Mar 9, 2011 UAB BMG744

Sometimes the most effective proteomics includes a lot of non-proteomics

Helen Kim, Ph.D.

Dept of Pharmacology & Toxicology
University of Alabama at Birmingham
helenkim@uab.edu
205-934-3880

HelenKim/UAB/PharmTox

OUTLINE

- Proteomics analysis of actions of a dietary supplement, grape seed extract (GSE), in mammalian brain;
- FT-ICR MS mapping of HNE adduct sites on recombinant creatine kinase (CK-BB);
- III. Enzyme assays: HNE stoichiometrically poisons CK-BB:
- IV. Unexpected results from studies of CK-BB in AD brain

HelenKim/UAB/PharmTox

Our principal goal: to understand the molecular basis of human chronic conditions/diseases, to develop prevention or therapies.

Strategy: a proteomics approach

Hypothesis: Actions of "beneficial" agents such as dietary antioxidants in normal and disease tissue will reveal subproteomes of proteins "at risk" for disease-relevant changes.

HelenKim/UAB/PharmTox

3

HelenKim/UAB/PharmTox

genistein

Database of protein differences in GSE vs CT brains

Protein Name	#matched	Accession	MOWSE	Obs	Pred	Obs	Pred	Nature of
	pep	#		m.w.	m.w.	pl	pl	change in
						'		GSE brains
Mitochondrial matrix	10	P19227	*1.26E+04	64900	60956	5.6	5.9	+1.5
proteinprecursorP60								
Creatine Kinase BB	12	P07335	*1.66E+05	45600	42712	5.45	5.3	+1.52
chain								Translocation
								to
								Acidic pH
Actin	8	P10365	*2.18E+05	42000	41636	5.3	5.4	Less complex
GFAP	20	P47819	*9.67E+09	49000	49943	5.4	5.3	- 1.6
14-3-3 epsilon	10	P42655	*1.41E+09	31900	29174	4.49	4.6	- 2.1
Alpha Enolase	9	P04764	*6.64E+05	46000	46985	6.0	6.2	Less complex
Gamma Enolase	10	P07323	95	47000	47111	5.12	5.03	Less complex
RIKEN cDNA	9	NP080270	169	26000	25084	5.0	5.0	-1.56
(NM 025994)			95	26000	25084	5.1		
HSC-70	12	gi4103877	110	70321	42455	5.9	6.64	+1.63
HSC-71	16	gi123644	105	70386	71195	5.43	5.49	+1.91
Neurofilament L	14	gi13929098	120	61025	61298	4.61	4.63	+1.63
Triplet protein								
Neurofilament M	19	gi8393823	153	95086	95591	4.75	4.76	+1.73
triplet protein								
Vimentin	10	gi202368	93	53600	53641	5.09	5.06	-1.52

Mitochondrial matrix protein precursor HSP-60

(Tilleman et al., 2002a) (Tilleman et al., 2002b)

HelenKim/UAB/PharmTox

14-3-3 epsilon protein Heat shock cognate 70

Heat shock cognate 71 Neurofilament triplet protein L

GFAP -Vimentin 👃

Gamma enolase Alpha enolase **Actin**

Neurofilament triplet protein M

Creatine kinase Brain isoform

RIKEN cDNA NM 025944

HelenKim/UAB/PharmTox (Deshane et al., 2004. J. Agric. Food Chem.)

Initial conclusion: GSE is neuroprotective, since its effects on proteins are counter to the directions of change for the same proteins in disease. GREEN: folding/stress response PURPLE: energy **BLUE**: new ORANGE: cytoskeleton (Schonberger et al., 2001)

(Deshane et al., 2004. J. Agric. Food Chem.)

Western blot analysis corroborated 2D gel image analysis quantitation

A. Stained gel for HSP-60

B. Western Blots

C. Quantitative Densitometry

(Deshane et al., 2004. J. Agric. Food Chem.)

