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Identifying proteins in a proteomeIdentifying proteins in a proteome
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The MUDPIT approach
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Digest with trypsin 
without any protein 
separation

Digest with trypsin 
without any protein 
separation

20-50 tryptic 
peptides per protein 
(100-250 peptides in 
this example)

20-50 tryptic 
peptides per protein 
(100-250 peptides in 
this example)

Can they be resolved?Can they be resolved?
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Cation exchange of peptides
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3 +-R.COOH

-O3S
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Stepwise elution with NH4
+

NH3
+-R1.COOH

Electrostatic capture onto 
resin bead in H+ form

NH3
+-R2.COOH

NH3
+-R3.COOH
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• For a cell expressing 5,000 
proteins, this leads to 
>100,000 peptides

• Can be fractionated, but still 
10,000-20,000 to differentiate

• Enormous bioinformatics 
problem

Fractionation of peptides in Fractionation of peptides in 
MUDPIT analysisMUDPIT analysis

MS-MS analysis
on Qqtof or ion trap
Massive computing

nanoLC

0-40% MeCN
gradient

10 mM

20 mM

40 mM

60 mM

80 mM

100 mM

NH4Cl (1-200 mM step gradient)

200 mM

Cation exchange
column (H+)

John Yates
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Column construction for MudPIT

3 cm Polaris C18 RP 5 μm

7 cm Polaris C18 RP 5 μm

3-6 cm Partisphere SAX 5 μm
Strong cation exchange resin

5 μm tip

100 μm i.d. 
fused silica 
capillary

MacCoss et al, 2002
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Elution from a triphasic column

RP

RP

Ion Ex

sample
Wash with 5% MeCN-0.1% acetic 
acid - elute with 80% MeCN-0.1% 
formic acid

Wash with 5% MeCN-0.1% acetic 
acid - elute with 0-500 mM 
(NH4)2CO3

Wash with 5% MeCN-0.1% acetic 
acid for 5 min - elute with 5-64% 
MeCN-0.02% HFBA

MacCoss et al, 2002
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Pros and cons of triphasic 
columns

• Pros
– Minimum dead volume between different packings
– Highest sensitivity

• Cons
– Have to use NH4Ac rather than KCl
– Extremely difficult to be reproducible 

(inconsistent elution times from one column to 
the next)



5

S Barnes/M Sabripour 1/27/06

Issues in MS-MS experiment

• At any one moment, several peptides may 
be co-eluting

• Data-dependent operation:
– The most intense peptide molecular ion is 

selected first (must exceed an initial 
threshold value)

– A 2-3 Da window is used (to maximize the 
signal)

– The ion must be in 2+ or 3+ state
– Since the ion trap scan of the fragment 

ions takes ~ 1 sec, only the most intense 
ions will be measured

– However, can use an exclusion list on a 
subsequent run to study minor ions

threshold
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The tandem MS mountain

• In a typical MUDPIT experiment, >50,000 tandem MS 
spectra will be acquired

• Argued that it would take too long to individually 
interpret each spectrum
– If it took 15 min per spectrum, then 50,000 spectra would 

take 12,500 hr, or ~300 wk of effort (6 yr)
• Automated methods were sought that used 

computer-based comparisons with known databases 
of protein sequence information

• Development of SEQUEST and MASCOT methods
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Database Searching and Scoring 
of Tandem Mass Spectra

• Four main approaches
• Descriptive models (SEQUEST)
• Interpretative models (PeptideSearch)
• Stochastic models (Scope)
• Statistical Models (MASCOT)
• Most commonly used: SEQUEST and 

MASCOT

Nat Methods. 2004 Dec;1(3):195-202. Large-scale database searching using tandem mass spectra: looking up the answer in the 

back of the book. Sadygov RG, Cociorva D, Yates JR III.

S Barnes/M Sabripour 1/27/06

Database Searching and Scoring 
of Tandem Mass Spectra

Sadygov RG et al.
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Scoring tandem mass spectra

• What does SEQUEST use?
– What is Xcorr?

• What is MASCOT?
– Does it have advantages over Xcorr?
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SEQUEST

• Descriptive model for comparing MS/MS 
spectra against observed spectra

• Uses peptide mass and cross-correlation 
score (Xcorr) to rank potential matches

• Very computationally intensive

• http://fields.scripps.edu/sequest/
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SEQUEST
Steps involved:
Step 1:   Mass spectrometry

data reduction
Step 2:   Search method
Step 3:   Scoring method
Step 4:   Cross-Correlation

analysis (Xcorr)

J Am Soc Mass Spectrom. 1994, 5, 976-989. An Approach to Correlate Tandem Mass
Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. 
Eng, J. K., McCormack, A. L., Yates III, J. R.
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Step 1: Mass Spectrometry Data 
Reduction

• Fragment ion m/z are converted to 
nearest integer.

• 10-u window around precursor ion 
removed

• All but the 200 most abundant ions are 
removed and remaining ions are 
renormalized to 100.
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Step 2: Search Method

• To match a pair of spectra, protein 
sequences are retrieved from the 
database which have masses (within a 
certain mass tolerance) matching the 
peptide of interest.

• m/z values for the predicted fragment 
ions of each sequence are calculated
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where the first term in the product is the sum of ion abundances
of all matched peaks, m is the number of matches,   
is a 'reward' for each consecutive match of an ion series 
(for example, 0.075),   is a 'reward' for the
presence of an immonium ion (for example, 0.15) and 

L is the number of all theoretical ions of an amino acid sequence.

