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Key Stages of a Metabolomics Study

Direct Infusion/ chromatography

Design Experiment

Sample Preparation

Mass Spectrography

Data Acquisition

Data Processing

Analysis and Interpretation



Design of Experiments/ 
Experimental Design

• A controlled experiment to either test a 
hypothesis or generate hypotheses 

• In the design of experiments, the 
experimenter is usually interested in the 
effect of some process or intervention on 
some subjects



History of Experimental Design
• In 1747, James Lind (a Scottish Physician) 

developed the theory that citrus fruits cured 
scurvy (Symptoms include bleeding sores, 
tooth loss, anemia, and a reduced rate of 
healing for injuries), while serving as 
surgeon on HMS Salisbury Ship of the 
Royal Navy. This was the first ever clinical 
trial conducted.

• It can be fatal if left untreated.
• Scurvy is disease resulting from a 

deficiency of Vitamin C.



Lind’s Experiment
• Lind selected 12 men from the ship suffering from scurvy. 

He divided them into six pairs, giving each pair different 
supplements to their basic diet for two weeks. The 
treatments were all remedies that had been proposed:
– A quart of cider every day
– Twenty five drops of elixir vitriol (sulphuric acid) three times a day 

upon an empty stomach
– One half-pint of seawater every day
– A mixture of garlic, mustard, and horseradish in a lump the size of a 

nutmeg
– Two spoonful of vinegar three times a day
– Two oranges and one lemon every day

Result: The men given citrus fruits recovered 
dramatically within a week.

Source: Wikipedia



Lading Tasting Tea Experiment
Design of experiments was born as a result of an unlikely, but 
true anecdote: A lady claimed before R.A. Fisher that she was 
able to ascertain whether milk was poured before or after tea 
in her cup of tea. Fisher devised a study to verify her claim 
and, in turn, this gave birth to Experimental Design.

There are 70 different outcomes: 8!
4!4!

= 70
Her answers: True order Total

Tea First Milk First

Lady’s 
Guesses

Tea First a=3 b=1 a+b=4

Milk First c=1 d=3 c+d=4

Total a+c=4 b+d=4 N=8



Experimental Design: Define the Problem

• What is the topic?
• What is the good question for an 

experiment?
• Is your question testable with the materials 

in your hand?
• Need to know hypothesis to guide your 

experiment?
• Design your experiment that will test your 

hypothesis



Experimental Design

• It is essential to make sure that samples reflect 
and represent the biological question under 
investigation

• Examine the most influential factors that are 
relevant to your hypothesis under investigation

• External factors have to be eliminated or 
identified, so they can be modeled during the 
analysis



Aims of experimental design

• To provide answers to research hypothesis 
or generate hypothesis:
– Minimize the biological variance and technical 

or experimental variance since metabolome can 
change very rapidly in response to subtle 
changes in environment



Main Aims of the Experimental 
Design

• Maximize the Systematic/ experimental variance 
of the variable(s) of the research hypothesis (i.e. 
maximize the difference in the dependent variable 
(outcome) caused by maximizing the differences 
in the independent variable (treatment).

• Control the variance of extraneous (unwanted) 
variables that may affect the outcome other than 
treatment that could be causing differences in the 
outcome.

• Minimize the random variance/error due to 
unreliable measurement instruments that have 
high error of measurement.



Control for Extraneous Variable

• Eliminate the variable (for example if sex 
effect exit, then include only males or 
females, i.e. stratify).

• Randomization
• Build it into design
• Match subjects



General Statistical Principles of 
Experimental Design

• Replication
• Randomization
• Blocking (Stratification)
• Use of factorial experiments instead of the 

one-factor-at-a-time methods 



Replication
• Replication – repetition of a basic experiment 

without changing any factor settings, allows the 
experimenter to estimate the experimental error 
in the system used to determine whether 
observed differences in the data are “real” or 
“just noise”, allows the experimenter to obtain 
more statistical power (ability to identify small 
effects)

• Replications should not be confused with 
repeated measurements which refer to taking 
several measurements of a single occurrence of a 
phenomenon (single experiment).



Replications should not be confused with 
repeated measurements.

