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Outline

e Basics of GC-MS
e How it works
e How it is different from other platforms
e Applications of GC-MS for human health research
e Designing an experiment
e Analyzing the data (tools and tricks)
e Signatures of Disease

* Integrative analysis
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Columns
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Packed vs. capillary GC columns m Cap

lary

All GC columns are open tubes. In packed column GC, the tubes are CO‘ u

>1mm ID and the separation phase is coated on particles packed in the
tube. In capillary GC, the tubes are <1mm ID and the separation phase is

coated on the inside of the capillary wall.
(20-1

Packed GC columns:
First type of GC column
Low efficiency

Glass, stainless steel, nickel, copper or Teflon
tubing, 1/16"— 1/4” OD

Coated phase: Organic polymers dissolved in
solvent and coated onto the particles

Siliceous particles: diatomaceous earth for
supporting coated phase

Adsorbent particles: molecular sieve, carbon,
polymers

12

Coated phase: Organic polymers dissolved

can be long

TINS

Capillary GC columns: Oorr )
Modern technology
High efficiency
Usually flexible glass fibers (fused silica),
<1imm ID Better

in solvent and coated on the inside wall of Separat | onN

the tubing
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Selecting a column

A nonpolar stationary phase is used for separation of polar analytes
Thickness of the stationary phase affects retention time and column capacity

Inner diameter affects separation and retention times

STATIONARY PHASE

’ Figure 2: Polarity scale of common stationary phases.
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In general, maximum operating temperature decreases as polarity Increases.
Note that silarylene columns typically differ In selectivity and have higher temperature limits than their conventional counterparts.

Source-Restek

(i) tech tip

Any homologous series of
compounds, that is, analytes
from the same chemical class
(e.g., all alcohols, all ketones,
or all aldehydes, etc.) will elute
in boiling point order on any
stationary phase. However,
when different compound
classes are mixed together in
one sample, intermolecular
forces between the analytes
and the stationary phase are
the dominant separation
mechanism, not boiling point.
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wo-dimensional chromatography

e GC Columns function in series to improve resolution of chemically similar

analytes
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Mass Spectrometer - lonization and mass
measurement

e |onization

e Electron lonization (Standard -70keV)

e Fragmentation

e Chemical lonization (less common)

“U "‘“‘W"f Reflectron Linea
-l'-l’"'r‘ detector
° DeteCtion I ‘ Analyte ons " ‘l l |' II
Tb___y__'h'i_l_ l; 'I
¢ Time-of-flight mass spectrometry L oy
e mass calculated based on time from I ‘ ‘ e ““, Tk
ionization to reaching detector -y
e High-Resolution TOF

e offers higher mass resolution for
metabolite identification
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Signal Deconvolution

True Signal Deconvolution®
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Principles of Deconvolution

e Generally implemented in AMDIS

e Goal: computationally separate chromatographically overlapping peaks
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Principles of Deconvolution
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Principles of Deconvolution
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Data projected into two dimensions
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Metabolite |[dentification

e reproducible fragmentation has generated libraries of known compounds

e Calculating similarity

e Retention indices are routinely used to confirm metabolite identification

based on relative retention times. (Kovats index)

e Using a dot-product based metric, analytes can be assigned an ID based

on similarity to known compounds

N-compounds Organic acids

2% 5% Amino acids
Phosphates . //l / 13%
12% T i : : Sugars
— 7%
~__Sugar alcohols
N 3%
Non-identified ll
Compounds | Fatty acids
54% T 4%

source: Schauer et al
2005
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Metabolite ID advances

e Generation of publicly or commercially available databases
o NIST
e Golm
e Fiehn ($)
e Metabolite structure prediction algorithms
e Using clustering, modeling

e Improved algorithms for database searches
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Why do GC-MS?

