Peptide ion fragmentation in mass spectrometry

Matthew B. Renfrow

renfrow@uab.edu

6-4681

Where we are so far

- We've discussed the nature of the problem, how we might attack it and what we believe in
- Matt Renfrow has told you
 - how (remarkably) we get peptide and protein molecular ions into gas phase
 - the importance of isotopes in mass spectrometry
 - how we measure the *m/z* values of the ions
- We also talked about:
 - how to measure the molecular weight of a protein
 - How to fragment a protein into smaller pieces to get a peptide mass fingerprint and hence "identify" it

Lecture goals

- Value of fragmentation in determining structure
- How peptides fragment
 - Interpreting the tandem mass spectrum
- Automating identification of peptides from their fragment ions
 - pros and cons
- Controlling fragmentation
 - Choice of ionization and fragmentation methods

Why ion fragmentation provides useful information

- Compounds can have the same empirical formula, i.e., the same molecular weight or *m/z*, but be different chemically.
- Breaking them into parts (fragmenting them) helps to identify what they are.
- Each of the following peptides gives rise to exactly the same *m/z* for the [M+2H]²⁺ ion
 NH₂VFAQHLK-COOH NH₂VAFQHLK-COOH
 NH₂VFQHALK-COOH NH₂VHLAFQK-COOH
- In proteomics we want to distinguish these peptides

What is MS-MS (tandem mass spectrometry)?

Collision-induced dissociation

Fragmenting a peptide

Adapted from http://www.matrixscience.com/help/fragmentation_help.html

Calculating expected *b*- and *y*-ion fragments

Alanine	71.037	Leucine	113.084
Arginine	156.101	Lysine	128.094
Asparagine	114.043	Methionine	131.040
Aspartic acid	115.027	Phenylalanine	147.068
Cysteine	103.009	Proline	97.053
Glutamic acid	129.043	Serine	87.032
Glutamine	128.058	Threonine	101.048
Glycine	57.021	Tryptophan	186.079
Histidine	137.059	Tyrosine	163.063
Isoleucine	113.084	Valine	99.068

 $b_n = [residue masses + 1]$ - these come from the N-terminus $y_n = [residue masses + H_2O + 1] = these come from the C-terminus$

ADGTWLEVR $b_3 = ADG, 71.04+115.03+57.02+1= 244.09$ $y_3 = EVR, 129.04+99.07+156.10+18+1= 403.21$

Identification of daughter ions and peptide sequence

What's in a peptide MSMS spectrum?

- In most cases, some, but rarely all, of the theoretic *b*- and *y*-ions are observed
- Besides *b* and *y*-ions, other types of fragmentation can occur to form a_n and x_n ions, as well as also losing CO, NH₃ and H₂O groups
- Internal cleavage reactions can occur at acidic (Asp - Glu) residue sites

Identifying a peptide by de novo sequencing

- Take the partial sequence that can be identified manually and submit it to PROWL (<u>http://prowl.rockefeller.edu/</u>) click on PROTEININFO and enter sequence - select all species
- Use suggested sequences to fill in the gaps and then check all theoretical ions using MS-Product at <u>http://prospector.ucsf.edu/prospector/cgibin/msform.cgi?form=msproduct</u>

CID Peptide **Fragmentation**

			*		Inert Gas
	102	T FLVW	VNEEDHLR	1556	(He)
	249	TF LVW	VNEEDHLR	1409	
	362	TFL VW	VNEEDHLR	1296	
N-termina	461	TFLV W	VNEEDHLR	1197	C torreiro
b ions	647	TFLVW	VNEEDHLR	1911	v ions
m/z	² 746	TFLVWV	NEEDHLR	912	m/z
	860	TFLVWVN	EEDHLR	798	
The ion's mass which would be affected by a modified H?	989	TFLVWVNE	EDHLR	669	
	118	TFLVWVNEE	DHLR	540	
	1233	TFLVWVNEED	HLR	425	
	1370	TFLVWVNEED	H LR	288	
	1483	TELVWVNEED	HT. R	175	

S.Eliuk & H. Kim 1/14/2011

Fragmentation by CID (Collision Induced Dissociation)

http://www.ionsource.com/tutorial/DeNovo/nomenclature.htm

The most common fragments observed with ion trap, triple quadrupole, and QTOF mass spectrometers