Replicates

Repeated measure



Another Example
• Number of replicates matter in power of the 

analysis
• Experiment: one mouse per group 

(treatment group vs. untreated group)- you 
can only measure the difference in 
metabolites, but no variance

• 5 or 10 mouse per group- you can measure 
both the difference in metabolites and the 
variance (very important for statistical 
testing)



• What to replicate?
– Biological replicates (replicates at the experimental unit 

level, e.g. mouse, plant, pot of plants…)
• Experimental unit is the unit that the experiment treatment or 

condition is directly applied to, e.g. a plant if hormone is 
sprayed to individual plants; a pot of seedlings if different 
fertilizers are applied to different pots.

– Technical replicates
• Any replicates below the experimental unit, e.g. different leaves 

from the same plant sprayed with one hormone level; different 
seedlings from the same pot;  Different aliquots of the same 
RNA extraction; multiple arrays hybridized to the same RNA; 
multiple spots on the same array.

More terms saying the same 
things



Why Replicate?

• Reduce the effect of uncontrolled variation             
(i.e., increase precision).

• Quantify uncertainty.



Randomization
• Randomization – a statistical tool used to 

minimize potential uncontrollable factors “lurking 
variables” (which might vary over the length of 
the experiment) in the experiment by randomly 
assigning treatment to the experimental units.  

• Results in “averaging out” the effects of the 
extraneous factors that may be present in order to 
minimize the risk of these factors affecting the 
experimental results.

• Randomization is essential for making causal 
inferences.



Randomization
• Experimental units (people, mouse, plant 

etc.) should be assigned to treatment groups 
at random.

• Can be done by using
– Computer
– Coins



Example

• Number the objects to be randomized and then 
randomly draw the numbers.

1              2 3 4 5 6

Special  Diet/treatment :             1, 3, 4
Control :   2, 5, 6

Example: Assign treatment/Special Diet and no treatment 
(control) to 6 mice (3 each)



Blocking/ Stratification
• Blocking – technique used to increase the 

precision of an experiment by breaking the 
experiment into homogeneous segments 
(blocks) in order to control any potential 
block to block variability (e.g. measurement 
of metabolites in different days or shift, by 
different technicians, by different 
machines).  Any effects on the experimental 
results as a result of the blocking factor will 
be identified and minimized.



Blocking

• If you anticipate a difference in 
measurement of metabolites in different 
days or shift, by different technicians, by 
different machines:
– Ensure that within each period, there are equal 

numbers of subjects in each treatment group.
– Take account of the difference between periods 

in your analysis.



Blocking
• Some of these identified uninteresting but 

varying factors can be controlled through 
blocking. 

• COMPLETELY RANDOMIZED DESIGN

• COMPLETE BLOCK DESIGN

• INCOMPLETELY BLOCK DESIGNS



Completely Randomized Design
There is no blocking
 Example
 Compare two hormone treatments (trt and control) 
using 6 Arabidopsis plants (or mice or human). 

1 2 3 4 5 6

Hormone trt: (1,3,4);  (1,2,6)
Control :        (2,5,6);  (3,4,5)



Complete Block Design
 There is blocking and the block size is equal to the 

number of treatments.
Example:
 Compare two hormone treatments (trt and control) using 6 

Arabidopsis plants. For some reason plant 1 and 2 are taller, plant 5 
and 6 are thinner.

 Randomization within blocks

1 2 3 4          5 6
Hormone treatment: (1,4,5) ;  (1,3,6)
Control : (2,3,6) ;  (2,4,5)



Incomplete Block Design
 There is blocking and the block size is smaller than the 

number of treatments. You can assign all treatments in 
each block.

Example: Compare three hormone treatments (hormone level 1, 
hormone level 2, and control) using 6 Arabidopsis plants. For some 
reason plant 1 and 2 are taller, plant 5 and 6 are thinner.

 Randomization within blocks

1 2 3 4          5 6
Hormone level1: (1,4) (2,4)
Hormone level2: (2,5) (1,6)
Control : (3,6)  (3.5)



Another Example

Experiment:
• 32 mice (16 males and 16 females)
• Half to be treated and other half left 

untreated
• A technician can work only 4 mice per day 

and only on Monday through Thursday



Bad design (Cardinal Sin)

Trt
Trt

Trt

Cntl
Trt
Trt

Trt

Trt

Week 1 Week 2
Mon

Trt

Cntl

Trt

Trt

Trt
Trt Cntl

Trt
Trt

CntlTrt
Trt

Tue Wed Thr Mon

Cntl

Cntl
Cntl
Cntl
Cntl

Cntl
Cntl
Cntl
Cntl
Cntl

Cntl Cntl

= females

= males

Tue Wed Thr



Randomization
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Blocking
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Confounding
• Confounding - A concept that basically 

means that multiple effects are tied together 
into one parent effect and cannot be 
separated.  For example,
– Two people flipping two different coins would 

result in the effect of the person and the effect 
of the coin to be confounded

– As experiments get large, higher order 
interactions are confounded with lower order 
interactions or main effect.