Size
Polarity

Metabolites

Chromatography

Metabolite ID

GC

Small

Requires derivitization
to reduce polarity

a.a., organic acids
fatty acids (short-medium)

Highly reproducible-
Retention indices

Libraries

LC

Medium to
Large

Better for polar

nucleotides, lipids
(including long)

|_ess critical

Inferred composition by
accurate mass
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Applications for GC-MS

e Petroleum and Biodiesel

e Biofluids and tissues

¢ Breath

® Pesticides

e Pollutants in air, soil and water

e Yeast for brewing and wine-making
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SO you've decided to do GC...what to expect

e Experimental Design!! What question(s) do you want to answer

e Sample preparation

e Data collection

e Preliminary Data analysis

¢ to0ls

e Metabolite identification
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Sample procurement/preparation

e Samples should be snap frozen as quickly as possible after extraction and
stored frozen until extraction

e Cultured cells should be grown in a minimal media if possible

e Avoid conditions where there are media/solvent components are present
at high concentration

® e.g. Urine samples may be treated with urease

e Aspiration is the best way to remove media efficiently before freezing

e Extraction should be done under cold conditions when possible

Thursday, January 22, 15



Gas Chromatography for Metabolomics

e Gas chromatography requires all analytes to be volatile
e Common procedure for biological samples is derivatization
e Most common method is methoximation + silylation

e Basic Protocol:

e Dry all analytes by centrivap w : 4
e Add methoxamine (stabilize ketones) & e oy o

e TMS reagent (generate volatile compounds)

O )
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Data collection

e You can expect anywhere from 500-5000 unfiltered peaks depending on
extraction method, sample complexity and concentration

* Typical number of quantified metabolites found in the majority of samples:
* Yeast: 150-200
e Serum: 200-250
e Urine: 350-500
* Tissue: 200-300
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Analyzing the Data

e Most instruments utilize proprietary software to do peak deconvolution

e Raw data can be analyzed as well and there are tools out there to analyze raw
data (e.g. Metlin)

e ChromaTOF (Leco’s peak calling and deconvolution software) Output:
e |ist of peaks
e Determination of Quant Mass for each peak (unique mass, typically)
e Quantification of metabolite (either relative to reference or absolute)

e |ibrary Matches for Metabolite ID
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Steps to analyzing Metabolomics Data

1. Filtering Peaks

2. Alignment

3. Missing Values (Typical Data set is up to 2%
4. Normalization

5. Statistical Analysis
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Data Analysis: Filtering

Filter peaks originating from derivitization reagents or from solvent

42U YU 142U 192U 242U
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Data Analysis: Alignment

e For each sample, determine whether every measured metabolite (from every
other sample) is present

e Complex, Computationally intense problem

e Use all available information: Retention Index, (RT1 and RT2 for 2D-GC), and
Spectral Match

e MetPP, Guineu (2D GC) or MetAlign (e.g.) for GC

* Typical Result: 200-400 peaks are present in ~80% of samples-Missing
values 2-5% of data
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Data Analysis: Missing Values

e Conservative Filter: only consider metabolites present
in the VAST majority of the samples (~95%)

¢ Assuming missing values are below detectable levels
(0.5x lowest value for that metabolite)

e Assume missing values are present at an average or
median level

¢ K nearest neighbor estimation-characterizes what
values are present in other samples with the most
highly correlated values for other metabolites to
estimate a likely concentration

Limited to small number
of metabolites (High
Confidence)

Can skew results if there
are a large number of
missing values

Conservative, but can
skew data

Moderately
conservative , but not
possible if missing data
IS abundant
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Data Analysis: Normalization

e Common Practice:

e Injection Control (A known amount of substance is injected with each
sample. Those peaks should have the same area each time)

e Normalization by SUM (total area under the curve). Normalizes for overall
sample concentration

e Clinical samples: normalization by creatinine or other specific analytes (not
ideal for research, but sometimes necessary depending on application)
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Data Analysis: Statistical Analysis

e A wide variety of tools and packages available

e Metaboanalyst is a great place to start (R-package in web-based app)

e Upload your aligned data in .csv or .txt format. It goes through the
normalization, missing data and filtering steps and then allows a variety of
analysis

e Heatmaps, Clustering

e PCA

e PLS-DA

e T-tests (paired and unpaired)
e Some pathway analysis

* etc.

www.metaboanalyst.ca
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http://www.metaboanalyst.ca
http://www.metaboanalyst.ca

FAQs

About

i

hmp

Please choose a functional module to proceed:

—‘ © Statistical Analysis

This module offers various commonly used statistical
and machine learning methods from t-tests, ANOVA
to PCA and PLS-DA. It also provides clustering and
visualization such as dendrogram, heatmap, K-means,
as well as classification based on random forests and
SVM.

