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Some slides are from previous lectures of Grier Page

Experimental design

+ Experimental design: is a term used about
efficient methods for planning the collection of
data, in order to obtain the maximum amount of
information for the least amount of work. Anyone
collecting and analyzing data, be it in the lab, the
field or the production plant, can benefit from

knowledge about experimental design.
http://www.stat.sdu.dk/matstat/Design/index.html




01/05/2015

The Myth That Metabolomics
does not need a Hypothesis

» There always needs to be a biological
question in the experiment.

» The question could be nebulous: What
happens to the metabolome of this tissue
when | apply Drug A.

* The purpose of the question drives the
experimental design.

» Make sure the samples answer the
question

Biological Variance

Nonsystematic
Error SYSten s : ?
rmatac Systematic | Nonsystematic g st
Lor Variance Error re”"atic Systematic
ror Variance
* Selection Bias * Sample Preparation Bias
* Genetic (race/sex) Bias + Extraction Bias
« Epigenetic Bias + Procedural Bias
* Tissue/Cell Selection Bias + Storage Bias
* Temporal Selection Bias * Standards Bias
* Biological Conditions Bias - Sample Complexity Bias
* Analytical Conditions Bias

Biological Biases

* Methodological Bias * Assignment Error
= Statistical Assumptions * Metabolite AssignmentError
« Lack of Statistical Power + Class (Group) Assignment Error
* Multiple Testing * Confirmation Bias

Interpretive Biases and Errors




UMSA Analysis

Insulin Resiéant

Insulin Sensitive

Experimental design general

principals
Randomization
Replication
Blocking

Use of factorial experiments instead of the
one-factor-at-a-time methods.

Orthogonality
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Randomization

* The experimental treatments are assigned
to the experimental units (subjects) in a
random fashion. It helps to eliminate
effect of "lurking variables", uncontrolled
factors which might vary over the length of
the experiment.

Commonly used randomization
method

* Number the objects to be randomized and then
randomly draw the numbers using paper pieces
in a hat or computer random number generator.

Example: Assign two treatments, Hormone and control, to 6 plants

Hormone treatment: (1,3,4);| (1,2,6)

Control : (2,5,6) ;| (3,4,5)




Design Issues in Omics Exp

» Known sources of non-biological error (not
exhaustive) that must be addressed
— Technician / post-doc
— Reagent lot
— Temperature
— Protocol
— Date
— Location
— Cage/ Field positions

Randomization in Omics
Experiments
« Randomize samples in respect to
treatments
« Randomize the order of handling samples.

« Randomize arrays/runs/gels/days in
respect to samples
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Replication

* Replication is repeating the creation of a
phenomenon, so that the variability associated
with the phenomenon can be estimated.

Replications should not be confused with
repeated measurements which refer to literally
taking several measurements of a single
occurrence of a phenomenon.

Replication in omics experiments

* What to replicate?

— Biological replicates (replicates at the experimental
unit level, e.g. mouse, plant, pot of plants...)

» Experimental unit is the unit that the experiment treatment or
condition is directly applied to, e.g. a plant if hormone is
sprayed to individual plants; a pot of seedlings if different
fertilizers are applied to different pots.

— Technical replicates

* Any replicates below the experimental unit, e.g. different
leaves from the same plant sprayed with one hormone level;
different seedlings from the same pot; Different aliquots of
the same RNA extraction; multiple arrays hybridized to the
same RNA; multiple spots on the same array.
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* Treatment

 Biological
replicate

e Dye
* Technical
replicate

e Array

¢ Duplicate
spot

Replication in Omics experiments

— Biological replicates are typically more
important than technical replicates unless
estimating the variation at different levels is
the purpose of the experiment in evaluating
the technology.

— Biological replicates are often more effective
in increasing the power for detecting
differentially expressed genes.




* Replication is repeating the creation of a phenomenon,

How Many to Replicate?

---Sample Size

so that the variability associated with the phenomenon
can be estimated.
* The accuracy of the estimation of the variability
depends on the degree of freedom for estimating the
variability.

