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Some slides are from previous lectures of Grier Page

Experimental design

• Experimental design: is a term used about 
efficient methods for planning the collection of
data, in order to obtain the maximum amount of 
information for the least amount of work. Anyone 
collecting and analyzing data, be it in the lab, the 
field or the production plant, can benefit from 
knowledge about experimental design.
http://www.stat.sdu.dk/matstat/Design/index.html
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The Myth That Metabolomics 
does not need a Hypothesis

• There always needs to be a biological 
question in the experiment. 

• The question could be nebulous: What 
happens to the metabolome of this tissue 
when I apply Drug A.

• The purpose of the question drives the 
experimental design.

• Make sure the samples answer the 
question
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UMSA Analysis

Insulin Resistant

Insulin Sensitive

Day 1
Day 2

Experimental design general 
principals

• Randomization

• Replication

• Blocking

• Use of factorial experiments instead of the 
one-factor-at-a-time methods.

• Orthogonality
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Randomization

• The experimental treatments are assigned 
to the experimental units (subjects) in a 
random fashion.  It helps to eliminate 
effect of "lurking variables", uncontrolled 
factors which might vary over the length of 
the experiment. 

Commonly used randomization 
method

• Number the objects to be randomized and then 
randomly draw the numbers using paper pieces 
in a hat or computer random number generator. 

1 2 3 4 5 6

Hormone treatment:  (1,3,4) ;  (1,2,6)

Control :       (2,5,6) ;  (3,4,5)

Example: Assign two treatments, Hormone and control, to 6 plants
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Design Issues in Omics Exp 

• Known sources of non-biological error (not 
exhaustive) that must be addressed
– Technician / post-doc
– Reagent lot
– Temperature
– Protocol
– Date
– Location
– Cage/ Field positions

Randomization in Omics 
Experiments

• Randomize samples in respect to 
treatments

• Randomize the order of handling samples.

• Randomize arrays/runs/gels/days in 
respect to samples
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Replication

• Replication is repeating the creation of a 
phenomenon, so that the variability associated 
with the phenomenon can be estimated. 

Replications should not be confused with 
repeated measurements which refer to literally 
taking several measurements of a single 
occurrence of a phenomenon. 

Replication in omics experiments

• What to replicate?
– Biological replicates (replicates at the experimental 

unit level, e.g. mouse, plant, pot of plants…)
• Experimental unit is the unit that the experiment treatment or 

condition is directly applied to, e.g. a plant if hormone is 
sprayed to individual plants; a pot of seedlings if different 
fertilizers are applied to different pots.

– Technical replicates
• Any replicates below the experimental unit, e.g. different 

leaves from the same plant sprayed with one hormone level; 
different seedlings from the same pot;  Different aliquots of 
the same RNA extraction; multiple arrays hybridized to the 
same RNA; multiple spots on the same array.
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Replication in Omics experiments

– Biological replicates are typically more 
important than technical replicates unless 
estimating the variation at different levels is 
the purpose of the experiment in evaluating 
the technology.

– Biological replicates are often more effective 
in increasing the power for detecting 
differentially expressed genes.
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How Many to Replicate?
---Sample Size

• Replication is repeating the creation of a phenomenon, 
so that the variability associated with the phenomenon 
can be estimated. 
• The accuracy of the estimation of the variability 
depends on the degree of freedom for estimating the 
variability.

Degree of freedom (df) is a measure of the number of 
independent pieces of information on which the 
precision of a parameter estimate (e.g. variance) is 
based. The degrees of freedom for an estimate equals 
the number of observations (values) minus the 
number of additional parameters estimated for that 
calculation. 

How many replicates?
---- Sample Size

Example:  degree of freedom (df) for estimating the variance.

Using a 2x2 factorial design to examine the effects of two factors, 
A and B.  Each factor has two levels. 

