# XCMS Online & Understanding XCMS algorithms



H. Paul Benton PhD
The Siuzdak Laboratory - The Scripps Research Institute

# To do this morning

Learn how to fly a rocket ship



Get to look at chaos itself



Shine light into the depths of nature

# Ok really what are we going to do

- Learn how to fly a rocket ship
  - Computing hundreds of calculations at the speed of intel – using XCMS Online
- Get to look at chaos itself
  - Its your data not mine!
    - Data can be messy
    - Chaos can being about order metabolism is highly ordered
- Shine light into the depths of nature
  - We get to look at some of the most complex questions at the smallest biological level – metabolites.

# Getting started with XCMSOnline



## What did we do

- Registered on XCMS Online
  - Confirmed real email address
- Uploaded some data
  - In the old days we had to convert data ourselves you are all very lucky!
  - XO supports Agilent .d , Waters .RAW, Bruker .d,
     AB Sciex .wiff (remember the .wiff.scan files) and open source formats (mzML, mzXML, mzData, netCDF)

# **Processing Data**



# Now step by step

- We've loaded up two datasets 2 classes to compare
- Set our parameters and launched a job
  - Looking at the parameters and what they mean.

- Junk in, junk out. Biologist
- Good data in, bad parameter selection, junk out bioinformticist

## Overview of XCMS



## Peak detection choice





## matchedFilter

- Profile Data
- Low resolution data
- Original algorithm



### centWave

- Centroid data
- High resolution data
- New published algorithm

## Rockets are like ions!!



## CentWave





# Auto/Dynamic binning

 ROI are found by making a first pass over the data to find areas that conform to expected chromatography and mass spectrometer parameters



## CentWave





## CentWave paramaters

- Peakwidth = How wide is your peak from a minimum to a maximum in seconds
- Ppm = how much does the peak vary across scans



# One thing to note

Choose your polarity correctly!!



## Retention time alignment



#### Obiwarp –

A Digital signal processing algorithm. Very good for high drift alignment. Fits data as if each LC-MS 3D landscape was play dough to squeeze these together. Technically this is warping not aligning





## Retention time alignment

Retention Time Deviation vs. Retention Time



- Loess this is a model to fit the data to using the residuals to correct/align the samples
  - Relies on anchors distributed across the RT

# Grouping







## MinFrac!

More questions on minfrac than any other!



## minFrac test





Not a valid feature





A valid feature

# Peak Filling

Extracted Ion Chromatogram: 245.5477 - 245.5604 m/z



Peak not detected – intensity filled by fillPeaks

## Statistics !! Yea !!



## Adduct selection





# Cloud plot





Size = fold change Colour = signficance (lower p-value)

Black or white ring = metlin hits

## Static PCA

40 -

PC2 - Variance 24%

-20 -

-20



PC1 - Variance 50%

20

1.5

40



#### Please click on a row to view feature details

Feature #12 m/z : 263.0550 Retention Time (min): 12.24

Extracted Ion Chromatogram





Box-and-Whisker Plot

Not a significant feature

See parameter set statistics tab for more information

| PPM 4 | Name                    | Adduct | METLINID |
|-------|-------------------------|--------|----------|
| 0     | METHYL 7-DESHYDR        | M+H    | 43947    |
| 0     | Maclurin                | M+H    | 68038    |
| 0     | 2-Hydroxy-6-oxo-6-(2-   | M+H    | 71165    |
| 0     | Daphnetin Diacetate     | M+H    | 85112    |
| 0     | 2-Acetyl-5,8-dihydroxy  | M+H    | 96273    |
| 4     | 7-HYDROXYETHYLTH        | M+K    | 44525    |
| 4     | Temurin                 | M+K    | 58236    |
| В     | Thienodihydropyridiniu  | M+H    | 85310    |
| В     | Propyl 1-(propylsulfiny | M+Na   | 88963    |

# Results.zip download file

- This has all of the plots and information from the processed job.
  - Static PCA
  - Static heat map
  - Static cloud plots
  - Scaling plot Good for looking at scaling for PCA (trend implicates heteroscedastic noise)



#### Contents of results.zip file

XCMS.diffreport. And XCMS.annotated.diffreport are the data tables with all the intensity values associated with them not results.tsv

# Thank you []

Questions?



Prof. Gary Siuzdak



**Duane Rinehart** 

## Comments?



Dr. Bill Webb

Thoughts?

# OBI-WARP METHOD

