
Phi29 Scaffold Has a Helix-Loop-Helix Motif  and a 
Disordered Tail 

Marc C Morais et al.,  
Nature Structural Biology 2003 

 



1  min 

40 sec 

0  sec 

10 sec 

10  min 

3  min 

      

857 858 859 860 861 862 863 864
m/z0

100

%

0

100

%

0

100

%

0

100

%

0

100

%

0

100

%

Free scaffold 13+ 

m/z 

Partially exchanged 
species 

Fully exchanged 
species 



The Bimodality Maps to N-terminal Helix-Loop-Helix 
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Peptides Derived from H-L-H Region Have Similar 
Opening Kinetics 
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The Cooperative Motions can Be “Frozen” by Lowering the 
Temperature 

20 °C 10 °C 



Does Bimodality Originate from Opening of the 
Interface between Helices 1 & 2 ? 

L3C & N35C 

2.58 Å 

Tethered Form 



What does Bimodality Indicate? 
A group of residues open cooperatively &  
completely exchange before close again. 
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Reduced form  

Oxidized Form ( Tethered ) 

The Tethered Form Cannot Open Cooperatively 
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Non-covalent or Native Mass 
Spectrometry 

We can ionize intact protein 
complexes using ESI !! 



How Do We Determine Charge 
State? 

    on, trap
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For any peak: 
 
m/z = (MW + nH+)/n 
 
and MW is constant so: 
 
1185.6 = (MW + nH+)/n  
1133.0 = (MW + (n+1)H+) /(n+1) 
 
n(1185.6) - nH+ = (n+1)1133.0 - (n+1)H+  
 
n = (1133.0 - H+) / (1185.6 – 1133.0) 
 
n = 21 
 
mass = 21 * (1185.6-21) = 24,444  
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Subunit Exchange in NAD Synthetase 



Portal Motor Packages DNA Into Phage Head 



   m/z    = 8938 
m/(z+1) = 8756 
m/(z+2) = 8581 

 
m = 429,052 

 
m/12 = 35,754 

Monomer = 35,747 

Native Mass Spectrometry Can Determine the Stoichiometry of 
Macromolecular Complexes 

Phi-29 Portal Complex  



Detection of Intermediates and Sub-populations 



Complexes Formed in Vitro Larger Diameters 
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Native Mass Spectrometry Demonstrates Scaffold 
Binds as a Dimer 

12mer connector 
+ 2 scaffold 
+ 4 scaffold 
+ 6 scaffold 

Scaffolding :Connector at 2:1 Input Ratio 



Increasing the Scaffolding to Connector Ration 
Increases the Scaffolding Saturation 

2:1 

25:1 
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Scaffolding Binds Non-cooperatively  
with a Kd of ~20 µM 
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Identification of the Connector/Scaffolding 
Interface by Chemical Cross-Linking 

To Locate the Interface on Connector Protein 
To Obtain Distance Constraint of Interactions 



Lysine Reactive DST Cross-Linker 

Lys 

DST: Spacer Arm 6.4 Å 

Lys Lys 

Lys 
+ 

Lys Lys 

Mass: A+B+114 Da 

Trypsin Digestion 
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DST Cross-Linking Profiles 

Conn Complex Conn Complex 

15 % SDS-PAGE 7.5 % SDS-PAGE 



Identification of Scaffolding/Connector Interfaces by 
Chemical Cross-linking 
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[M+5H] 5+ theo= 660.7490 
[M+5H] 5+ exp = 660.7504 
Error (ppm)   = 2 ppm 

Scaffolding 53-68 Cross-Linked to Connector 94-105 
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Scaffolding 83-98 Cross-Linked to Connector 4-5/19-20 

* * 

* 

* 

 
[M+3H] 3+ theo= 731.3813 
[M+3H] 3+ exp = 731.3822 
Error (ppm)   = 1.2 ppm 
 

Peptides were sequenced by MS/MS. 



Docking Model of Connector/Scaffolding Complexes 

1st step: ZDOCK 
 ( optimize shape complementarity, deslovation, 

electrostatics) 
 Use entire scaffolding dimer 
 Use connector dimer 
 Block interior surface of connector 
 Generate #2000 models  
 

2nd step: filter with  
 SF66-Conn102 cross-link distance constraint 
  Use 8 Å constraint, 26 models 
 Scaffolding orientation  
  Defined by SF83 Conn4/19 cross-link 
 Select model #25 

 
3rd step: model verification by mutagenesis 

6.38 Å 
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Based on the Model Pairs of Lysines Were Introduced to 
Alter Complex Stability and Enable Cross-linking 
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Loss of Function 
 is Easy ! 



Gain of Function 



D58 
K113 



Scaffolding D58K Cross-links to Connector K113  
within the Distance Range Predicted by the Model 

D58K Scaffolding 48-65 Cross-Linked to  
Wt Connector 112-139 using DST (6.4 Å) 

 
[M+6H] 6+ theo= 876.7669 
[M+6H] 6+ exp =  876.7647 
Error (ppm)   = 3 ppm 
 

Peptide was sequenced by MS/MS. 
Predicted distance D58 to K113 ~3.8 Å. 
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Obtaining Shape Information  

Put a device that separates ions by shape in front of MS 
 
One such device is a “drift tube” 
 
This is a “tube” filled with gas. The progress of the 
molecules is retarded as they are buffeted by gas. 



Block Diagram of Waters Synapt IMS-ToF 





native partially 
denatured 

partially 
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Hemoglobin Tetramer Denaturation 
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