ANOVA model: 

A1 A2
B1 r r

B2 r r

Factorial 2 x 2

S.V. (r=1) (r=2) (r=3)
μ
A

1
1

1
1

1
1

B 1 1 1
A*B 1 1 1
Var 0 4 8

Total 4 8 12

  BABAy *
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Sample Size and Power
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•Sample size for a general two sample comparison

n   increases as error, σ, increases.
n increases as the difference between two means, δ,decreases.
n  increases as the significant level of the test, α, decreases.
n increases as the power of the test, 1-β , increases.
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Some R Power Packages in 
Bioconductor

• RNASeqPower

• Sizepower

• SSPA

• CSSP

Multilevel Replication and Resource allocation:

m mouse / trt (biorep)
n array pairs / mouse

CM cost / mouse
CA cost / array pair

mnm
EV eM

22 


When there are both biological replications and technical replications.

Biological variation

Technical variation

Error variance of 
the fold change

Note:  to reduce EV increasing m (number of biological 
replicates) is more efficient.

Example:  reference design with dye-swaps
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Resource Allocation

AM nCmmCCost 

The optimum number of array pairs biological replicate:

A

M

M

e

C

C
n 

2

2




mnm
EV eM

22 


Considering the error variance and the cost equations, we can 
obtain how many biological replicates and how many technical 
replicates to best allocate the money.

(reference design with dye-swaps)

Examples for resource allocation in early 
microarray experiments

Mouse price Array price/pair # of array pairs 
per mouse 

$15 $600 1 

$300 $600 1 

$1500 $600 2 
 

• Using variance components estimated from kidney in Project Normal data.
• No replicated spots on array 
• Reference design

More efficient array level designs, such as direct comparisons and 
loop designs, can reduce the optimum number of arrays per mouse.
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Pooling Biological Samples

22 1
Mpool k

 
k :   # of samples per pool

individual biorep variance
pool variance

Theoretically, pooling can reduce the biological variance but not 
the technical variances.  The biological variance will be replaced 
by:

Note: It is often assumed that pooling will reduce the biological 
variance , therefore, be more efficient.

2
M

2
pool

Potential problems of Pooling

• Reduced ability to estimate individual variability
• Prevent from identifying proper transformation and removing 

outliers. 
• Not valid for classification studies (important for biomarker 

identification) 
• Pooling samples is averaging at the raw level while the 

average of multiple samples is often after transformation (e.g. 
log2).  

• The biological variability reduction is often smaller than 1/k.

22 1
Mpool k

 
α :  constant for the effect of pooling.     0 < α  < 1

α = 1,   pooling has maximum effect.
α = 0,   pooling has no effect.
α < 0,   pooling has negative effect.



01/05/2015

13

Potential Advantage of Pooling

• When individual sample quantity is limited or 
technology is extremely expensive, pooling samples 
can increase the accuracy of the Fold Change 
estimation between two groups.
• Pooling has the potential to reduce the overall 
variance.

Example: Power Increase to Detect 2 fold change 
by Pooling in a mouse experiment (CAMDA 2002)

2 pools / trt

4 pools / trt

6 pools / trt

8 pools / trt

2 mice / trt

4 mice / trt

6 mice / trt

8 mice / trt

( Pool size k = 3, α = 1 )

Significance level:
0.05 after Bonferroni correction
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• Use of factorial experiments instead of the one-factor-
at-a-time methods.

• Orthogonality: Factors are perpendicular to each 
other. Otherwise, the factors are called confounded or 
even nested.

To compare two treatments (T1, T2) and two strains (S1, S2)

T1 T2

S1 T1S1 T2S1

S2 T1S2 T2S2

General Design Principles -- Continues

Blocking
• Some identified uninteresting but varying 

factors can be controlled through blocking. 

• COMPLETELY RANDOMIZED DESIGN

• COMPLETE BLOCK DESIGN

• INCOMPLETELY BLOCK DESIGNS
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Completely Randomized Design

There is no blocking
 Example
 Compare two hormone treatments (trt and control) 
using 6 Arabidopsis plants. 

