

Pros and cons of triphasic columns

- Pros
 - Minimum dead volume between different packings
 - Highest sensitivity
- Cons
 - Have to use NH₄Ac rather than KCI
 - Extremely difficult to be reproducible (inconsistent elution times from one column to the next)

S Barnes/M Sabripour 1/27/06

 Most commonly used: SEQUEST and MASCOT

Nat Methods. 2004 Dec;1(3):195-202. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Sadygov RG, Cociorva D, Yates JR III.

S Barnes/M Sabripour 1/27/06

ions of each sequence are calculated

S Barnes/M Sabripour 1/27/06

Sequence >Protein 1 acedfhsakdfqea sdfpkivtmeeewe ndadnfekqwfe	MOWSE <u>Mass (м+н)</u> 4842.05	<u>Tryptic Fragments</u> acedfhsak dfgeasdfpk ivtmeeewendadnfek gwfe
>Protein 2 acekdfhsadfqea sdfpkivtmeeewe nkdadnfeqwfe	4842.05	acek dfhsadfgeasdfpk ivtmeeewenk dadnfeqwfe
> Protein 3 MASMGTLAFD EYGRPFLIIK DQDRSRIMG LEALKSHIM A AKAVANTMRT SLGPNGLD KMMVDKDGDVTV TNDGAT ILSM MDVDHQIAKL NVELS KSQDD EIGDGTTGVV VLAG ALLEEAEQLLDRGIHP IRIAD	14563.36	SQDDEIGDGTTGVVVLAGALLEEAEQLLDR2 DGDVTVTNDGATILSMMDVD HQIAK MASMGTLAFDEYGRPFLIIK2 TSLGPNGLDK LMGLEALK LMVELSK AVANTMR SHIMAAK GHPPR
From Bioinformatics.ca	S Barnes/M Sabripour 1/27/06	MMVDK DQDR

MOWSE 2. For each protein, place fragments into 100 Da bins.						
>Protein 1 acedfhsa <mark>k</mark> dfqea sdfp <mark>k</mark> ivtmeeewe ndadnfe <mark>k</mark> qwfel	Mol. Wt. 2098.8909 1183.5266 1007.4251 722.3508	Fragment IVTMEEEWENDADNFEK DFQEASDFPK ACEDFHSAK QWFEL	Bin 2000-2100 1900-2000 1800-1900 1700-1800 1600-1700	Fragment IVTMEEEWENDADNFEK DFHSADFQEASDFPK		
>Protein 2 acekdfhsadfqea sdfpkivtmeeewe nkdadnfeqwfekq wfei	1740.7500 1407.6460 1456.6127 722.3508	DFHSADFQEASDFPK IVTMEEEWENK DADNFEQWFEK QWFEI	1500-1600 1400-1500 1300-1400 1200-1300 1100-1200 1000-1100 900-1000 800-900 700-800 600-700 500-600 400-500	IVTMEEEWENK, DADNFEQWFE DFQEASDFPK ACEDFHSAK QWFEL, QWFEI		
From Bioinformatics.ca	S	Barnes/M Sabripour 1/27/06				