S.Eliuk & H. Kim 1/14/2011

00			PR	OWL						
•	► C 😤 + 6	http://prowl.rockefeller.edu/	/prowl/proteininfo.html				^ (O	2-		0
E	ClustalW Gmail Fugue	Codon Lister Pluto H	lubble UAB Drop Box	ACNEM ERA C	ommons CNGI da	ta JUFO	Pepper	Kirchstein	Colin Soccer	X
	Laboratory of Ma PROWL	ss Spectrometry a	nd Gaseous Ior	Chemistr	у					
(1	► ProFound			PROTEIN	INFO					
	 ProteinInfo PeptideMap 	Advanced S	equence Search		Analyze	Amino A	cid Seq	uence		
	► PepFrag	Select a database:	NCBI nr (2008/01/01)		\$					
01	► X! Tandem	Enter keywords:			Se	earch Keywo	ords			
ň.	X! Hunter	Enter sequence:			S	earch Seque	ence			
	GPMDB	Select Search Categ	ory:							
	PROWL				• All Categor	ies				
		🔘 Bacteria		🔘 Eukaryota				🔵 Virus	es	
1	≻ Chait Lab	Firmicutes		Dict	yostelium disco	ideum		0	Hepatitus	C١
		Bacillus	subtilis	🔵 Fungi				0	Other Viru	se
	oNO	Mycopia Other E	irmicutes) Pneumocystis	carinii as caravi	iciae			
	The The	Proteobacteria	innicutes		Schizosacchar	omyces	nombe			
	Rockefeller 2	Enterobac	teria	ē	Other Fungi	omyces	pombe			
	E University) Es	scherichia coli	Metazo	a					- 1
		0 01	ther Enterobacteria	C	Caenorhabditi	s elegan	IS			- 1
7	he Rockefeller University	O Other P	roteobacteria	00	hordata					
	New York, NY 10021	Other Bacter	la		Fugu rut Danio ro	ripes				
	(212) 327-0000				A Mammalia	110				
					O Prima	tes				- 1
						O Homo	sapiens	5		
						Other	primate	s		
					🔘 Rodei	ntia				
6	National Center for) Mus n	nusculus	5		1

000	MS-Pro	duct				
	🕇 😴 🕂 🙆 http://prospector.ucsf.edu/prospector/4.27.1/cgi-bir	/msform.cgi?form=m	sproduct	• Q.+	C)
Clust	alW Gmail Fugue Codon Lister Pluto Hubble UAB Drop Box A	CNEM ERA Commons	s CNGI data JUF	O Pepper Kirchstein	Colin Soccer	>>
UCSF	University of California, San Francisco About UCSF Search UCSF UCSF N	edical Center				1
Home MS-	Fit MS-Tag MS-Seq MS-Pattern MS-Bridge MS-Digest MS-Produc	<u>MS-Comp</u> <u>DB-Sta</u>	<u>t MS-Isotope M</u>	<u>S-Homology</u>		
	MS-Produc	t				
	Pentide Sequen					
	Peptide Sequen					
N term	\$ SAMPLER		<u>C term</u>	\$		
	Enter Sequence in Capital lette	s except:				
	m - Met-ox h - Homoserine lactone (s,t,y - Phosphorylated S,T,Y u, v, w, x - use	r specified amino	acids			
	Acetyl (K)	0				
	CONSTANT Amino (Y) Mods Asn->Succinimide (N)	0				
	Carbamidomethyl (C)	Ŧ				
	User Specified AA Elem Comp (u) C2 H3 N1 (01				
	User Specified AA Elem Comp (v)					
	User Specified AA Elem Comp (x)					
	Use instrument specific defaults to overri	de ion types below				
	A Composition ions N term coguence ions C-term coguence	ione Internal	Ladder			۷
· · ·		Fragment-ion	ns sequencing	ions		
s	Satellite Sequence Ions Neutral-loss Sequence					
	(side-chain loss)	OCH - Multiple	Feeling Sequen	CE 10/15		
	d = v = w = -H ₂ O Ø -NH ₃ Ø -H ₃ FO ₄ = -3	m Losses	b+H₂O [⊄	ſ		
	$(S, T, Y + PO_4)$	M + Ox) 📃	K, N, K			
	Induce Fragmentation					
	Diaplay Graph I May Chaves (Name			6
			Name lastres			*
	Maccoc are Lowering to Eran Tal	200				5

