

Limitations of recombinant expression

- Poor folding in bacteria
 - Large amount of proteins in inclusion bodies
 - Possible to coincidentally overexpress chaperone proteins
- Most of the posttranslational mechanisms in eukaryotic systems do not occur in bacteria
 - Phosphorylation on a serine can be simulated by mutating the serine to aspartate

What to consider

- Choice of biological source
- · How to maximize the tissue recovery
- How to monitor the protein
- How to develop a purification strategy
- Techniques to be used
- How to integrate the techniques

For tissues choose the correct compartment

- Homogenize the tissue in an isotonic buffer
- Separate by differential centrifugation and with sucrose density gradients
 - Nuclear fraction (x800g pellet)
 - Lysosomes/plasma membrane (x10,000g pellet)
 - Mitochondria (20-35,000xg pellet)
 - Peroxisomes (Opticlear gradient)
 - Endoplasmic reticulum (100,000xg pellet)
 - Cytosol (100,000xg supernatant)
- For bacteria, the cytosol or the inclusion bodies

Stephen Barnes 1-30-07

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Characteristics of proteins that can be exploited

- Solubility in different solvents
- Balance of charged amino acids (Asp and Glu versus Arg and Lys)
- Molecular weight
- Thermal stability
- Specific binding regions
- Availability of immunoaffinity reagents

The nature of ion exchange resins

Quaternary ammonium (Q)	strong	-0-CH ₂ N ⁺ (CH ₃) ₃
Diethylaminoethyl (DEAE)*	weak	-O-CH ₂ CH ₂ N ⁺ H(CH ₂ CH ₃) ₂
Diethylaminopropyl (ANX)*	weak	-O-CH ₂ CHOHCH ₂ N ⁺ H(CH ₂ CH ₃) ₂
Cation exchangers		Functional group
Sulfabropyl (SD)	strong	-O-CH2CHOHCH2OCH2CH2CH2SO3
Sunopropyr (SP)		
Methyl sulfonate (S)	strong	-O-CH ₂ CHOHCH ₂ OCH ₂ CHOHCH ₂ SO ₃ ⁻

Hydrophobic interaction chromatography

- · Phenyl-, butyl- and octyl-Sepharose
- Protein is mixed with (NH₄)₂SO₄ at concentrations that are below the precipitation point
- The protein binds via its hydrophobic regions to escape the strong electrolyte environment
- As the (NH₄)₂SO₄ concentration is lowered, the hydrophilic parts of the protein dominate and the protein dissociates from the stationary phase

A purification table: important part of purifying a protein

• The goal is to obtain enough protein with highest possible activity and the greatest purity

Step	Total activity (nmol/min)	Total protein (mg)	Specific activity (nmol/min/ mg	Fold purification
Homogenate	100	1000	0.1	1.0
Cytosol	90	600	0.15	1.5
DEAE column	80	80	1.0	10
Affinity column	75	2.0	37.5	375
	Stephen B	arnes 1-30-07		

Fraction	Protein (mg)	Activity (nmol/min)	Spec Act (nmol/min/ mg)	Fold purification
Cytosol	1206	144	0.119	1.00
DEAE peak	50	48	0.96	8.1
PAP-purified	0.385	7.2	18.7	157

Fraction	Protein (mg)	Activity (nmol/min)	Spec Act (nmol/min/ mg)	Recovery (%)	Fold
Cytosol	18,000	1,200	0.067	100	1.0
DEAE-cellulose	1,764	987	0.56	82	8.4
Chromatofocusing	52	271	5.22	22	78.0
GC-Sepharose					
Gel flitration	7.7	246.7	31.87	20	475.7

Fraction	Protein (mg)	Activity (nmol/min)	Sp. Act. nmol/min/ mg	Yield (%)	Fold purified
microsomes	176	341.4	1.94	100	1.00
Sol microsomes	176	1010.2	5.74	295	2.96
Q-Sepharose pool	44	545.6	12.4	150	6.39
Hydroxyapatite	0.74	72.67	98.2	21	50.6
CM-Sepharose	0.055	21.18	385.0	6.2	198.4

Recombinant hBAT
6xHis hBAT
6xHis-tag BAT was expressed in <i>E. coli</i> but when the cytosol was passed over a Ni-affinity column, the imidazole eluate gave rise to 23 kDa and 56 kDa bands in addition to the 50 kDa hBAT band. p23 was shown to be peptidyl prolyl cis-trans isomerase, a protein with 14 His residues in a 30 residue C-terminal region. p56 is a bacterial GRoEL chaperone. <u>Mindan Sfakianos</u>
Stephen Barnes 1-30-07

Thanks

- Marilyn Niemann
- Erin Shonsey
- Mindan Sfakianos
- GE Healthcare
- <u>http://www.jp.amershambiosciences.com/</u> <u>catalog/pdf_attach/00097.pdf</u>