Structure of the α -Helix

Structure of the β -Sheet

Protein Dynamics

Basics of Quenching HDX

In addition to lowering the pH, chemical kinetics	Place of Quenched Reaction	Half Life of Back Exchange
are considerable slowed with decreasing	My hand	1 minute
temperature.	In a Theoretical Lab	4 minutes
	In a UAB Lab	7 minutes
$-E_{\sigma}$	On Ice (0C)	1 hour
$l_{\rm r} = A_{\rm r} \frac{-u}{k_{\rm p}T}$	In the -20C Fridge	14 hours
$K = Ae^{\kappa_B T}$	In the -80C Fridge	7 Years
_	In Liquid Nitrogen	When Hell Freezes Over

Kinetics of HDX

For exchange to occur:

1. The site needs to be at least transiently exposed to the bulk solvent.

2. The site must be available to form new hydrogen bonds.

If it is either exposed with an unavailable site for hydrogen bonding or buried (most always hydrogen bonded in this case), it is described as **protected**.

In HDX experiments, the degree of protection (P_f) is empirically determined by the extent the rate of exchange (k_{ex}) is slowed from the predicted chemical rate (k_{ch}).

$$P_f = \frac{k_{ch}}{k_{ex}} \longrightarrow \log P_f = \log \frac{k_{ch}}{k_{ex}}$$

Kinetic Range of Protection

A wide span of different kinetics can be observed for the range of protection that can occur within a single protein.

Kinetic Range of Protection

A wide span of different kinetics can be observed for the range of protection that can occur within a single protein.

Because of this, the data is more reasonably visualized on the log scale.

Reproducibility and Peptide Diversity

blnk

blnk

HuTrim5a Coverage Map

	5	10	15	20	25	30	35	40	45	50	55	60
1	ASWEH	ΡQFEK	GAENL	YFQSE	FGTAT	MEEVA	REYQV	KLQAA	LEMLR	QKQQE	AEELE	ADIRE
					_				_			
~ 1	65	70	75	80	85	90	95	100	105	110	115	120
61	EKASW	ΚΤQIQ	ΥΟΚΤΝ	VLADF	EQLRD	ILDWE	ESNEL	QNLEK	EEEDI	LKSLT	NSETE	ΜVQQT
1.0.1	125	130	135	140	145	150	155	160	165	170	175	180
121	QSLRE	LISDL	ЕНКГО	GSVME	ΓΓČĠΛ	DGVIK	RTENV	ТЬККР	ETFPK	NQRRV	FRAPD	L К G M L
	185	190	195	200	205	210	215	220	225	230	235	240
181	EVFRE	LTDVR	RYWVD	VTVAP	NNISC	AVISE	DKROV	SSPKP	OIIYG	ARGTR	YOTFV	NFNYC
							~ ~ ~ ~		~		~~~	
	245	250	255	260	265	270	275	280	285	290	295	300
241	245 T G I L G	250 SOSIT	255 SGKHY	260 W E V D V	265 S K K T A	270 WILGV	275 CAGFO	280 P D A M C	285 NIEKN	290 E N Y O P	295 KYGYW	300 VIGLE
241	245 T G I L G	250 SQSIT	255 S G K H Y	260 W E V D V	265 S K K T A	270 WILGV	275 C A G F Q	280 P D A M C	285 N I E K N	290 E N Y Q P	295 K Y G Y W	300 VIGLE
241	245 T G I L G	250 SQSIT	255 SGKHY	260 W E V D V	265 S K K T A	270 WILGV	275 C A G F Q	280 P D A M C	285 NIEKN	290 E N Y Q P	295 KYGYW	300 VIGLE
241	245 T G I L G 305	250 SQSIT 310	255 SGKHY 315	260 WEVDV 320	265 SKKTA 325	270 WILGV 330	275 C A G F Q 335	280 P D A M C 340	285 NIEKN 345	290 E N Y Q P 350	295 KYGYW 355	300 VIGLE 360
241 301	245 T G I L G 305 E G V K C	250 SQSIT 310 SAFQD	255 SGKHY 315 SSFHT	260 W E V D V 320 P S V P F	265 SKKTA 325 IVPLS	270 WILGV 330 VIICP	275 C A G F Q 335 D R V G V	280 P D A M C 340 F L D Y E	285 N I E K N 345 A C T V S	290 ENYQP 350 FFNIT	295 KYGYW 355 NHGFL	300 VIGLE 360 IYKFS
241 301	245 T G I L G 305 E G V K C	250 S Q S I T S A F Q D	255 SGKHY 315 SSFHT	260 W E V D V 320 P S V P F	265 SKKTA 325 IVPLS	270 WILGV 330 VIICP	275 C A G F Q 335 D R V G V	280 P D A M C 340 F L D Y E	285 NIEKN 345 ACTVS	290 ENYQP 350 FFNIT	295 KYGYW 355 NHGFL	300 VIGLE 360 IYKFS
241 301	245 T G I L G 305 E G V K C	250 SQSIT SAFQD	255 SGKHY 315 SSFHT	260 WEVDV 320 PSVPF	265 SKKTA 325 IVPLS	270 WILGV 330 VIICP	275 C A G F Q 335 D R V G V	280 P D A M C 340 F L D Y E	285 NIEKN ACTVS	290 ENYQP 350 FFNIT	295 KYGYW 355 NHGFL	300 VIGLE 360 IYKFS
241 301	245 T G I L G 305 E G V K C 365	250 SQSIT SAFQD 370	255 SGKHY 315 SSFHT 375	260 WEVDV 320 PSVPF 380	265 SKKTA 325 IVPLS 385	270 WILGV VIICP 390	275 CAGFQ 335 DRVGV 395	280 P D A M C 340 F L D Y E	285 NIEKN 345 ACTVS	290 ENYQP 350 FFNIT	295 KYGYW 355 NHGFL	300 VIGLE 360 IYKFS
241 301 361	245 TGILG 305 EGVKC 365 HCSFS	250 SQSIT SAFQD SAFQD 370 QPVFP	255 SGKHY 315 SSFHT 375 YLNPR	260 W E V D V 320 P S V P F 380 K C G V P	265 SKKTA 325 IVPLS 385 MTLCS	270 WILGV VIICP 330 VIICP 390 PSSLE	275 CAGFQ 335 DRVGV 395 HHHHH	280 P D A M C 340 F L D Y E H	285 NIEKN 345 ACTVS	290 ENYQP 350 FFNIT	295 KYGYW 355 NHGFL	300 VIGLE 360 IYKFS