Other ions observed in CID peptide fragmentation

Immonium and Related Ions												
	87.06	120.08	86.10			102.05	84.08 101.11 129.10	88.04	87.06	72.08	72.08	70.07 87.09 100.09 112.09
N-terminal ior	IS											
a-NH ₃ ions		217.10	330.18	401.22	458.24	587.28	715.38	830.40	944.45	1043.52	1142.58	
a ions		234.12	347.21	418.24	475.27	604.31	732.40	847.43	961.47	1060.54	1159.61	
b-NH ₃ ions		245.09	358.18	429.21	486.23	615.28	743.37	858.40	972.44	1071.51	1170.58	
b-H ₂ O ions						614.29	742.39	857.42	971.46	1070.53	1169.59	
b ions		262.12	375.20	446.24	503.26	632.30	760.40	875.43	989.47	1088.54	1187.61	
	1	2	3	4	5	6	7	8	9	10	11	12
Η-	Ν	F	L	А	G	E	К	D	Ν	V	V	R
y ions		1247.67	1100.61	987.52	916.48	859.46	730.42	602.33	487.30	373.26	274.19	175.12
y-NH ₃ ions		1230.65	1083.58	970.50	899.46	842.44	713.39	585.30	470.27	356.23	257.16	158.09
y-H ₂ O ions		1229.66	1082.60	969.51	898.47	841.45	712.41	584.32-				

Identification of daughter ions and peptide sequence

Issues in MS-MS experiment

- At any one moment, several peptides may be co-eluting
- Data-dependent operation:
 - The most intense peptide molecular ion is selected first (must exceed an initial threshold value)
 - A 2-3 Da window is used (to maximize the signal)
 - The ion must be in 2⁺ or 3⁺ state
 - Since the ion trap scan of the fragment ions takes ~ 1 sec, only the most intense ions will be measured
 - However, can use an exclusion list on a subsequent run to study minor ions

ESI FT-ICR positive ion mass spectra of isolated IgA1 HR peptide.

Renfrow M B et al. J. Biol. Chem. 2005;280:19136-19145

Let's take a closer look at fragmentation

 y_2 R_4 H_3 N^+ N^+ N^- OH R_5 OH

 $no b_1 ion$

S. Barnes & M. Renfrow 1/14/11

Wysocki et al. 2005

Other amino acid fragment ions

Immonium ion	Amino acid	Major (M) or
(ml'z)	residue	minor (m) peak
60.04	S	М
70.07	R or P	М
72.08	v	М
73.00	R	m
74.06	Т	M
84.08	K or Q	M
86.1	I or L	M
87.09	N or R	М
88.04	D	М
100.09	R	m
101.11	K or Q	М
102.06	Е	M
104.05	Μ	М
110.07	Н	М
112.09	R	М
120.08	F	М
126.06	Р	М
129.1	K or Q	m
136.08	Y	М
138.07	Н	m
159.09	W	М

ade veloes of common immediates income

Detecting posttranslational modifications (PTMs) by MS

- A key issue is that the energy of ionization or the collisional process should not exceed the dissociational energy of the PTM
- MALDI-TOF MS with a N₂ laser causes fragmentation of a nitrated tyrosine residue
 - Use ESI to make the molecular ion
 - Go to another laser wavelength (YAG laser at 355 nm or IR)
- O-glucosyl and phospho groups fragment more easily than the peptide to which they are attached
 - Use electron capture dissociation

Types of fragmentation (1)

- Collision-induced dissociation (CID)
 - Also called CAD (collision-activated dissociation)
 - Multiply charged peptide ions are isolated by an *m*/z based filter
 - Selected ions are accelerated into a field of inert gas (He, N₂, Ar, Xe) at moderate pressure
 - The energy gained in collision events increases vibrational and stretching modes of the peptide backbone (and anything attached to it!)
 - The increased motion of the energized peptide causes breaks that occur typically at the peptide bond
 - Side chain groups can also be broken, some times more easily than the peptide chain

Fragmentation of nitrated peptides in MALDI-TOF experiment

S. Barnes & M. Renfrow 1/14/11

ESI-tandem MS of a nitrated peptide

S. Barnes & M. Renfrow 1/14/11

aa658-668 RNSILTETLHR Unmodified m/z 447.37(3+) 1339.09 Da

S. Barnes 1/15/10

aa658-668 RNsILTETLHR Phosphorylated m/z 474.00(3⁺) 1419.00 Daltons

Types of fragmentation (2) IRMPD

InfraRed Multi-Photon Dissociation

- Used in FT-ICR instruments where a vacuum better than 1 x 10⁻¹⁰ torr is necessary for the analysis of peptide ions
- The infra-red radiation is delivered by an IR laser operating at 10.6 microns
- No gas is involved
- In this case, the fragmentation is induced in the ICR cell
- Effects are essentially equivalent to CID