Degree of freedom (df) is a measure of the number of

independent pieces of information on which the

precision of a parameter estimate (e.g. variance) is

based. The degrees of freedom for an estimate equals
the number of observations (values) minus the

number of additional parameters estimated for that
calculation.

How many replicates?
---- Sample Size

Example: degree of freedom (df) for estimating the variance.

Using a 2x2 factorial design to examine the effects of two factors,

A and B. Each factor has two levels.

ANOVA model:

y=u+A+B+A*B+g |2V (=D [ (=2) [(r=3)

M 1 1 1

A 1 1 1

Factorial 2 x 2 B 1 1 1

Al A2 A*B 1 1 1

Bl r r Var 0 4 8

B2 r r Total 4 8 12
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Sample Size and Power

«Sample size for a general two sample comparison

A2 _qi9)+ Z(l—ﬂ))2
(5/0)

increases as error, o, increases.

increases as the difference between two means, 0,decreases.
increases as the significant level of the test, a, decreases.
increases as the power of the test, 1-, increases.

School of
Public Health

Department of Biostatistics

Overview

The Power Atlas is a web-based resource to assist investigators in the planning and design of microarray and expression based
experiments. This software is currently aimed at estimating the power and sample size for a two group comparison based upon pilo
data. The methods underlying the web site are reported in Gadbury et al (2004). More complicated results such as ANOVA arg
planned for July 2005.

R

1. We have downloaded all the data currently in the Gene Expression Omnibus (GEQ) and processed them with our power analysig
software. Data from other websites will be added over the next year. Investigators may search among the datasets for thq
experiment that most closely resembles their proposed project and get the estimate sample sizes and power for this data set,

Click here] to search the existing database.

2. Investigators may upload their own preliminary data and the program will extrapolate power from this dataset.

Click here] to use your own dataset.

If this is your first visit, you may want to read these printer-friendly instructions for using the Power Atlas.

There are two ways to use the Power Atlas:

Copyright @© 2004 University of alabama at Birmingharm,

Please reference | and Page et al 2005,

The development of this web site was funded by NSF Grant 0306596,

Generated by the Power Atlas, For more information please contact Grier Page, PhD or Jelai Wang,
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Some R Power Packages in
Bioconductor

RNASeqPower
Sizepower
SSPA

CSSP

Multilevel Replication and Resource allocation:

When there are both biological replications and technical replications.

Example: reference design with dye-swaps

/ Biological variation

2 2 — Technical variation
(o}
—__M e
EV = + m mouse / trt (biorep)
m mn n  array pairs / mouse
Error variance of Cy cost/mouse
the fold change C, cost/ array pair

Note: to reduce EV increasing m (number of biological
replicates) is more efficient.

01/05/2015
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Resource Allocation

Considering the error variance and the cost equations, we can
obtain how many biological replicates and how many technical
replicates to best allocate the money.

2 2
= v + Oe (reference design with dye-swaps)
m mn

EV

Cost=mC,, +m-nC,

The optimum number of array pairs biological replicate:

O-ez Cu
n= e M
ow C,

Examples for resource allocation in early
microarray experiments

° Using variance components estimated from kidney in Project Normal data.

* No replicated spots on array
* Reference design

Mouse price Array pricel/pair | # of array pairs
per mouse
$15 $600 1
$300 $600 1
$1500 $600 2

More efficient array level designs, such as direct comparisons and
loop designs, can reduce the optimum number of arrays per mouse.

01/05/2015
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Pooling Biological Samples

Theoretically, pooling can reduce the biological variance but not
the technical variances. The biological variance will be replaced

by:
2 1 2

Opool =7 O
pool K M k : # of samples per pool

2 . . . .
Oy individual biorep variance
5 POOI variance

Note: Itis often assumed that pooling will reduce the biological
variance , therefore, be more efficient.

Potential problems of Pooling

* Reduced ability to estimate individual variability

* Prevent from identifying proper transformation and removing
outliers.

