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Outline

* Basics of GC-MS
* How it works
- How it is different from other platforms
+ Applications of GC-MS for human health research
* Designing an experiment
 Analyzing the data (tools and tricks)
- Signatures of Disease

* Integrative analysis



The Nuts and Bolts of GC-MS
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"Gcms schematic" by K. Murray (Kkmurray) - Own work. Licensed
under CC BY-SA 3.0 via Wikimedia Commons



The Principal of GC

Source-SigmaAldrich ‘thebasicsofgc’
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Columns: Packed v. Capillary

Packed GC Columns
“Original” GC column
Low efficiency

Coated phase: organic
polymers dissolved in
solvent and coated onto
particles in the tube

Capillary GC Columns
Modern GC column

High efficiency

Usually flexible glass fiber
(fused silica) < Tmm ID
Coated phase: organic
polymers dissolved in
solvent and coated on the
inside wall column

74

Can be 10-30+ meters long
Longer column is better
separation, particularly for
complex mixtures

Modified from sigmaaldrich.com



Selecting a column

A nonpolar stationary phase is used for separation of polar analytes
Thickness of the stationary phase affects retention time and column capacity
Inner diameter affects separation and retention times

STATIONARY PHASE

Figure 2: Polarity scale of common stationary phases.
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or all aldehydes, etc.) will elute
in boiling point order on any

In general, maximum operating temperature decreases as polarity Increases.
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Two-dimensional chromatography

« GC Columns function in series to improve resolution of chemically similar

analytes
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Mass Spectrometer - lonization and mass
measurement

* |lonization

Electron lonization (Standard -70keV)

- Fragmentation

RS Unioersicyof Refiectron e
T—ru_l—.i detector
Chemical lonization (less common) e
Analyte ions Lllqullll
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- Detection S S ol
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- Time-of-flight mass spectrometry ‘ \ F'*'d,';gg;’;;,’,‘,w"e ‘1 L
. Reflectron
« mass calculated based on time from detector

lonization to reaching detector

- High-Resolution TOF

- offers higher mass resolution for
metabolite identification
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Signal Deconvolution

True Signal Deconvolution®
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Principles of Deconvolution

« Generally implemented in AMDIS

- Goal: computationally separate chromatographically overlapping peaks
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Principles of Deconvolution
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Principles of Deconvolution
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Data projected into two dimensions
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Metabolite Identification

- Reproducible fragmentation has generated libraries of known compounds
- Calculating similarity:

* Retention indices are routinely used to validate or improve metabolite
identification based on relative retention times. (Kovats index)

- Using a dot-product based metric, analytes can be assigned an ID based on
similarity to known compounds

N-compounds Organic acids

2% 5% Amino acids
Phosphates l\\ _ /,/' i 13%
12% i : / Sugars
— 7%
__Sugar alcohols

3%
Non-identified 'I
Compounds | Fatty acids

54% S A% source: Schauer et al

2005



Library matching
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Metabolite ID advances

+ Generation of publicly or commercially available databases
* NIST
« Golm
* Fiehn ($)
« Metabolite structure prediction algorithms
 Using clustering, modeling

« Improved algorithms for database searches



Why do GC-MS?

GC LC

Medium to

Size Small Large

Requires derivitization

to reduce polarity Better for polar

Polarity

- a.a., organic acids nucleotides, lipids
MetabO"teS fatty acids (short-medium) (including large)
Highly reproducible- "
Chromatography  reention indices ess orfica
_ Libraries- Inferred composition by
Metabolite ID good for knowns accurate mass - good

(Some HRT now) for unknowns



Applications for GC-MS

Petroleum and Biodiesel

Biofluids and tissues

Breath

Pesticides

Pollutants in air, soil and water

Yeast for brewing and wine-making



S0 you've decided to do GC...what to expect

« Experimental Design!! What question(s) do you want to answer?