ECD and IRMPD with the Finnigan LTQ FT

Types of fragmentation (3) ECD

- Electron Capture Dissociation
 - Used in an ICR cell of an FT-MS instrument
 - Low energy electrons interact with the multiply charged peptide and are absorbed
 - They disturb bonding of the peptide backbone and cleave it without altering the side chain
 - Yields c- and z-ions
 - MS-MS spectra often very clean, but low sensitivity
 - In conjunction with an IR laser, ECD can fragment whole proteins (top-down)

Sequencing O-GIcNAc peptides by ECD FT-ICR-MS

Casein kinase II - AGGSTPVSSANMMSG

S. Barnes & M. Renfrow 1/14/11

CID spectra of Arg-rich peptide

S. Barnes & M. Renfrow 1/14/11

ECD spectra of cystin peptide

ECD spectra of phosphorylated cystin peptide

IRMPD Fragmentation pattern

K. Håkansson, H. J. Cooper, M. R. Emmett, C. E. Costello, A. G. Marshall, C. L. Nilsson, *Anal. Chem.* **73**, 4530 (2001).

ECD Fragmentation Pattern

K. Håkansson, H. J. Cooper, M. R. Emmett, C. E. Costello, A. G. Marshall, C. L. Nilsson, *Anal. Chem.* **73**, 4530 (2001).

Types of fragmentation (4) ETD

- Electron Transfer Dissociation
 - The electron is provided by an electron donating chemical species, a radical anion (azobenzene, fluoranthene) directly infused as a reagent gas, or from their precursors introduced by ESI - 9-anthracenecarboxylic acid, 2-fluoro-5-iodobenzoic acid, and 2-(fluoranthene-8-carbonyl)benzoic acid)

Electron transfer dissociation

Fig. 4. Schematic of steps involved in the operation of the LTQ mass spectrometer for peptide sequence analysis by ETD. (A) Injection of multiply protonated peptide molecules (precursor ions) generated by ESI. (B) Application of a dc offset to move the precursor ions to the front section of the linear trap. (C) Injection of negatively charged reagent ions from the CI source into the center section of the linear trap. (D) Application of a supplementary dipolar broadband ac field to eject all ions except those within 3 mass-unit windows centered around the positively charged precursor ions and the negatively charged electron-donor reagent ions. (E) Removal of the dc po-

Syka, et al., PNAS 2004

CAD versus ETD for phosphopeptide

ETD better for sulfonated peptides

Takahashi *et al., MCP*, 2010

Takahashi et al., MCP, 2010

What affects fragmentation?

Chemical composition Peptides

Amino Acid Sequence **Adjacent Amino Acids Charge State** Location of Charge Size **Mechanism of Fragmentation Double Bonds Electrophiles Proton Mobility** Gas phase chemistry

What can you do with a fragment besides identify?

- Localize PTMs
- •Use it to establish signatures for specific ion species
 - •Biomarker
- •Use it to quantify
- •Use it to convict a felon
- •Add a fragment to create an isobaric tag for quantitative comparison.
- •Use it to filter out the information (spectra) you want

Tandem mass spectrometry on a triple quadrupole instrument

- Daughter ion spectra
- Parent ion spectra
- Multiple reaction ion scanning

Stephens et al., Eur J. Biochem, 2004

fragmentation pattern of dephosphorylated lipid A derived from LPS1 (LA1

Moran et al., JBC 2002

Other amino acid fragment ions

Immonium ion	Amino acid	Major (M) or
(ml'z)	residue	minor (m) peak
60.04	S	М
70.07	R or P	М
72.08	v	М
73.00	R	m
74.06	Т	M
84.08	K or Q	M
86.1	I or L	M
87.09	N or R	М
88.04	D	М
100.09	R	m
101.11	K or Q	М
102.06	Е	M
104.05	Μ	М
110.07	Н	М
112.09	R	М
120.08	F	М
126.06	Р	М
129.1	K or Q	m
136.08	Y	М
138.07	Н	m
159.09	W	М

ade veloes of common immediates income