Aspergillus Protease Complements Pepsin

Data Analysis using HDExaminer

 Calculate isotope distribution using known chemical composition

- Calculate theoretical spectra for peptide +1, +2, +3 Deutrons
- Fit experimental spectra with Gaussian distributed sum of calculated spectra
- Assess quality of fit, calculate percent exchange

Heat Map Showing Exchange Kinetics

Effect of pH on Tail Needle

HIV Assembly & Maturation

Immature and Mature Virions are Pleomorphic

Immature

Mature

CA is Comprised of Distinct N- and C-Terminal Structural Domains

CA Cylinders are Based on a Hexamer Lattice

From Li et al, Nature 407:409 (2000)

CA does not Form Hexamers without the C-Domain (dimer) Interaction

H/D Exchange Experimental Protocol

Changes in Exchange Rates due to CA Assembly

Crosslinking of Intact Tubes will Allow Identification of Intersubunit Interfaces

Lysine 70 was Cross-Linked to Lysine 182

31 to 131 = 10 948.9 171 to 199 = 3 375.9 +DST = 114.0 Expected mass = 14 438.8

Observed mass = 14 439

A Model for An N-domain to C-domain Interaction in CA Assembly

Hydrogen Deuterium Exchange Studies on Virus-Like Particles

CA in Mature Virus-Like Particles is 50% Free and 50% Core-Incorporated

The N:C Interface is Bimodal in Mature Virions

Mature viruslike particles

The N:C Interface is Not Formed in Immature Virions

The N-domain:C-domain Interaction is Crucial for Viral Maturation

Three Sites of Interaction During Assembly and Maturation

dsDNA Containing Phage Morphology

The dsDNA Phage Assembly Pathway

Phi29 Scaffold Has a Helix-Loop-Helix Motif and a Disordered Tail

Both Free and Bound Scaffold Exchange Bimodally

What does Bimodality Indicate?

A group of residues open cooperatively & completely exchange before close again.

The Bimodality Maps to N-terminal Helix-Loop-Helix

Peptides Derived from H-L-H Region Have Similar Opening Kinetics

The Cooperative Motions can Be "Frozen" by Lowering the Temperature

Does Bimodality Originate from Opening of the Interface between Helices 1 & 2 ?

Tethered Form

The Tethered Form Cannot Open Cooperatively

• Does Binding Alter the Exchange Kinetics?

Prohead Bound Scaffold has Faster Kinetics

Model : The Interactions Stabilizing H-L-H are Weakened when Contact with Capsid