—‘ © Enrichment Analysis

This module performs metabolite set enrichment
analysis (MSEA) for human and mammalian species
based on several libraries containing ~6300 groups of
biologically meaningful metabolite sets. Users can
upload a list of compounds, a list of compounds with

concentrations, or a concentration table.

—‘ © Pathway Analysis

This module supports pathway analysis (integrating
enrichment analysis and pathway topology analysis)
and visualization for 21 model organisms, including
Human, Mouse, Rat, Cow, Chicken, Zebrafish,
Arabidopsis thaliana, Rice, Drosophila, Malaria,
Budding yeast, E.coli., etc., with a total of ~1600
metabolic pathways.

—‘ © Time Series Analysis

This module supports data overview (PCA and
heatmaps), two-way ANOVA, multivariate empirical
Bayes time-series analysis for detecting distinctive
temporal profiles across different experimental
conditions, and ANOVA-simultaneous component
analysis (ASCA) for identification of major patterns

associated with each experimental factor.

—‘ © Power Analysis

This module allows you to upload a pilot data set to
calculate the minimum number of samples required to
detect the exsistence of a difference between two

populations with a given degree of confidence.

—‘ © Biomarker Analysis

To perform various ROC curve based biomarker
analysis. It supports classical single biomarker
analysis, multivariate biomarker analysis, and manual

biomarker selection and evaluation.

—‘ © Joint Pathway Analysis

To nerform inint metaholic nathwav analvsis on results

—‘ © Other Utilities

This modiule contains some utilitv functions commaonly
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Input test dataset (Cancer patients Cachexic v.
control)

(Ty] (Ty]
™ 7] ® [
o o
™ ] ® [
(Te] (Ty]
o o
s
-~ 9 4 L O
-— o~ ® ® o~
= ¢ ® 9
o u _ | 0
o )
o - I~ -
v _ | W0
o o
o | ©
o o
T T T T T T T
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Compounds
p-value FC FDR
Uracil 3.84E-04 3.4154 0.024204
Isoleucine 0.0011396 2.9432 0.035898
Acetone 0.0051404 2.289 0.10795
Succinate 0.013088 1.8831 0.1502
4-Hydroxyphenylacetate 0.013611 1.8661 0.1502
Hypoxanthine 0.015669 1.805 0.1502
Methylguanidine 0.016881 1.7726 0.1502
Pantothenate 0.019073 1.7196 0.1502
Glucose 0.038618 1.4132 0.25269
Creatine 0.04011 1.3967 0.25269
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Sample Data-top25 features by Ttest
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Pathway Analysis

Glvcine. serine and threonine metabolism
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Data Analysis: Biological Understanding

e \Web-based tools for pathway analysis
o KEGG (KEGGMapper) (all organisms)
¢ HMDB (Human Metabolome Database)
e Serum, urine, metabolome databases
e Yeast- Biochemical Pathways at yeastgenome.org
e ymdb (yeast metabolome database)

* Integrated analysis with genomic, proteomic data
e IMPalLA (similar to GO enrichment but specific to metabolic pathways)

e Ingenuity ($$9%)

e Metaboanalyst (new)
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Resources for GC-MS

e Restek Column Selection guide www.restek.com/
o http://www.restek.com/pdfs/GNBR1724-UNV.pdf
® | eco
e Agilent
e Sigma https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/
Aldrich/Bulletin/1/the-basics-of-gc.pdf
e Books,Chapters, Reviews:
e Metabolomics by Wofram Weckwerth (Methods and Protocols)
e “Mass Spectrometry based metabolomics” Dettmer 2007 http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC1904337/
e Analysis
e Metaboanalyst.ca
e impala.molgen.mpg.de
e hmdb.ca
e golm database: gmd.mpimp-golmmpg.de
e metlin.scripps.edu
e xcmsonline.scripps.edu
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SBREAK for questions
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Biology’s central dogma
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Amino Acids Sugars Lipids
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Part |l: Using Metabolomics in biological research

eYeast Phenomics

ePancreatic Cancer
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Yeast phenomics

strain 1

GTCACTTGCT
GTCACTCGCT
GACACTTGCT
GACACTTGCT

DNA

| 1.|le’r .

