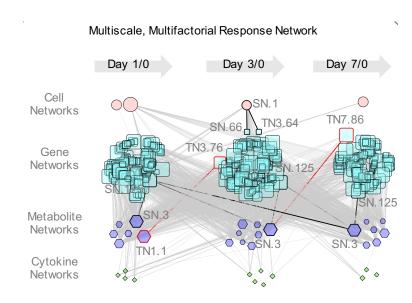

(Only dimensions with >5% variance explained were included)

(and a second s				
	Subject1	Subject2	-	Subject N
Dim 1	199	19	-	100
Dim 2	10	40		90
-	-	-		-
Dim 8	50	30	-	20



Each community (C) is represented by a different color:

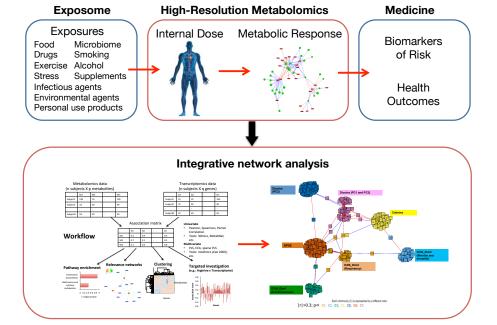
|r|>0.3; p<(C1; C2; C3; C4; C5; C6; C7;



- Bubble plot showing metabolic pathways associated with clinical and environmental exposures data
- Metabolic pathway analysis performed using Mummichog

Current challenges and future work

- Development of hybrid methods
 - combined knowledge-based and datadriven approaches
 - incorporation of literature-derived associations in xMWAS
 - Using co-occurrence criteria for establishing relationship (PolySearch2.0)
- Improving scalability
 - Ability to handle >100,000 variables
 - Performing integrative analysis at communities, clusters, or eigenvariables (first PCs) level



Li et al., 2017. *Cell* 169, 862–877

Summary

- Various tools and techniques are available for integrating and visualizing multi –omics data
- Integrative network analysis approaches can be used to understand the multi-scale interactions between environmental exposures, molecular response, and

health outcomes

Acknowledgements

Emory

Dean Jones, Young-Mi Go, Shuzhao Li, Chunyu Ma, Ken Liu, Kristine Dennis, ViLinh Tran, Michael Orr, Ryan Smith, Xin Hu, Jolyn Fernandes, Bill Liang, Yating Wang, Tiantian Zhang

Collaborators:

Victor M. Darley-Usmar, Ana Navas-Acien, Tiffany R. Sanchez, Nancy Loiacono, Jinying Zhao, Timothy Mallon, Mark Utell, Juilee Thakar, Gary Miller, Douglas Walker, Milam Brantley, Ihab Hajjar, Arshed Quyyumi, John Roback, MoTrPAC, and others

Funding

NIEHS, NIA, NCI, NHLBI, NIDDK, NIAAA, NIAID, Woodruff Foundation, Emory Dept of Medicine, Georgia Research Alliance Exposome Center Integrated Health Science and Facilities Core NIEHS P30 ES019776 DK112341 (MoTrPAC) AG057470 AA026928 EY022618 ES026071 DK117246-01

Questions?

Email: kuppal2@emory.edu
Website: www.csm2l.com