Phi29 Scaffold Has a Helix-Loop-Helix Motif and a Disordered Tail

The Bimodality Maps to N-terminal Helix-Loop-Helix

Peptides Derived from H-L-H Region Have Similar Opening Kinetics

The Cooperative Motions can Be "Frozen" by Lowering the Temperature

Does Bimodality Originate from Opening of the Interface between Helices 1 & 2 ?

Tethered Form

What does Bimodality Indicate?

A group of residues open cooperatively & completely exchange before close again.

The Tethered Form Cannot Open Cooperatively

Non-covalent or Native Mass Spectrometry

We can ionize intact protein complexes using ESI !!

How Do We Determine Charge State?

For any peak:

 $m/z = (MW + nH^+)/n$

and MW is constant so:

$$1185.6 = (MW + nH^{+})/n$$

$$1133.0 = (MW + (n+1)H^{+})/(n+1)$$

$$n(1185.6) - nH^{+} = (n+1)1133.0 - (n+1)H^{+}$$

$$n = (1133.0 - H^{+}) / (1185.6 - 1133.0)$$

$$n = 21$$

mass = 21 * (1185.6-21) = 24,444

Subunit Exchange in NAD Synthetase

Portal Motor Packages DNA Into Phage Head

Native Mass Spectrometry Can Determine the Stoichiometry of Macromolecular Complexes

Detection of Intermediates and Sub-populations

Complexes Formed in Vitro Larger Diameters

Complexes

100 nm

Native Mass Spectrometry Demonstrates Scaffold Binds as a Dimer

Scaffolding : Connector at 2:1 Input Ratio

Increasing the Scaffolding to Connector Ration Increases the Scaffolding Saturation

Scaffolding Binds Non-cooperatively with a K_d of ~20 μM

 $K_{d} = 50 \,\mu M$

Identification of the Connector/Scaffolding Interface by Chemical Cross-Linking

To Locate the Interface on Connector Protein To Obtain Distance Constraint of Interactions

Lysine Reactive DST Cross-Linker

DST: Spacer Arm 6.4 Å

DST Cross-Linking Profiles

Identification of Scaffolding/Connector Interfaces by Chemical Cross-linking

Scaffolding 83-98 Cross-Linked to Connector 4-5/19-20

Peptides were sequenced by MS/MS.

Docking Model of Connector/Scaffolding Complexes

1st step: ZDOCK (optimize shape complementarity, deslovation electrostatics) Use entire scaffolding dimer Use connector dimer Block interior surface of connector Generate #2000 models 2nd step: filter with SF66-Conn102 cross-link distance constraint Use 8 Å constraint, 26 models Scaffolding orientation Defined by SF83 Conn4/19 cross-link

Select model #25

3rd step: model verification by mutagenesis

Based on the Model Pairs of Lysines Were Introduced to Alter Complex Stability and Enable Cross-linking

Connector	Scaffolding	Distance
K67	D59	2.98 Å
N43	K52	6.88 Å
R110	E56	4.05 Å
E114	R69	3.86 Å
L274	K52	9.81 Å

Gain of Function

Scaffolding D58K Cross-links to Connector K113 within the Distance Range Predicted by the Model

D58K Scaffolding 48-65 Cross-Linked to Wt Connector 112-139 using DST (6.4 Å)

Predicted distance D58 to K113 ~3.8 Å.

Obtaining Shape Information

Put a device that separates ions by shape in front of MS

One such device is a "drift tube"

This is a "tube" filled with gas. The progress of the molecules is retarded as they are buffeted by gas.

Block Diagram of Waters Synapt IMS-ToF

Hemoglobin Tetramer Denaturation