Factorial Experiments
• A factor is a discrete variable used to 

classify experimental units. 
• For example, ”Gender” might be a factor 

with two levels “male” and “female” and 
“Diet” might be a factor with three levels 
“low”, “medium” and “high” protein. The 
levels within each factor can be discrete, 
such as “Drug A” and “Drug B”, or they 
may be quantitative such as 0, 5,10, 15, 20, 
25, and 30 mg/kg.



Factorial Experiments
• A factorial design is one involving two or 

more factors in a single experiment. Such 
designs are classified by the number of 
levels of each factor and the number of 
factors. 

• Example: A 2x2 factorial will have two 
levels or two factors and a 2x3 factorial will 
have three factors each at two levels.



Factorial Experiments
• Typically, there are many factors such as sex, genotype, diet, blood 

pressure, socio economic status, and age which can influence the 
outcome of an experiment. These often need to be investigated in 
order to determine the generality of a response. 

• It may be important to know whether a response is only seen in, 
say, females but not males or in particular strain of mice. One way 
to do this would be to do separate experiments in each sex. This 
“One Variable at A Time” approach is very wasteful of scientific 
resources. A much better alternative is to include both sexes or 
more than one strain etc. in a single “factorial” experiment. Such 
designs can include several factors without using excessive 
numbers of experimental subjects.

• Factorial designs are efficient and provide extra information (the 
interactions between the factors), which can not be obtained when 
using single factor designs.



RA Fisher (1960)
“If the investigator confines his attention to any single factor we may 
infer either that he is the unfortunate victim of a doctrinaire theory 
as to how experimentation should proceed, or that the time, material 
or equipment at his disposal is too limited to allow him to give 
attention to more than one aspect of his problem.....
.... Indeed in a wide class of cases (by using factorial designs) an 
experimental investigation, at the same time as it is made more 
comprehensive, may also be made more efficient if by more efficient 
we mean that more knowledge and a higher degree of precision are 
obtainable by the same number of observations.”

(Fisher RA. 1960. The design of experiments. New York: Hafner
Publishing Company, Inc. 248 p.)



Steps in metabolomics 
experiment 

Sample 
prep

AnalysisDetection 
Method

Separation 
method

At each step, the errors can occur
Aim of the experiment is to minimize the errors



Aims of experimental design
• Minimize the variance of extraneous 

variable variance that may have impact on 
outcome variables
– Examples: Metabolites are sensitive to 

environmental influences such as sample 
storage

• Temperature
• Aliquoting
• Biobanking



Measurement Issues in 
metabolomics

• To get the sample ready 
– The sample is prepped and put onto wells on a 

silicon plate
– Each well’s aliquot is subjected to gas and/or 

liquid chromatography
– After separation, the sample goes to a mass 

spectrometry



Measurement Issues

• Sources of errors at the prep stage
– Within subject variation
– Within tissue variation
– Contamination by cleaning solvents
– Calibrate uncertainty
– Evaporation of volatiles



Errors at separation method

• Gas chromatography (GC) (GC creates 
ionized aerosol, each droplet evaporates to a 
single ion and this is separated by mass in 
the column, then ejected to the 
spectrometer):
– Imperfect evaporation
– Adhesion in the column 
– Ion fragmentation 



Measurement Issues at Detection

• Mass spectrometry (MS) is used to identify 
and quantify metabolites after separation by 
GC, HPLC (LC-MS)
– Baseline removal
– denoising
– Peak detection (the process of distinguishing 

peptide and noise peaks)
– Normalization



Sample Size and Power

• Purpose
– Planning a study: number of individuals to 

recruit or number of mice to test a research 
hypothesis

– Understand sample size implications of 
alternative study designs

– Sample was already collected and wants study 
using new technology

• GWAS was done, but wants to do metabolomics 
GWAS



Sample Size and Power 
Calculation

• Often the number of samples to be used for 
the experiments dictated by the reality of 
resources available, not science. 
– How much money is available for the 

experiment
– What is the cost per sample
– Thus, sample size = $ available / cost per 

sample



Hypothesis Testing
• Power calculations are based on the 

principles of hypothesis testing
• A hypothesis is a statement about population 

parameter
• The two complementary hypotheses in a 

hypothesis testing problem are called the null 
hypothesis (H0) and alternate hypothesis (H1) 