« Sample preparation

* Data collection

* Preliminary Data analysis

* tools

« Metabolite identification



Sample procurement/preparation

« Samples should be snap frozen as quickly as possible after extraction and stored
frozen until extraction

* Cultured cells should be grown in a minimal media if possible

« Avoid conditions where there are media/solvent components are present at
high concentration

* e.g. Urine samples may be treated with urease

- Aspiration or filtering is the best way to remove media efficiently before
freezing

 Extraction should be done under cold conditions when possible



Gas Chromatography for Metabolomics

« Gas chromatography requires all analytes to be volatile
- Common procedure for biological samples is derivatization
« Most common method is methoximation + silylation

» Basic Protocol: /Ij “

* Dry all analytes by centrivap g;&ij “ ' ‘
+ Add methoxamine (stabilize ketones) e 0

- TMS reagent (generate volatile compounds) °

0
w S o —Si— 0 0
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Data collection

* You can expect anywhere from 500-5000 unfiltered peaks depending on
extraction method, sample complexity and concentration

+ Typical number of quantified metabolites found in the majority of samples (based

on our typical 2D-GC protocol but it varies depending on column configuration
and data collection speeds):

* Yeast: 150-200
« Serum: 200-250
* Urine: 350-500
- Tissue: 200-300



Analyzing the Data

* Most instruments utilize proprietary software to do peak deconvolution

- Raw data can be analyzed as well and there are open source tools to analyze raw
data (e.g. Metlin, XCMS)

« ChromaTOF (Leco’s peak calling and deconvolution software) Output:

List of peaks

Determination of Quant Mass for each peak (unique mass, typically)

Quantification of metabolite (either relative to reference or absolute)

Library Matches for Metabolite |ID



Steps to analyzing Metabolomics Data

1. Filtering Peaks
2. Alignment

3. Missing Values
4. Normalization

5. Statistical Analysis



Data Analysis: Filtering

Filter peaks originating from derivitization reagents or from solvent
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Data Analysis: Alignment

* For each sample, determine whether every measured metabolite (from every
other sample) is present

- Complex, computationally intense problem

« Use all available information: Retention Index, (RT1 and RT2 for 2D-GC), and
Spectral Match

« MetPP, Guineu (2D GC) or MetAlign (e.g.) for GC

- Typical Result from high quality raw data: 200-400 peaks are present in ~80% of
samples-Missing values 2-5% of data



Data Analysis: Missing Values

- Conservative Filter: only consider metabolites present in Limited to small number
the VAST majority of the samples (~95%) of metabolites (High
Confidence)
« Assuming missing values are below detectable levels Can skew results if there
(0.5x lowest value for that metabolite) are a large number of

missing values

- Assume missing values are present at an average or
median level Conservative, but can
skew data

* K nearest neighbor estimation-characterizes what values

are present in other samples with the most highly Moderately Consgwqtive
correlated values for other metabolites to estimate a : bU’F not possple if
likely concentration missing data is

abundant



Data Analysis: Normalization

« Common Practice:

« Injection Control (A known amount of substance is injected with each sample.
Those peaks should have the same area each time)

« Normalization by SUM (total area under the curve). Normalizes for overall
sample concentration

« Clinical samples: normalization by creatinine or other specific analytes (not
ideal for research, but sometimes necessary depending on application)



Data Analysis: Statistical Analysis

- A wide variety of tools and packages available
+ Metaboanalyst is a great place to start (R-package in web-based app)

- Upload your aligned data in .csv or .txt format. It goes through the
normalization, missing data and filtering steps and then allows a variety of

analysis

- Heatmaps, Clustering

- PCA

- PLS-DA

« T-tests (paired and unpaired)
« Some pathway analysis

- etc.

www.metalboanalyst.ca




Please choose a functional module to proceed:

—| © Statistical Analysis

This module offers various commonly used statistical
and machine leaming methods from t-tests, ANOVA
to PCA and PLS-DA. It also provides clustering and
visualization such as dendrogram, heatmap, K-means,
as well as classification based on random forests and
SVM.

