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1 Data Processing and Normalization

1.1 Reading and Processing the Raw Data

MetaboAnalyst accepts a variety of data types generated in metabolomic studies, including compound
concentration data, binned NMR/MS spectra data, NMR/MS peak list data, as well as MS spectra
(NetCDF, mzXML, mzDATA). Users need to specify the data types when uploading their data in order
for MetaboAnalyst to select the correct algorithm to process them. Table 1 summarizes the result of the
data processing steps.

1.1.1 Reading MS Peak List and Intensities Data

MS peak list and intensities data should be uploaded as one zip file. It contains subfoulders with one
for each group. Each folder contains peak list files, one per spectrum. The MS peak list format is either
a two-column (mass and intensities) or three-column (mass, retention time, and intensities) comma
separated values. The first line is assumed to be column labels. The files should be saved in .csv format.
For paired analysis, users need to upload separately a text file specifying the paired information. Each
pair is indicated by their sample names seperated by a colon ”:” with one pair per line.

The uploaded files are peak lists and intensities data. A total of 6 samples were found. These samples
contain a total of 23436 peaks. with an average of 3906 peaks per sample

1.1.2 Peak Matching and Alignment

Peaks need to be matched across samples in order to be compared. For two-column data, the program
matches peaks by their m/z values. For three-column data, the program will further group peaks based
on their retention time. During the process, mz and rt of each peak will be changed to their group
median values. If a sample has more than one peak in a group, they will be replaced by their sum. Some
peaks are excluded if they appear in less than half of both classes. The aligned peaks are reorganized
into a single data matrix for further analysis. The name of the parent folder is used as class label for
each sample.

A total of 3459 peak groups were formed. Peaks of the same group were summed if they are from
one sample. Peaks appear in less than half of samples in each group were ignored.

1.1.3 Data Integrity Check

Before data analysis, a data integrity check is performed to make sure that all the necessary information
has been collected. The class labels must be present and contain only two classes. If samples are paired,
the class label must be from -n/2 to -1 for one group, and 1 to n/2 for the other group (n is the sample
number and must be an even number). Class labels with same absolute value are assumed to be pairs.



Compound concentration or peak intensity values should all be non-negative numbers. By default, all
missing values, zeros and negative values will be replaced by the half of the minimum positive value
found within the data (see next section)

1.1.4 Missing value imputations

Too many zeroes or missing values will cause difficulties for downstream analysis. MetaboAnalyst offers
several different methods for this purpose. The default method replaces all the missing and zero values
with a small values (the half of the minimum positive values in the original data) assuming to be the
detection limit. The assumption of this approach is that most missing values are caused by low abundance
metabolites (i.e.below the detection limit). In addition, since zero values may cause problem for data
normalization (i.e. log), they are also replaced with this small value. User can also specify other methods,
such as replace by mean/median, or use K-Nearest Neighbours, Probabilistic PCA (PPCA), Bayesian
PCA (BPCA) method, Singular Value Decomposition (SVD) method to impute the missing values .
Please choose the one that is the most appropriate for your data.

Zero or missing variables were replaced with a small value: 8.886447755

1.1.5 Data Filtering

The purpose of the data filtering is to identify and remove variables that are unlikely to be of use
when modeling the data. No phenotype information are used in the filtering process, so the result
can be used with any downstream analysis. This step can usually improves the results. Data filter is
strongly recommended for datasets with large number of variables (> 250) datasets contain much noise
(i.e.chemometrics data). Filtering can usually improve your results?.

For data with number of variables < 250, this step will reduce 5% of variables; For variable number
between 250 and 500, 10% of variables will be removed; For variable number bwteen 500 and 1000, 25%
of variables will be removed; And 40% of variabled will be removed for data with over 1000 varaibles.

Reduce 40% features ( 1384 ) based on mean

Table 1: Summary of data processing results
Peaks (raw)  Missing/Zero  Peaks (processed)

Diet_IR_Neg_1 3906 0 2075
Diet_IR_Neg_2 3906 2 2075
Diet_IR_Neg_3 3906 1 2075
Diet_NR_Neg_1 3906 2 2075
Diet_NR_Neg_2 3906 0 2075
Diet_NR_Neg_3 3906 0 2075

1Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods: a bioconductor package, providing PCA methods
for incomplete data., Bioinformatics 2007 23(9):1164-1167

2Hackstadt AJ, Hess AM. Filtering for increased power for microarray data analysis, BMC Bioinformatics. 2009; 10:
11.