HelenKim/UAB/PharmTox

9

Use chemistry to determine whether GSE affects oxidations

Protein carbonyl

Recognized by anti-DNP antibody

HelenKim/UAB/PharmTox

Modified Amino		Co	ncentration	_			
Acid	5000	300	100	30	10	5	
H^7	M,S	M,S	M,S	S			
H^{26}	М	M	М	M			
H^{29}	М	М					
K^{45}	М						Sites of HNE-
H^{66}	M	M					
K^{86}	M	M					adducts on CKBB
\mathbf{H}^{97}	М	М	М				over a range of
K^{101}	М	М					
C^{141}	M	М	М	М			concentrations;
C^{145}	М	М	М	M			RED indicates
K^{177}	М						active-site
H^{191}	M	M	М				
H^{219}	M,S	M,S	М				residues
H^{234}	M,S	M,S	S				
K^{247}	M,S						
C^{254}	M,S	M,S	M,S	M,S	M	М	
H^{276}	М	М					
C^{283}	M	M	М	M	M		
H^{296}	M,S	M,S	S				
H^{305}	М	М					
K^{313}	М						
K^{358}	М						4.4
K^{381}	М				(Eli	iuk et al	I., Chem. Res. Toxicol., 2007)

Crystal structure of CK-BB showing the HNE adducts at active-site and non-active-site residues detected at 30 μ M 4HNE.

(crystal structure adapted from Eder et al., 1999)

HelenKim/UAB/PharmTex (Eliuk et al., *Chem. Res. Toxicol.*, 2007)

Reduction of CK-BB activity correlated with increased HNE-adducts formed at active-site residues % of unmodified hCK-BB activity 100 90 10 µM hCK-BB 80 = active site modification 70 60 50 40 30 20 10 10 100 300 4HNE concentration (μM) (Eliuk et al., Chem. Res. Toxicol., 2007)

Modifications on CKBB detected by MS/MS analysis

Peptide Sequence	Modified Amino Acid	Modification	Mass Shift	AD	Age-matched Control	
FPAEDEFPDLSAHNNHMAK	M30	Oxidation	15.998	✓	✓	
FPAEDEFPDLSAHNNHMAK	M30	Di-oxidation	32.001	√ ∗	√ *	
GIWHNDNK	W218	Oxidation	15.980	✓	✓	
TFLVWVNEEDHLR	W228	Kynurenine	3.999	√ *	√ **	
TFLVWVNEEDHLR	W228	Oxidation	16.005	✓	✓	
TFLVWVNEEDHLR	W228	Di-oxidation	32.004	✓	✓	
SKDYEFMWNPH	M272	Oxidation	15.997	✓	✓	
LGFSEVELVQMVVDGVK	M352	Oxidation	15.990	✓	✓	
LLIEMEQR	M363	Oxidation	15.995	✓	✓	
LEOGOAIDDLMPAOK	M377	Oxidation	15.996	✓_	✓	
N H		NH O	NH ₃ +ON	¥°	Structures	

Conclusions regarding the grapeseed studies

- GSE has pleiotropic effects in the brain:
 - gene expression/protein turnover;
 - protein oxidations;
 - These actions may be consistent with neuroprotection, since the majority are in the opposite direction to changes affecting these proteins in AD or models of dementia.
 - These were the first studies to identify specific proteins affected by dietary intake of a complex botanical mixture.

HelenKim/UAB/PharmTox

22

D. Stella

Conclusions from the studies with CKBB

- Incubation with HNE stoichiometrically inhibited hCKBB activity.
 - this was correlated with increased HNE adducts on CKBB, revealed by FT-ICR-MS.
- At the lowest activity, all four active-site residues of CKBB were HNE-modified.
- Thus, a combination of state of the art mass spectrometry and conventional biochemistry was optimal in determining the role of HNE adducts on CKBB function.

HelenKim/UAB/PharmTox

23

More conclusions from studies of CKBB

- In AD brain, CKBB was not detectably modified with HNE;
- Rather, oxidative modifications on CKBB were similar between AD and CT brains.
 - These non-differences correlated with a lack of difference in specific activity of CKBB between AD and CT.
- HOWEVER, a small % of CKBB (cytosolic isoform) was detected in a particulate form in both AD and CT, but more so in AD; this DID have lower specific activity. THIS CKBB may be interestingly modified.

HelenKim/UAB/PharmTox