proteomics

metabolomics

RNA-Seq morphology
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Predicting phenotypes

morphglogy
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proteins

/078 phenotypes
correlated to at least one
other phenotype
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® |[ntegrating metabolomics with genomics and
proteomics data-a model for integrated human

studies

® Applying metabolomics to improve
understanding of pancreatic cancer

Thursday, January 22, 15



The Role of

Metabolism in
Pancreatic Cancer




Using genomics and metabolomics to
improve human health

Prevention:
Healthy / What causes disease

__— Diagnosis: *
What happens early in disease

— Treatment: *
How to treat people (individuals)
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Pancreatic Cancer

U.S. Pancreatic Cancer Incidence

30

25

20

Incidence per 100,000
T

10 [ e s Y
5
0

I T T T ] T T T I T T T I T T T I T T T I
1988 1992 1996 2000 2004 2008

s White Males mm mm White Females Overall Rate

s African-American Males mmm mm African-American Females

Rare cancer, but accounts for 4th most
cancer deaths in US

® 43920 new casesin 2012

® 37,390 deaths

® Only cancer whose incidence and
death rate is increasing
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Pancreatic Cancer Statistics

Stage at Stage 5-year
diagnosis distribution % | survival (%)
Localized 8 23.3
Regional
(spread to 27 8.9
lymph nodes
Distant
(metastatic) >3 1.8
Unknown |2 3.9

Statistics from cancer.gov

Extremely aggressive

|) Early detection is
unusual

2) Limited treatment
options for advanced
stage cancer (no cures)

3) Resistant to
chemotherapy
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Use genomic technologies to
improve Pancreatic Cancer
patient outcomes

Solutions:
|) Better diagnostic markers

2) Improved and/or personalized treatment
options




A role for metabolism
IN pancreatic cancer

|. Identify metabolic changes in serum and
urine from pancreatic cancer patients

2. Determine whether those metabolic
changes represent metabolic changes in the
pancreatic tumor

3. Determine whether alterations in
metabolic pathway correlate with outcome
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Measuring metabolites

l l Sample | Sample 2
o 3 |
O
X ANAANAAANAA v | |
HO
OOH | 3
COOH ,\j

Analysis




Analyses

® Directed-Known pathways PC v. Normal

® Unbiased-most significant differences
between classes

® Metabolites/pathways changing with
® stage

® metastasis
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TCA cycle

® Warburg effect

¢ Known mutations occurring in cancer

isocitrate dehydrogenase
fumarate hydratase

pyruvate kinase

succinate dehydrogenase

umarate
OH
OH
PHD &
a-KG Succinate
‘ 02 CO2

Target genes expression;
Glycolysis;
Angiogenesis;

Cell proliferation, etc.

Review:Wu and Zhao 2012
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Urine-TCA cycle
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Multi- “Omics”
approach

® RNA-Seq was performed on tumor tissues
and neighboring normal/benign tissue

® Revealed over 6000 significantly changing
genes between tumor and normal tissue

® Which of these is important???
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Leveraging gene expression information
to focus on vital metabolic pathways

—— — -
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Tumor tissue Genes
Gene expression changes

in pancreatic cancer

® |s there evidence of altered metabolic pathways in
gene expression data!’

® Are the same pathways we identified in blood and
urine changing in tumor samples!?

® What do we learn by intersecting these data?
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Pancreatic Cancer- S
Integrating Metabolomics and Genomics
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Glycine, Threonine,
Serine Synthesis
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Glycine pathway gene expression
associated with poor prognosis

Glycine Metabolism Genes
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Fatty Acid Biosynthesis

Serum Fatty Acids
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A correlation between survival and
lipase expression

Early vs. Late Survivors
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A pathway to link these pathways:
Sphingolipid Biosynthesis
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Is the link important to

disease!’

® |f ceramide/sphingolipid biosynthesis is

essential for apoptosis in cancer cells, they
should reduce ceramide production,
perhaps through downregulation of lipase
genes.

We can test in vitro whether apoptosis in
cancer cell lines is sensitive to fatty acid
concentration, and whether apoptosis
requires ceramide production
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Future Directions

® We are at the beginning:

® Thousands of differentially expressed
genes

® Dozens of differentially abundant
metabolites

® How is it all connected: regulation???

® |ipase genes (and other fatty acid
biosynthesis genes) are regulated by
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Potential key regulators

PPAR Gamma Expression
GATA 2 Expression
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