1.2 Data Normalization

The data is stored as a table with one sample per row and one variable (bin/peak/metabolite) per
column. The normalization procedures implemented below are grouped into four categories. Sample
specific normalization allows users to manually adjust concentrations based on biological inputs (i.e.
volume, mass); row-wise normalization allows general-purpose adjustment for differences among samples;
data transformation and scaling are two different approaches to make features more comparable. You
can use one or combine both to achieve better results.

The normalization consists of the following options:

1. Sample specific normalization (i.e. normalize by dry weight, volume)
2. Row-wise procedures:

e Normalization by the sum
e Normalization by the sample median
e Normalization by a reference sample (probabilistic quotient normalization)?

e Normalization by a reference feature (i.e. creatinine, internal control)
3. Data transformation :

e Generalized log transformation (glog 2)

e Cube root transformation
4. Data scaling:

e Unit scaling (mean-centered and divided by standard deviation of each variable)

e Pareto scaling (mean-centered and divided by the square root of standard deviation of each
variable)

¢ Range scaling (mean-centered and divided by the value range of each variable)

Figure 1 shows the effects before and after normalization.

3Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for
dilution of complex biological mixtures. Application in 1H NMR metabonomics, 2006, Anal Chem 78 (13);4281 - 4290
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Figure 1: Box plots and kernel density plots before and after normalization. The boxplots show at most
50 features due to space limit. The density plots are based on all samples. Selected methods : Row-wise
normalization: Normalization to constant sum; Data transformation: Log Normalization; Data scaling:
Pareto Scaling.



2 Statistical and Machine Learning Data Analysis
MetaboAnalyst offers a variety of methods commonly used in metabolomic data analyses. They include:

1. Univariate analysis methods:

e Fold Change Analysis

o T-tests

e Volcano Plot

e One-way ANOVA and post-hoc analysis

e Correlation analysis
2. Multivariate analysis methods:

e Principal Component Analysis (PCA)
e Partial Least Squares - Discriminant Analysis (PLS-DA)

3. Robust Feature Selection Methods in microarray studies

e Significance Analysis of Microarray (SAM)
e Empirical Bayesian Analysis of Microarray (EBAM)

4. Clustering Analysis

e Hierarchical Clustering

— Dendrogram
— Heatmap

e Partitional Clustering

— K-means Clustering
— Self-Organizing Map (SOM)

5. Supervised Classification and Feature Selection methods

e Random Forest
e Support Vector Machine (SVM)

Please note: some advanced methods are available only for two-group sample analyais.



2.1 Univariate Analysis

Univariate analysis methods are the most common methods used for exploratory data analysis. For
two-group data, MetaboAnalyst provides Fold Change (FC) analysis, t-tests, and volcano plot which
is a combination of the first two methods. All three these methods support both unpaired and paired
analyses. For multi-group analysis, MetaboAnalyst provides two types of analysis - one-way analysis
of variance (ANOVA) with associated post-hoc analyses, and correlation analysis to identify signficant
compounds that follow a given pattern. The univariate analyses provide a preliminary overview about
features that are potentially significant in discriminating the conditions under study.

For paired fold change analysis, the algorithm first counts the total number of pairs with fold changes
that are consistently above/below the specified FC threshold for each variable. A variable will be reported
as significant if this number is above a given count threshold (default > 75% of pairs/variable)

Figure 2 shows the important features identified by fold change analysis. Table 2 shows the details
of these features; Figure 3 shows the important features identified by t-tests. Table 3 shows the details
of these features; Figure 4 shows the important features identified by volcano plot. Table 4 shows the
details of these features.

Please note, the purpose of fold change is to compare absolute value changes between two group
means. Therefore, the data before column normlaization will be used instead. Also note, the result is
plotted in log2 scale, so that same fold change (up/down-regulated) will have the same distance to the
zero baseline.
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Figure 2: Important features selected by fold-change analysis with threshold 1.5. The red circles rep-
resent features above the threshold. Note the values are on log scale, so that both up-regulated and
downregulated features can be plotted in a symmetrical way