* Not valid for classification studies (important for biomarker
identification)

» Pooling samples is averaging at the raw level while the

average of multiple samples is often after transformation (e.g.

log2).
» The biological variability reduction is often smaller than 1/k.
2 _ 1 2
Gpool - ka GM

a : constant for the effect of pooling. O0<a <1
a =1, pooling has maximum effect.
a =0, pooling has no effect.
a <0, pooling has negative effect.

01/05/2015
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Potential Advantage of Pooling

* When individual sample quantity is limited or
technology is extremely expensive, pooling samples
can increase the accuracy of the Fold Change

estimation between two groups.

* Pooling has the potential to reduce the overall

variance.

Example: Power Increase to Detect 2 fold change
by Pooling in a mouse experiment (CAMDA 2002)

(Poolsizek=3,a=1)

o o
[+ [

o
o

detectable genes

et
N

kidney

......... 2 pools / trt
......... 4 pools / trt
......... 6 pools / trt
8 pools / trt
2 mice / trt
4 mice / trt
6 mice / trt
8 mice / trt

2 4 6 8 10
number of array pairs per sample

Significance level:
0.05 after Bonferroni correction

01/05/2015
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General Design Principles -- Continues

» Use of factorial experiments instead of the one-factor-
at-a-time methods.

» Orthogonality: Factors are perpendicular to each
other. Otherwise, the factors are called confounded or

even nested.

To compare two treatments (T1, T2) and two strains (S1, S2)

T1 12
S1 T1S1 | T251
S2 T1S2 |T2S2

Blocking

« Some identified uninteresting but varying

factors can be controlled through blocking.

e COMPLETELY RANDOMIZED DESIGN

e COMPLETE BLOCK DESIGN

e INCOMPLETELY BLOCK DESIGNS

01/05/2015

14



Completely Randomized Design

There is no blocking
» Example

+ Compare two hormone treatments (trt and control)
using 6 Arabidopsis plants.

3
Hormone trt:((1,3,4);/((1,2,6)
Control : (2,5,6);(3,4,5)

Note: Designs with one-color microarray is often completely
randomized design.

Complete Block Design
®» There is blocking and the block size is equal to the
number of treatments.
Example:

+ Compare two hormone treatments (trt and control) using 6
Arabidopsis plants. For some reason plant 1 and 2 are taller,
plant 5 and 6 are thinner.

Hormone treatment:|(1,4,5); |(1,3,6)
Control : (2,3,6); [(2,4,5)

= Randomization within blocks

01/05/2015
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UMSA Analysis

Insulin Resiéant

Insulin Sensitive

Components: ONE TV

Incomplete Block Design

®» There is blocking and the block size is smaller than the
number of treatments.

Example:
+ Compare three hormone treatments (hormone level 1, hormone

level 2, and control) using 6 Arabidopsis plants. For some
reason plant 1 and 2 are taller, plant 5 and 6 are thinner.

Hormone level: (1,4)[ (2,4)
Hormone level2: (2,5); ((1,6)
Control : (3,6) |(3.5)
= Randomization within blocks

01/05/2015
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Example: Incomplete Blocking in 2-
color Microarray Experiments

* In two-color platform, the arrays vary due to the loading of DNA
quantity, spot morphology, hybridization condition, scanning setting...
It is treated as a block of size 2, the samples are compared within
each array.

« If there are two lots of chips in the experiment and there is large
variation across chip lots. We can treat chip lots as a blocking factor.

Example: compare three samples: A, B, C

A B c

Block (array) 1 Block (array) 2 Block (array) 3

Designs for two-color microarrays

« For two color microarrays, we need to pair
the samples and label them with Cy3 and
Cy5 for hybridization to one array.—
Blocking Designs

* How do we pair?

01/05/2015
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A1

Reference design

All samples are compared to a single reference sample.

The reference sample is of no interest to the investigator.