4 © Enrichment Analysis

This module performs metabolite set enrichment
analysis (MSEA) for human and mammalian species
based on several libraries containing ~6300 groups of
biologically meaningful metabolite sets. Users can
upload a list of compounds, a list of compounds with

concentrations, or a concentration table.

—| Pathway Analysis

This module supports pathway analysis (integrating
enrichment analysis and pathway topology analysis)
and visualization for 21 model organisms, including
Human, Mouse, Rat, Cow, Chicken, Zebrafish,
Arabidopsis thaliana, Rice, Drosophila, Malaria,
Budding yeast, E.coli., etc., with a total of ~1600
metabolic pathways.

—‘ © Time Series Analysis

This module supports data overview (PCA and
heatmaps), two-way ANOVA, multivariate empirical
Bayes time-series analysis for detecting distinctive
temporal profiles across different experimental
conditions, and ANOVA-simultaneous component
analysis (ASCA) for identification of major patterns
associated with each experimental factor.

—| Power Analysis

This module allows you to upload a pilot data set to
calculate the minimum number of samples required to
detect the exsistence of a difference between two

populations with a given degree of confidence.

—‘ © Biomarker Analysis

To perform various ROC curve based biomarker
analysis. It supports classical single biomarker
analysis, multivariate biomarker analysis, and manual
biomarker selection and evaluation.

—| © Joint Pathway Analysis

To nerform inint metaholic nathwav analvsis on results

% © Other Utilities

This modile containe some utilitv functions commaonlv




Input test dataset (Cancer patients Cachexic v.
control)
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Uracil 3.842E-04 3.4154 0.024204
Isoleucine 0.0011396 2.9432 0.035898
Acetone 0.0051404 2.289 0.10795
Succinate 0.013088 1.8831 0.1502
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reatin 0.04011 1.3967 0.25269




Sample Data-top25 features by Ttest
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Data Analysis: Biological Understanding

« Web-based tools for pathway analysis
« KEGG (KEGGMapper) (all organisms)
« HMDB (Human Metabolome Database)
- Serum, urine, metabolome databases
 Yeast- Biochemical Pathways at yeastgenome.org
- ymdb (yeast metabolome database)

- Integrated analysis with genomic, proteomic data
* IMPaLA (similar to GO enrichment but specific to metabolic pathways)
* Ingenuity ($$%)

« Metaboanalyst (new)



How to design my own experiment - words of
wisdom

Replicates are critical because:
« Alignment algorithms are not perfect, so you may have missing data
- Deconvolution is not perfect, so quantification can be noisy in a complex sample
« Statistics require at least 3 of each sample to do ANYTHING

 Biological replicates are better than technical replicates (decide based on how
difficult it is to get biological replicates and importance of interpretation

Sample preparation is critical

- If possible, prepare your samples as a single batch. If not possible, make sure

each batch contains more than one type so you can use methods that allow for
statistical correction for batch effects

Sample number - more is better!

Decide before you begin about whether there are specific metabolites you want to
make sure to quantitate. Determine whether they are measurable with this
technology and run standards if possible.



Resources for GC-MS

* Restek Column Selection guide www.restek.com/
* http://www.restek.com/pdfs/GNBR1724-UNV.pdf
« Leco
+ Agilent
« Sigma https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Aldrich/
Bulletin/1/the-basics-of-gc.pdf
- Books,Chapters, Reviews:
« Metabolomics by Wofram Weckwerth (Methods and Protocols)
« “Mass Spectrometry based metabolomics” Dettmer 2007 http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC1904337/
* Analysis
- Metaboanalyst.ca
* impala.molgen.mpg.de
« hmdb.ca
* golm database: gmd.mpimp-golmmpg.de
* metlin.scripps.edu
« xcmsonline.scripps.edu




Break for Questions???