Table 2: Top 50 features identified by fold change analysis

Peaks (mz/rt) Fold Change log2(FC)
1 242.11034/17.59 14.907 3.898
2 424.02817/8.12 11.773 3.5574
3 424.0396/8.14 10.074 3.3326
4 227.09225/15.85  6.5138 2.7035
5 170.09035/20.93  5.5106 2.4622
6  522.11941/13.88  5.4547 2.4475
7 155.07161/18.96  4.6327 2.2118
8 169.08711/20.44  4.5502 2.1859
9 217.10753/14.43  4.1557 2.0551
10  435.0655/16.99 4.1168 2.0415
11 425.04502/8.13 3.9857 1.9948
12 461.16711/12.08 3.8608 1.9489
13 525.29646/13.68  0.26662 -1.9072
14 499.71989/17.94  0.28634 -1.8042
15  241.10768/15.87  3.4771 1.7979
16 251.05942/16.66  0.29162 -1.7778
17  355.18757/21.87  3.3091 1.7264
18 231.15918/15.64 0.30268 -1.7242
19  315.14299/16.36  3.3012 1.723
20  359.20669/21.18  3.2682 1.7085
21 435.08298/16.95  3.2181 1.6862
22 267.12826/16.96  0.3113 -1.6836
23 423.26338/18.29  0.34056 -1.554
24 525.28412/13.69  0.34199 -1.548
25  631.27995/17.98  2.9181 1.545
26 490.15067/14.25 0.34351 -1.5416
27  640.77433/16.36  2.7994 1.4851
28  592.1392/14.93 2.7586 1.4639
29 129.05396/14.06  2.7332 1.4506
30 782.3709/17.72 2.7141 1.4405
31 533.17637/17.7 2.7074 1.4369
32 436.06435/16.98  2.7021 1.4341
33  522.17375/8.93 2.679 1.4217
34 213.11261/17.42  2.6604 1.4116
35  483.21826/17.62  2.5714 1.3625
36 499.21584/17.89  0.39257 -1.349
37 508.11125/12.33  2.5407 1.3452
38 417.10292/10.97 2.5404 1.345
39  323.18613/20.23  2.5319 1.3402
40  490.13636/14.17  0.39792 -1.3295
41 429.20741/12.98 2.4858 1.3137
42 147.01186/7.27 2.4853 1.3134
43 727.19418/9.59 2.4444 1.2895
44 216.11693/14.98  0.40969 -1.2874
45 475.2589/14.3 2.4405 1.2872
46 197.11032/18.33 2.415 1.272
47 622.22408/7.54 2.406 1.2666
48  632.27935/17.86  2.3863 1.2548
49  417.2123/18.49 2.3703 1.2451
50  325.20225/19.58  2.3617 1.2399
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Figure 3: Important features selected by t-tests with threshold 0.01. The red circles represent features
above the threshold. Note the p values are transformed by -logl0 so that the more significant features
(with smaller p values) will be plotted higher on the graph.