Single reference Double reference
A B ¢ A B C
N N7
R R

01/05/2015
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Example Microarray Experiment

comparing 3 treatments

M10 M1l M12 M13 M14 M15

T

Note: Arrows are used to represent a two-color microarray. The
arrow head represents the red channel and the tail represents
the green channel. T1 to T3, the three treatments; M1 to M15,
the 15 plants; R, reference sample.

Loop Design

®
7N
®\@/

01/05/2015
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Complex loop designs

Two-factor factorial design at the high level

Pera | DBA
High fat| A B C

Low fat E F D

: \
AV ENY:

D1——E1

(Churchill and Oliver, 2001)

Statistical analyses

» Supervised analyses — linear models etc

— Assume IID (independently identically
distibuted)

— Normality

— Sometimes can rely on central limit

— ‘Weird’ variances

— Using fold change alone as a statistic alone is
not valid.

— ‘Shrinkage’ and or use of Bayes can be a
good thing.

» False-discovery rate is a good alternative to
conventional multiple-testing approaches.

+ Pathway testina is desirable.

01/05/2015
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Classification

« Supervised classification

— Supervised-classification procedures require
independent cross-validation.

— See MAQC-II recommendations Nat Biotechnol. 2010
August ; 28(8): 827-838. doi:10.1038/nbt.1665.

* Wholly separate model building and validation
stages. Can be 3 stage with multiple models tested

» Unsupervised classification

— Unsupervised classification should be validated using
resampling-based procedures.

Unsupervised classification -
continued

* Unsupervised analysis methods
— Cluster analysis
— Principle components
— Separability analysis

 All have assumptions and input
parameters and changing them results in
very different answers

01/05/2015
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Y-axis : p-values

obtained from a t-test These |
between abundances of Sample A vs. Sample B metabolites have
a given metabolite in significant p-
two samples 5,75 T valiessnd gn
greater abundance In o < | greater abundance fold-change in
sample A % in Sample B sample B
- = e o :
- CRE AT
Each point
represents a
different
Chemical classification Koss: metabiolite metabolite

accumulation fold change
(plotted on log2 scale) as
aratio between two user-
selected samples

of metabolites

These metabolites
have similar levels
in two samples

Flower - Buds
[Atropa belladonna - LC/TOF "gp%%mi;:gor“lelahon Flower - Buds
i Bt [Atropa belladonna - LC/TOF M$ Positive Jon]
i 0.86 0.86 fiow2 449
5 metabolite " :
abundanceinrep 1 ool va Reod Reat va Resd

Metaret. v - Kesa
9 n
» o etatol

Rep1 Rep2

22



References

Churchill GA. Fundamentals of experimental design for cDNA microarrays. Nature Genet. 32: 490-
495, 2002.

Cui X and Churchill GA. How many mice and how many arrays? Replication in mouse cDNA
microarray experiments, in "Methods of Microarray Data Analysis Ill", Edited by KF Johnson and SM
Lin. Kluwer Academic Publishers, Norwell, MA. pp 139-154, 2003.

Gadbury GL, et al. Power and sample size estimation in high dimensional biology. Stat Meth Med Res
13: 325-338, 2004.

Kerr MK. Design considerations for efficient and effective microarray studies. Biometrics 59: 822-828,
2003.

Kerr MK and Churchill GA. Statistical design and the analysis of gene expression microarray data.
Genet. Res. 77: 123-128, 2001.

Kuehl RO. Design of experiments: statistical principles of research design and analysis, 2" ed., 1994,
(Brooks/cole) Duxbry Press, Pacific Grove, CA.

Page GP et al. The PowerAtlas: a power and sample size atlas for microarray experimental design
and research. BMC Bioinformatics. 2006 Feb 22;7:84.

Rosa GJM, et al. Reassessing design and analysis of two-colour microarray experiments using mixed
effects models. Comp. Funct. Genomics 6: 123-131. 2005.

Wit E, et al. Near-optimal designs for dual channel microarray studies. Appl. Statist. 54: 817-830,
2005.

Yand YH and Speed T. Design issues for cDNA microarray experiments. Nat. Rev. Genet. 3: 570-
588, 2002.

01/05/2015

23