1 2 3 4 5 6

Hormone trt: (1,3,4);  (1,2,6)
Control :        (2,5,6);  (3,4,5)

Note:  Designs with one-color microarray is often completely 
randomized design.

Complete Block Design

 There is blocking and the block size is equal to the 
number of treatments.

Example:

 Compare two hormone treatments (trt and control) using 6 
Arabidopsis plants. For some reason plant 1 and 2 are taller, 
plant 5 and 6 are thinner.

 Randomization within blocks

1 2 3 4          5 6

Hormone treatment: (1,4,5) ;  (1,3,6)
Control : (2,3,6) ;  (2,4,5)
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UMSA Analysis

Insulin Resistant

Insulin Sensitive

Day 1
Day 2

Incomplete Block Design

 There is blocking and the block size is smaller than the 
number of treatments.

Example:

 Compare three hormone treatments (hormone level 1, hormone 
level 2, and control) using 6 Arabidopsis plants. For some 
reason plant 1 and 2 are taller, plant 5 and 6 are thinner.

 Randomization within blocks

1 2 3 4          5 6

Hormone level1: (1,4) ; (2,4)
Hormone level2: (2,5) ; (1,6)
Control : (3,6) ; (3.5)



01/05/2015

17

Example: Incomplete Blocking in 2-
color Microarray Experiments

• In two-color platform, the arrays vary due to the loading of DNA 
quantity, spot morphology, hybridization condition, scanning setting…  
It is treated as a block of size 2, the samples are compared within 
each array. 

• If there are two lots of chips in the experiment and there is large 
variation across chip lots.  We can treat chip lots as a blocking factor.

Example: compare three samples: A, B, C

Block (array) 1 Block (array) 2 Block (array) 3

A

B

B

C

C

A

Designs for two-color microarrays 

• For two color microarrays, we need to pair 
the samples and label them with Cy3 and 
Cy5 for hybridization to one array.–
Blocking Designs

• How do we pair?
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A1 B1
Cy5 Cy3

Reference design
All samples are compared to a single reference sample.  
The reference sample is of no interest to the investigator.

Single reference

A B C

R

Double reference

A B C

R
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Example Microarray Experiment

comparing 3 treatments

Note: Arrows are used to represent a two-color microarray.  The 
arrow head represents the red channel and the tail represents 
the green channel.  T1 to T3, the three treatments; M1 to M15, 
the 15 plants; R, reference sample.

T1 T2 T3

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

R R R R R R R R R R R R R R R

Loop Design

A

C

D B
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Complex loop designs

A1 B1

C1 F1

D1 E1

Pera     I      DBA

High fat

Low fat

A B C

FE D

A2 B2

C2 F2

D2 E2

Two-factor factorial design at the high level

(Churchill and Oliver, 2001)

Statistical analyses
• Supervised analyses – linear models etc

– Assume IID (independently identically 
distibuted)

– Normality
– Sometimes can rely on central limit
– ‘Weird’ variances

– Using fold change alone as a statistic alone is 
not valid.

– ‘Shrinkage’ and or use of Bayes can be a 
good thing. 

• False-discovery rate is a good alternative to 
conventional multiple-testing approaches.

• Pathway testing is desirable.
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Classification

• Supervised classification
– Supervised-classification procedures require 

independent cross-validation.

– See MAQC-II recommendations Nat Biotechnol. 2010 
August ; 28(8): 827–838. doi:10.1038/nbt.1665.

• Wholly separate model building and validation 
stages. Can be 3 stage with multiple models tested

• Unsupervised classification
– Unsupervised classification should be validated using 

resampling-based procedures.

Unsupervised classification -
continued

• Unsupervised analysis methods
– Cluster analysis

– Principle components

– Separability analysis

• All have assumptions and input 
parameters  and changing them results in 
very different answers
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