Table 3: Top 50 features identified by t-tests

Peaks (mz/rt) p.value -logl0(p) FDR
1 217.10753/14.43  8.1686e-08 7.0879 6.9457e-05
2 417.10292/10.97 9.0108e-08 7.0452 6.9457e-05
3 429.18929/12.95 1.1557e-07  6.9372 6.9457e-05
4 241.10768/15.87 1.3389e-07  6.8732 6.9457e-05
5  242.11034/17.59  5.5121e-07  6.2587 0.00022875
6  429.20741/12.98  7.9521e-07  6.0995 0.00025596
7 499.71989/17.94  8.6347e-07  6.0638 0.00025596
8 173.08163/13.94 1.2364e-06 5.9078 0.0002779
9  592.1392/14.93 1.3117e-06 5.8822 0.0002779
10 187.09745/16.64 1.5173e-06 5.8189 0.0002779
11 197.11032/18.33 1.5792e-06 5.8016 0.0002779
12 537.11333/15.15 1.6592e-06 5.7801 0.0002779
13 155.07161/18.96 1.7411e-06 5.7592 0.0002779
14 144.04568/16.2 2.0924e-06 5.6793 0.00031013
15 417.2123/18.49 2.4965e-06 5.6027 0.00034535
16 517.19481/14.63  3.7438e-06 5.4267 0.00046904
17 304.06878/10.79  3.8427e-06 5.4154 0.00046904
18  533.17637/17.7 4.9285e-06 5.3073 0.00056815
19  323.18613/20.23  6.0488e-06 5.2183 0.0006606
20  435.0655/16.99 7.4065e-06 5.1304 0.00074128
21 631.27995/17.98  7.5021e-06 5.1248 0.00074128
22 537.12574/13.76  9.27e-06 5.0329 0.00084055
23 213.11261/17.42  9.3837e-06 5.0276 0.00084055
24 522.13493/16.42  9.722e-06 5.0122 0.00084055
25  447.25891/18.03 1.0785e-05  4.9672 0.00089519
26 243.1233/16.21 1.1935e-05  4.9232 0.00095253
27  231.15918/15.64 1.2807e-05  4.8926 0.00098423
28  355.18757/21.87 1.5771e-05  4.8021 0.0011449
29  665.28412/14.42 1.635e-05 4.7865 0.0011449
30 175.0975/14.87 1.6553e-05  4.7811 0.0011449
31 632.27935/17.86 1.737e-05 4.7602 0.0011627
32 669.29926/15.76  2.1234e-05  4.673 0.0013327
33 147.01186/7.27 2.1323e-05  4.6712 0.0013327
34 413.18019/16.22 2.1838e-05  4.6608 0.0013327
35 199.09784/15.58  2.3574e-05  4.6276 0.0013693
36  501.1806/16.44 2.4042e-05  4.619 0.0013693
37 175.07633/14.87  2.4417e-05  4.6123 0.0013693
38  499.21584/17.89  2.7042e¢-05  4.568 0.0014549
39 199.1334/19 2.7345e-05  4.5631 0.0014549
40  251.00445/14.65 2.8737e-05  4.5416 0.0014907
41  435.08298/16.95  3.2503e-05  4.4881 0.0016305
42 514.1562/11.71 3.3003e-05  4.4814 0.0016305
43 227.09225/15.85  3.6357e-05  4.4394 0.0017544
44 324.19066/9.25 3.9666e-05  4.4016 0.0018706
45 504.13812/10.12 4.7667e-05 4.3218 0.002198
46 789.22709/14.97  5.1066e-05  4.2919 0.0022162
47  522.17375/8.93 5.1145e-05  4.2912 0.0022162
48  574.26607/17.71 5.1267e-05  4.2902 0.0022162
49  490.15067/14.25 5.6267e-05  4.2497 0.0023446
50  315.14299/16.36  5.7354e-05  4.2414 0.0023446
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Figure 4: Important features selected by volcano plot with fold change threshold (x) 1.5 and t-tests
threshold (y) 0.01. The red circles represent features above the threshold. Note both fold changes and p
values are log transformed. The further its position away from the (0,0), the more significant the feature
is.
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Table 4: Top 50 features identified by volcano plot

Peaks (mz/rt) FC log2(FC)  p.value -log10(p)
1 217.10753/14.43  4.1557 2.0551 8.1686e-08  7.0879
2 417.10292/10.97 2.5404 1.345 9.0108e-08 7.0452
3 429.18929/12.95 2.1614 1.112 1.1557e-07 6.9372
4 241.10768/15.87  3.4771 1.7979 1.3389e-07  6.8732
5 242.11034/17.59 14.907 3.898 5.5121e-07  6.2587
6  429.20741/12.98  2.4858 1.3137 7.9521e-07  6.0995
7 499.71989/17.94  0.28634  -1.8042 8.6347e-07  6.0638
8 173.08163/13.94 1.7988 0.84702 1.2364e-06  5.9078
9 592.1392/14.93 2.7586 1.4639 1.3117e-06  5.8822
10 187.09745/16.64 1.7912 0.84092 1.5173e-06  5.8189
11 197.11032/18.33  2.415 1.272 1.5792e-06  5.8016
12 155.07161/18.96 4.6327 2.2118 1.7411e-06 5.7592
13 144.04568/16.2 1.8317 0.87319 2.0924e-06  5.6793
14 417.2123/18.49 2.3703 1.2451 2.4965e-06 5.6027
15 517.19481/14.63  0.51732  -0.95086 3.7438e-06  5.4267
16 533.17637/17.7 2.7074 1.4369 4.9285e-06  5.3073
17 323.18613/20.23  2.5319 1.3402 6.0488e-06  5.2183
18  435.0655/16.99 4.1168 2.0415 7.4065e-06  5.1304
19  631.27995/17.98  2.9181 1.545 7.5021e-06  5.1248
20 537.12574/13.76 1.6194 0.69543 9.27e-06 5.0329
21 213.11261/17.42  2.6604 1.4116 9.3837e-06  5.0276
22 522.13493/16.42 1.7128 0.77633 9.722e-06 5.0122
23 447.25891/18.03  2.071 1.0503 1.0785e-05  4.9672
24 243.1233/16.21 2.148 1.103 1.1935e-05  4.9232
25 231.15918/15.64  0.30268  -1.7242 1.2807e-05  4.8926
26 355.18757/21.87 3.3091 1.7264 1.5771e-05 4.8021
27  665.28412/14.42 1.9817 0.98674 1.635e-05 4.7865
28 175.0975/14.87 0.57815  -0.79049 1.6553e-05  4.7811
29  632.27935/17.86  2.3863 1.2548 1.737e-05 4.7602
30 147.01186/7.27 2.4853 1.3134 2.1323e-05  4.6712
31 413.18019/16.22 1.7679 0.82207 2.1838e-05  4.6608
32 199.09784/15.58 1.9287 0.9476 2.3574e-05  4.6276
33  501.1806/16.44 2.3066 1.2058 2.4042e-05  4.619
34 175.07633/14.87  0.54999  -0.86253 2.4417e-05  4.6123
35  499.21584/17.89  0.39257  -1.349 2.7042e-05  4.568
36 199.1334/19 2.2679 1.1813 2.7345e-05  4.5631
37  251.00445/14.65  2.3104 1.2082 2.8737e-05  4.5416
38  435.08298/16.95  3.2181 1.6862 3.2503e-05  4.4881
39 227.09225/15.85  6.5138 2.7035 3.6357e-05  4.4394
40  324.19066/9.25 0.49021  -1.0285 3.9666e-05  4.4016
41 504.13812/10.12 0.44444 -1.1699 4.7667e-05 4.3218
42 789.22709/14.97  1.8354 0.87612 5.1066e-05  4.2919
43 522.17375/8.93 2.679 1.4217 5.1145e-05  4.2912
44  574.26607/17.71 0.42568  -1.2321 5.1267e-05  4.2902
45 490.15067/14.25 0.34351 -1.5416 5.6267e-05 4.2497
46 315.14299/16.36  3.3012 1.723 5.7354e-05  4.2414
47  490.13636/14.17  0.39792  -1.3295 5.8167e-05  4.2353
48 170.09035/20.93  5.5106 2.4622 5.8756e-05  4.2309
49 121.0292/14.63 1.8184 0.86264 6.0596e-05  4.2176
50  599.20318/10.81 1.9676 0.97646 6.1623e-05  4.2103
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2.2 Correlation Analysis