Two types of errors in hypothesis 
testing

Decision
Accept H0 Reject H0

Truth H0 Correct Decision Type I error (α)
H1 Type II error (β) Correct decision

H0: θ=0 versus H1: θ≠ 0

• Type I Error: Probability of finding a statistically significant effect when the 
truth is that there is no effect

• Type II Error: Probability of not finding a statistically significant effect 
when there is none.

• Power = 1- β, Significance level = α
• Goal is to minimize both types of errors

Reject H0 when we should not

Don’t reject H0
when we should 



Power depends on …
• Design
• The method of analyzing the data
• The effect size
• Standard deviation of the effect of interest
• Measurement variability
• The chosen significance level (α)
• The sample size

We usually use significance level of 5% and 80% power to 
estimate the sample size



Factors Affecting the sample size

Effect size Required sample size
Variation of data Required sample size 
Type I error rate Required sample size 
Power Required sample size

• Type I error rate (α) is kept fixed and becomes 
smaller as number of tests increase

• Effect size and variation of the data (σ2) is either 
obtained through pilot study or vary to calculate 
different sample sizes.



To calculate Sample Size

• Need to know level of significance (α)
• Statistical power (1- β)
• Effect size (expected difference)
• Standard deviation
• What statistical test we are going to use



Sample Size Formula for 
difference in means 

• A sample size formula to test difference of 
means between two groups (two-tailed test)

– 𝑛𝑛1 = ( 𝑟𝑟 + 1 σ2 (Z1- β + Zα/2)2)/ (r Δ2)

where,
• 𝑛𝑛1= size of the smaller group
• r = ratio of larger group to smaller group
• Z1- β = standard normal deviate corresponds to 1-β
• Zα/2= standard normal deviate corresponds to two-tailed 

significance level
• Δ= difference in means of the outcome 
• σ 2=Variance of the difference of the means



Common standard normal deviates Zα
and Zβ

α or β One-sided test Zα or Zβ Two-sided test Zα

0.001 3.09 3.29
0.005 2.58 2.81
0.01 2.33 2.58
0.025 1.96 2.24
0.05 1.64 1.96
0.10 1.28 1.64
0.20 0.84 1.28



Simple Example
• How many people would you need to sample 

in each group (assuming both groups of 
equal size) to achieve power of 80% if SD 
=σ=10, difference in mean is 5 with fixed 
α=0.05. So Zα/2 = Z0.025 =1.96, Z1- β =0.84, 
1-β=0.80, so β=0.20 and  r=1, then

• 𝑛𝑛1 = ( 𝑟𝑟 + 1 σ2 (Zβ + Zα/2)2)/ (r Δ2) 

= 2 (100) (.84+1.96)2/ (52)
= 62.72 ~63

63 per group implies 126 altogether.



Sample Size
• Two-tailed test: When the investigator is 

interested in determining whether a treatment A is 
different from a treatment B

• Usually a 2 tailed test is performed with the risk of
making a Type-1 error set at α / 2 in each tail.
• For a 2 tailed test at α = .05 and equal allocation of
type-1 error to each tail Zα/2 = 1.96



Sample Size
Sometimes an investigator is only interested in a
difference between treatments in one direction.
This is appropriate when The hypothesis is to test 

whether a treatment A is better than treatment B
For a 1 tailed test at α = .05 Zα = 1.65



Conclusions

• Brainstorm with your colleagues and senior 
faculty to decide on the experiment

• Experiment should be designed with 
consultation with the statistician and 
metabolomics assays provider

• Good design and good analytic methods can 
lead to reduced sample size and also lead to 
valid meaningful results



Advice from Sir Ronald Aylmer Fisher
(17 Feb 1890 - 29 Jul 1962)

• “To call in the statistician after the 
experiment is done may be no more than 
asking him to perform a post-mortem 
examination: he may be able to say what the 
experiment died of.”
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