Thank you



Integrated genomic and
metabolomic analysis reveals
key metabolic pathways in
pancreatic cancer

GENOMIC £ MEDICINE

Sara |. Cooper
HudsonAlpha Institute



Pancreatic Cancer Statistics

Stage at diagnosi Stage >year
age at dlagnosiS [ distribution % | survival (%)
Localized 8 23.3
Regional (spread
to lymph nodes) 27 8.9
Distant
(metastatic) >3 1.8
Unknown |12 3.9

Statistics from cancer.gov

Extremely aggressive

|) Early detection is unusual

2) Limited treatment option:
for advanced stage cancer
(no cures)

3) Resistant to
chemotherapy



Metabolic alteration in
pancreatic cancer

® Glutamine addiction (PaCa, small cell lung,
AML)

® mior signaling is affected by glutamine
® Myc regulates glutamine metabolism

® K-ras is a driver mutation: >90% of PaCa
patients have an activating mutation

e K-ras activates metabolic changes via mtor
pathway/Akt



Metabolic reprogramming
In pancreatic cancer

|. Detect a metabolic shift in serum and urine
from pancreatic cancer patients

2. Determine whether those alterations
represent metabolic changes in the
pancreatic tumor

3. Explore whether alterations in metabolic
pathways correlate with outcome



Pancreatic Cancer-
Integrating Metabolomics and Genomics
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Serum

Initial metabolomic analysis reveals
altered amino acid metabolism
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Leveraging gene expression information
to focus on vital metabolic pathways

Ger]es
Gene expression changes

in pancreatic cancer

® |s there evidence of metabolic reprogramming in
gene expression data!

Tumor tissue

® Are the same pathways we identified in blood and
urine changing in tumor samples!?

® What do we learn by intersecting these data!



Integrated analysis of tumor v. normal
genomic and metabolomic data

Pathway Name Sig. Gene Overlap (Total) Sig. Metabolite Overlap (Total) Joint Q Value
Triacylglycerol Degradation 9(15) 4(14) 1.53E-02
Gly, Ser, Thr Metabolism 35(78) 5(22) 6.14E-03
Sphingomyelin Met./Ceramide Salv. 4(8) 4(13) 5.50E-02
Val, Leu, lle, Metabolism 31(44) 0(41) 2.14E-04
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Glycine pathway gene expression
associated with poor prognosis

Glycine Metabolism Genes
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Integrated analysis of tumor v. normal
genomic and metabolomic data
reveals role for fatty acids

Urine Fatty Acids Serum Fatty Acids
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Fatty acid gene expression
favors lipogenic processes

Lipid Related Transcript Expression
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Testable hypotheses

® How does alteration of lipid metabolism or
amino acid metabolism affect cell
proliferation and migration in pancreatic
cancer cell models?

® Does metabolic programming in pancreatic
cancer rely on K-ras activation!?



Analysis of patient survival and gene
expression

323 genes associated
with patient survival

. Short-survivors

. Long-survivors



Pathway enrichment of transcripts over-
represented in survival analysis

Number Overlapping
(Total)

Digestion of Dietary Lipid 5(5) 0.00381
Pancreatic Secretion 21(96) 0.00381
Retinoid Metabolism 9(42) 0.267
Triacylglycerol Degradation  5(15) 0.269

® Many of these genes are related to
exocrine function

® Previous report suggests an exocrine
subtype



A correlation between survival and
lipase expression
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Pancreatic cancer patient survival based
on lipase gene expression

Kaplan-Meier plot

' - | ow Lipase
- Medium Lipase
- High Lipase
| li_ =
| | | | |
20 40 60 80 100

Months




RSEM Counts

Replication in
independent samples

= Survived > 3 yrs

= Survived < 1yr
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HOWY do these genes
confer altered survival?

Genes with altered
expression in long-
survivors and drug
sensitive-cell lines:

Short-survivors/resistant
cancer cell lines
Long-survivors/sensitive
cancer cell lines

Patient Tumor Expression
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What role do these genes have in
survival?

PPAR
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Future Directions

® What explains differential survival?
® |s there a role for K-ras!?

® What role to regulators of lipid metabolism
play in prognosis!?



Potential regulators
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