Correlation analysis can be used to visualize the overall correlations between different features It can
also be used to identify which features are correlated with a feature of interest. Correlation analysis can
also be used to identify if certain features show particular patterns under different conditions. Users
first need to define a pattern in the form of a series of hyphenated numbers. For example, in a time-
series study with four time points, a pattern of of 1-2-3-4 is used to search compounds with increasing
the concentration as time changes; while a pattern of 3-2-1-3 can be used to search compounds that
decrease at first, then bounce back to the original level.

Figure 5 shows the overall correlation heatmap.
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Figure 5: Correlation Heatmaps
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2.3 Principal Component Analysis (PCA)

PCA is an unsupervised method aiming to find the directions that best explain the variance in a data
set (X) without referring to class labels (Y). The data are summarized into much fewer variables called
scores which are weighted average of the original variables. The weighting profiles are called loadings.
The PCA analysis is performed using the prcomp package. The calculation is based on singular value

decomposition.

The Rscript chemometrics.R is required. Figure 6 is pairwise score plots providing an overview of
the various seperation patterns among the most significant PCs; Figure 7 is the scree plot showing the
variances explained by the selected PCs; Figure 8 shows the 2-D scores plot between selected PCs; Figure
9 shows the 3-D scores plot between selected PCs; Figure 10 shows the loadings plot between the selected

PCs; Figure 11 shows the biplot between the selected PCs.
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Figure 6: Pairwise score plots between the selected PCs. The explained variance of each PC is shown in

the corresponding diagonal cell.
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Scree plot

N
o >
o _ o oV :
— H (o.» Q
RN boo} © :
: v? ; :
o A 9
O' - . .
e
@
c
8 o |
g o
) :
8 < E
8 o7 g
T :
> :
N _ P O°
: —O
o _| : :
S :
| | | | |
1 2 3 4 5

PC index

Figure 7: Scree plot shows the variance explained by PCs. The green line on top shows the accumulated
variance explained; the blue line underneath shows the variance explained by individual PC.

14



Scores Plot
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Figure 8: Scores plot between the selected PCs. The explained variances are shown in brackets.

Figure 9: 3D score plot between the selected PCs. The explained variances are shown in brackets.
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2.4 Partial Least Squares - Discriminant Analysis (PLS-DA)

PLS is a supervised method that uses multivariate regression techniques to extract via linear combination
of original variables (X) the information that can predict the class membership (Y). The PLS regression
is performed using the plsr function provided by R pls package*. The classification and cross-validation
are performed using the corresponding wrapper function offered by the caret package®.

