

What's in a peptide MSMS spectrum?

- In most cases, some, but rarely all, of the theoretic *b*- and *y*-ions are observed
- Besides *b* and *y*-ions, other types of fragmentation can occur to form a_n and x_n ions, as well as also losing CO, NH₃ and H₂O groups
- Internal cleavage reactions can occur at acidic (Asp - Glu) residue sites

S. Barnes - J. Prasain 01/16/07

Other ions observed in peptide fragmentation Immonium and Related Ions 84.08 70.07 101.11 87.06 120.08 86.10 102.05 88.04 87.06 72.08 72.08 87.09 129.10 100.09 112.09 N-terminal ions a-NH3 ions ---217.10 330.18 401.22 458.24 587.28 715.38 830.40 944.45 1043.52 1142.58 1060.54 1159.61 1071.51 1170.58 a ions ----234.12 347.21 418.24 475.27 604.31 732.40 847.43 961.47 ---b-NH₃ ions ---b-H₂O ions ---245.09 358.18 429.21 486.23 615.28 743.37 858.40 972.44 614 29 742 39 857 42 971 46 1070 53 1169 59 --------262.12 375.20 446.24 503.26 632.30 760.40 875.43 989.47 1088.54 1187.61 b ions 12 2 F 3 4 A 5 G 6 E 7 K 8 9 10 11 н. N Ĺ D N v R y ions 1247.67 1100.61 987.52 916.48 859.46 730.42 602.33 487.30 373.26 274.19 175.12 y-NH₃ ions 1230.65 1083.58 970.50 899.46 842.44 713.39 585.30 470.27 356.23 257.16 158.09 y-H₂O ions 1229.66 1082.60 969.51 898.47 841.45 712.41 584.32- -------S. Barnes - J. Prasain 01/16/07

Towards automated MSMS sequencing

- The 2D-LC-ESI-MSMS method (MuDPIT) generates 50,000+ MSMS spectra for each sample
- If it takes 15 min to hand interpret one MS-MS spectrum, then it would take 12,500 hours to complete the analysis. For someone working 8 hours/day and a five-day week, this would be about 6 years!
- Using SEQUEST and MASCOT, methods were developed to use computer-driven approaches to analyze MSMS data

S. Barnes - J. Prasain 01/16/07

	A reversed sequence has its problems as a control Normal sequence													
b	ions	N	262 F	375 L	446 A	503 G	632 E	760 K	875 D	989 N	1088 V	1187 V	1343 R	
У	ions	1361	1247	1100	987	916	859	730	602	487	373	274	175	
	Reversed sequence													
b y	ions ions	R 1361 ⁻	256 V 1205 1	355 V 1106	469 N 1007	584 D 893	712 K 778	841 E 650	898 G 521	969 A 464	1082 L 393	1229 F 3 280	1343 N 133	
	So, b ₂₀	_{corr} =	y _{2re}	verse	- 18		and	d y ₂₀	_{corr} =	= b _{2re}	everse	, + 1	8	
	S. Barnes - J. Prasain 01/16/07													

- A key issue is that the energy of ionization or the collisional process should not exceed the dissociational energy of the PTM
- MALDI-TOF MS with a N₂ laser causes fragmentation of a nitrated tyrosine residue
 - Use ESI to make the molecular ion
 - Go to another wavelength
- O-glucosyl groups fragment more easily than the peptide to which they are attached
 - Use electron capture dissociation

S. Barnes - J. Prasain 01/16/07

meta	bolic reactions
Metabolic rxn	Change in mass
Methylation	14
Demethylation	-14
Hydroxylation	16
Acetylation	42
Epoxidation	16
Desulfuration	-32
Decarboxylation	-44
Hydration	18
Dehydration	-18

Characteristic fragmentation of drug conjugates by MS/MS							
Conjugat Ionization	mc Scan						
Glucuronides pos/neg	g NL 176 amu						
Hexose sugar pos/neg	NL 162 amu						
Pentose sugar pos/neg	y NL 132 amu						
Phenolic sulp pos	NL 80 amu						
Phosphate neg	Precursor of m/z 79						
Aryl-GSH pos	NL 275 amu						
Aliphatic-GSH pos	NL 129						
taurines ps	Precursor of m/z 126						
N-acetylcysteneg	NL 129 amu						
NL = neutral loss.							