To assess the significance of class discrimination, a permutation test was performed. In each permu-
tation, a PLS-DA model was built between the data (X) and the permuted class labels (Y) using the
optimal number of components determined by cross validation for the model based on the original class
assignment. MetaboAnalyst supports two types of test statistics for measuring the class discrimination.
The first one is based on prediction accuracy during training. The second one is separation distance
based on the ratio of the between group sum of the squares and the within group sum of squares (B/W-
ratio). If the observed test statistic is part of the distribution based on the permuted class assignments,
the class discrimination cannot be considered significant from a statistical point of view.°.

There are two variable importance measures in PLS-DA. The first, Variable Importance in Projection
(VIP) is a weighted sum of squares of the PLS loadings taking into account the amount of explained
Y-variation in each dimension. Please note, VIP scores are calculated for each components. When more
than componetnts are used to calculate the feature importance, the average of the VIP scores are used.
The other importance measure is based on the weighted sum of PLS-regression. The weights are a
function of the reduction of the sums of squares across the number of PLS components. Please note,
for multiple-group (more than two) analysis, the same number of predictors will be built for each group.
Therefore, the coefficient of each feature will be different depending on which group you want to predict.
The average of the feature coefficients are used to indicate the overall coeflicient-based importance.

Figure 12 shows the overview of scores plots; Figure 13 shows the 2-D scores plot between selected
components; Figure 14 shows the 3-D scores plot between selected components; Figure 15 shows the
loading plot between the selected components;Figure 16 shows the classification performance with differ-
ent number of components; Figure 17 shows the results of permutation test for model validation; Figure
18 shows important features identified by PLS-DA.

4Ron Wehrens and Bjorn-Helge Mevik.pls: Partial Least Squares Regression (PLSR) and Principal Component Regres-
sion (PCR), 2007, R package version 2.1-0

5Max Kuhn. Contributions from Jed Wing and Steve Weston and Andre Williams. caret: Classification and Regression
Training, 2008, R package version 3.45

6Bijlsma et al. Large-Scale Human Metabolomics Studies: A Strategy for Data (Pre-) Processing and Validation, Anal
Chem. 2006, 78 567 - 574
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Scores Plot
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Figure 13: Scores plot between the selected PCs. The explained variances are shown in brackets.

Figure 14: 3D scores plot between the selected PCs. The explained variances are shown in brackets.
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2.5 Significance Analysis of Microarray (SAM)

SAM is a well-established statistical method for identification of differentially expressed genes in mi-
croarray data analysis. It is designed to address the false discovery rate (FDR) when running multiple
tests on high-dimensional microarray data. SAM assigns a significance score to each variable based
on its change relative to the standard deviation of repeated measurements. For a variable with scores
greater than an adjustable threshold, its relative difference is compared to the distribution estimated by
random permutations of the class labels. For each threshold, a certain proportion of the variables in the
permutation set will be found to be significant by chance. The proportion is used to calculate the FDR.
SAM is performed using the siggenes package’. Users need to specify the Delta value to control FDR
in order to proceed.

Figure 19 shows the significant features identified by SAM. Table 5 shows the details of these features.

Table 5: Important features identified by SAM

Peaks (mz/rt) d.value  stdev rawp q.value

1 242.11034/17.59  -3.4198  0.046459  4.8193e-05 0.044263
2 227.09225/15.85  -2.6275  0.11047 9.6386e-05 0.044263
3 155.07161/18.96  -2.5737  0.046641 0.00014458  0.044263
4 217.10753/14.43  -2.5671  0.020923  0.00019277  0.044263
5 170.09035/20.93  -2.4734  0.1185 0.00024096  0.044263
6  522.11941/13.88  -2.4698  0.12172 0.00028916  0.044263
7 435.0655/16.99 -2.4168  0.064394  0.00033735  0.044263
8  241.10768/15.87  -2.3975  0.022147  0.00038554  0.044263
9  424.02817/8.12 -2.3897  0.3409 0.00043373  0.044263
10 424.0396/8.14 -2.3718  0.31183 0.00048193  0.044263

11 169.08711/20.44  -2.2472  0.14706 0.00057831  0.044263
12 355.18757/21.87  -2.2016  0.071558  0.0006747 0.044263
13 435.08298/16.95 -2.1399  0.084805 0.00072289  0.044263
14 315.14299/16.36  -2.1275  0.098987  0.00077108  0.044263
15  592.1392/14.93 -2.1257  0.035366  0.00081928  0.044263
16 631.27995/17.98  -2.1248  0.056213  0.00086747  0.044263
17 425.04502/8.13 -2.1041 0.17033 0.00096386  0.044263
18  359.20669/21.18  -2.0906  0.10961 0.001012 0.044263
19  417.10292/10.97  -2.087 0.01735 0.0010602 0.044263

THolger Schwender. siggenes: Multiple testing using SAM and Efron’s empirical Bayes approaches,2008, R package
version 1.16.0

25



SAM Plot for Delta = 1.3

LO_ ] 2
N cutiow: -2.087 /,’o
© _| cutup: Inf .7
(qV] /’
p0: 0.443 ’
7
Ln N 7
- nt: 1
- Significal 9 ///
False: 1.1 4 P
e _ 7 ,
— FDR: 0.026 7 P
7
Lo /// //
s Ve
3 © 2 .7
> // 4
© — 4 7
> // 4
= .7 at
T 2. ,
© 1 // Y
[«T) ] d it
%] 7 4
QO 7 4
o w L7 e
— T 7 4
1 Vi 7
7 7
// ’/
I Y A Y --. A
7/
4 Y
L0 7
AN T //
! V4
7
7
p— 7
/7
/7
Y
0 e (e}
(Y) - 7
' | | | | | | | | | | | | |
-3.5 -2.5 -1.5 -0.5 05 1.0 15 20 25

Expected d(i) values

Figure 19: Significant features identified by SAM. The green circles represent features that exceed the
specified threshold.
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2.6 Empirical Bayesian Analysis of Microarray (EBAM)

EBAM is an empirical Bayesian method based on moderated t-statistics. EBAM uses a two-group
mixture model for null and significant features. The prior and density parameters are estimated from
the data. A feature is considered significant if its calculated posterior is larger than or equal to delta
and no other features with a more extreme test score that is not called signicant. The default is delta
= 0.9. The suggested fudge factor (a0) is chosen that leads to the largest number of significant features.
EBAM is performed with ebam function in siggenes package®.

Figure 20 shows the important features identified by EBAM.
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Figure 20: Significant features identified by EBAM. The green circles represent features that exceed the
specified threshold.

[1] ”No significant features were found using the given threshold for EBAM”

8Holger Schwender. siggenes: Multiple testing using SAM and Efron’s empirical Bayes approaches,2008,R package
version 1.16.0
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2.7 Hierarchical Clustering

In (agglomerative) hierarchical cluster analysis, each sample begins as a separate cluster and the algo-
rithm proceeds to combine them until all samples belong to one cluster. Two parameters need to be
considered when performing hierarchical clustering. The first one is similarity measure - Euclidean dis-
tance, Pearson’s correlation, Spearman’s rank correlation. The other parameter is clustering algorithms,
including average linkage (clustering uses the centroids of the observations), complete linkage (clustering
uses the farthest pair of observations between the two groups), single linkage (clustering uses the closest
pair of observations) and Ward’s linkage (clustering to minimize the sum of squares of any two clusters).
Heatmap is often presented as a visual aid in addition to the dendrogram.

Hierachical clustering is performed with the hclust function in package stat. Figure 21 shows the
clustering result in the form of a dendrogram. Figure 22 shows the clustering result in the form of a
heatmap.
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Figure 21: Clustering result shown as dendrogram (distance measure using pearson, and clustering
algorithm using ward).
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2.8 K-means Clustering

K-means clustering is a nonhierarchical clustering technique. It begins by creating k random clusters (k
is supplied by user). The program then calculates the mean of each cluster. If an observation is closer
to the centroid of another cluster then the observation is made a member of that cluster. This process
is repeated until none of the observations are reassigned to a different cluster.

K-means analysis is performed using the kmeans function in the package stat. Figure 23 shows
clustering the results. Table 6 shows the members in each cluster from K-means analysis.
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Figure 23: K-means cluster analysis. The x-axes are variable indices and y-axes are relative intensities.
The blue lines represent median intensities of corresponding clusters

Table 6: Clustering result using K-means
Samples in each cluster

Cluster( 1) | Diet_NR_Neg_3

Cluster( 2 ) | Diet_NR_Neg_1 Diet_NR_Neg_2

Cluster( 3 ) | Diet_.IR_Neg_1 Diet_IR_Neg_2 Diet_IR_Neg_3
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2.9 Self Organizing Map (SOM)

SOM is an unsupervised neural network algorithm used to automatically identify major trends present
in high-dimensional data. SOM is based on a grid of interconnected nodes, each of which represents
a model. These models begin as random values, but during the process of iterative training they are
updated to represent different subsets of the training set. Users need to specify the x and y dimension
of the grid to perform SOM analysis.

The SOM is performed using the R som package®. Figure 24 shows the SOM clustering results. Table
7 shows the members in each cluster from SOM analysis.
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Figure 24: SOM cluster analysis. The x-axes are features and y-axes are relative intensities. The blue
lines represent median intensities of corresponding clusters

Table 7: Clustering result using SOM

Samples in each cluster

Cluster( 0, 0 ) | Diet_.IR_Neg_1

Cluster( 0, 1) Diet_IR_Neg_2 Diet_IR_Neg 3 Diet_ NR_Neg_1 Diet_NR_Neg_2
Cluster( 0,2 ) | Diet_NR_Neg_3

9Jun Yan. som: Self-Organizing Map, 2004, R package version 0.3-4
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2.10 Random Forest (RF)

Random Forest is a supervised learning algorithm suitable for high dimensional data analysis. It uses
an ensemble of classification trees, each of which is grown by random feature selection from a bootstrap
sample at each branch. Class prediction is based on the majority vote of the ensemble. RF also provides
other useful information such as OOB (out-of-bag) error, variable importance measure, and outlier mea-
sures. During tree construction, about one-third of the instances are left out of the bootstrap sample.
This OOB data is then used as test sample to obtain an unbiased estimate of the classification error
(OOB error). Variable importance is evaluated by measuring the increase of the OOB error when it is
permuted. The outlier measures are based on the proximities during tree construction.

RF analysis is performed using the randomForest package'®. Table 8 shows the confusion matrix of
random forest. Figure 25 shows the cumulative error rates of random forest analysis for given parameters.
Figure 26 shows the important features ranked by random forest. Figure 27 shows the outlier measures
of all samples for the given parameters. The OOB error is 0
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Figure 25: Cumulative error rates by Random Forest classification. The overall error rate is shown as
the black line; the red and green lines represent the error rates for each class.

Diet_IR_neg  Diet_NR_neg class.error
Diet_IR_neg 3.00 0.00 0.00
Diet_NR_neg 0.00 3.00 0.00

Table 8: Random Forest Classification Performance

10Andy Liaw and Matthew Wiener. Classification and Regression by randomForest, 2002, R, News
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Figure 26: Significant features identified by Random Forest. The features are ranked by the mean
decrease in classification accuracy when they are permuted.
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Outlying Measures
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Figure 27: Potential outliers identified by Random Forest. Only the top five are labeled.
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2.11 Support Vector Machine (SVM)

SVM aims to find a nonlinear decision function in the input space by mapping the data into a higher
dimensional feature space and separating it there by means of a maximum margin hyperplane. The SVM-
based recursive feature selection and classification is performed using the R—-SVM script!!. The process is
performed recursively using decreasing series of feature subsets (ladder) so that different classification
models can be calculated. Feature importance is evaluated based on its frequencies being selected in
the best classifier identified by recursive classification and cross-validation. Please note, R-SVM is very
computationally intensive. Only the top 50 features (ranked by their p values from t-tests) will be
evaluated.

In total, 11 models (levels) were created using 2075, 830, 332, 133, 66, 33, 20, 15, 11, 8, 6 selected
feature subsets. Figure 28 shows the SVM classification performance using recursive feature selection.
Figure 29 shows the signicant features used by the best classifiers.
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Figure 28: Recursive classification with SVM. The red circle indicates the best classifier.

1http:/ /www.hsph.harvard.edu/bioinfocore/RSVMhome/R-SVM.html
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Figure 29: Significant features identified by R-SVM. Features are ranked by their frequencies of being
selected in the classifer.
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3 Data Annotation

Please be advised that MetaboAnalyst also supports metabolomic data annotation. For NMR, MS, or
GC-MS peak list data, users can perform peak identification by searching the corresponding libraries.
For compound concentration data, users can perform metabolite set enrichment analysis and metabolic

pathway analysis.

The report was generated on Sun Feb 8 08:17:00 2015 with R version 3.0.3 (2014-03-06). Thank you
for using MetaboAnalyst! For suggestions and feedback please contact Jeff Xia (jianguoz@ualberta.ca).
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