Step 3: Scoring Method
• Calculate Sp

β

ρ

The higher the value of Sp the better. Larger peptides have 
larger Sp
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Step 4: Cross-correlation 
analysis

• What is cross-correlation?
• Method of estimating the degree to 

which two signals are correlated
• Used heavily in time-series analysis 

and signal processing
• Closer XCorr is to 1, the better the 

match
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Cross-Correlation Analysis
• Have signal from source 1:

1 1 1( ) ( ) ( )X t p t e t= +
• Have signal from source 2:

2 2 2( ) ( ) ( )X t p t e t= +

• The Cross-correlation 
(XCorr) shows how 
similar the two different 
signals are at various lag 
times. Graphs from 

www.prosig.com
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Cross-Correlation Analysis

• SEQUEST reconstructs a mass 
spectrum from the amino-acid 
sequences obtained from the database.

• The observed spectrum and the 
reconstructed spectrum are taken and 
the cross-correlation is obtained via the 
use of Fourier transforms.
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Cross-Correlation Analysis
• Cross-Correlation between two 

continuous signals:
( ) ( )x yC x t y t d tτ

+∞

− ∞

= +∫
• For Discrete signals (usually the case)

1

0
[ ] [ ]

n

i
R x i y iτ τ

−

=

= +∑

• Usually calculated via FFT  (Fast Fourier 
Transform)
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Sequest  Output
#    Rank/Sp  (M+H)+    Cn deltCn C*10^4    Sp     Ions  Reference        Peptide
--- ------- ------------ ------ ---------- ------- ------ ------- -------------- ----------------------------------
1.   1 /  1     1471.7  1.0000  0.0000  3.8603   851.3  22/39 G3P1_YEAS+4   (R)VPTVDVSVVDLTVK
2.   2 /  8     1469.7  0.6042  0.3958  2.3323   381.5  16/39 S52527        (L)QAPPPPPSSTKSKF
3.   3 /  2     1472.9  0.5877  0.4123  2.2688   448.7  17/39 KEX1_YEAS     (A)VVVTIVTFLIVVLG
4.   4 /  9     1469.6  0.5573  0.4427  2.1515   378.5  17/39 CBS1_YEAS     (R)VPMTGDLSTGNTFE
5.   5 / 12    1471.8  0.5356  0.4644  2.0677   368.2  17/39  ODPA_YEAS     (S)VKAVLAELMGRRAG

normalized correlation score (Cn) 
1.0 - normalized correlation score (deltaCn) 

tells you how different the first hit is from subsequent
hits. (Values > 0.1 indicate a good hit)

raw correlation score (C*10^4). 

Normalized XCorr = (XCorr - Cutoff) / Cutoff
Where Cutoff is either 1.8, 2.5, or 3.5 depending on charge 
state. 
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MASCOT

• Associates a probability with spectrum 
matches

• Implements probability based 
implementation of the MOWSE scoring 
algorithm

• www.matrixscience.com



13

S Barnes/M Sabripour 1/27/06

MOWSE

• Molecular Weight Search
• Scoring is based on peptide frequency 

distribution within database (frequency 
factor matrix)

Pappin DJC, Hojrup P, and Bleasby AJ (1993) Rapid identification of 
proteins by peptide-mass fingerprinting. Curr. Biol. 3:327-332
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>Protein 1
acedfhsakdfqea
sdfpkivtmeeewe
ndadnfekqwfe

>Protein 2
acekdfhsadfqea
sdfpkivtmeeewe
nkdadnfeqwfe

>Protein 3
MASMGTLAFD EYGRPFLIIK
DQDRKSRLMG LEALKSHIM

A AKAVANTMRT SLGPNGLD
KMMVDKDGDVTV TNDGAT
ILSM MDVDHQIAKL MVELS
KSQDD EIGDGTTGVV VLAG
ALLEEAEQLLDRGIHP IRIAD

Sequence Mass (M+H) Tryptic Fragments

4842.05

4842.05

14563.36

acedfhsak
dfgeasdfpk
ivtmeeewendadnfek
gwfe 

acek
dfhsadfgeasdfpk
ivtmeeewenk
dadnfeqwfe

SQDDEIGDGTTGVVVLAGALLEEAEQLLDR2
DGDVTVTNDGATILSMMDVD HQIAK
MASMGTLAFDEYGRPFLIIK2
TSLGPNGLDK
LMGLEALK
LMVELSK
AVANTMR
SHIMAAK
GIHPIR
MMVDK
DQDR

MOWSE

From 
Bioinformatics.ca
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>Protein 1
acedfhsakdfqea
sdfpkivtmeeewe
ndadnfekqwfel

>Protein 2
acekdfhsadfqea
sdfpkivtmeeewe
nkdadnfeqwfekq
wfei

>Protein 3
MASMGTLAFD EYGRPFLIIK
DQDRKSRLMG LEALKSHIM

A AKAVANTMRT SLGPNGLD
KMMVDKDGDVTV TNDGAT
ILSM MDVDHQIAKL MVELS
KSQDD EIGDGTTGVV VLAG
ALLEEAEQLLDRGIHP IRIAD

0-10 kDa

4954.13

5672.48

14563.36

MOWSE

10-20 kDa

1. Group Proteins into 10 kDa ‘bins’. 

From 
Bioinformatics.ca
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>Protein 1
acedfhsakdfqea
sdfpkivtmeeewe
ndadnfekqwfel

>Protein 2
acekdfhsadfqea
sdfpkivtmeeewe
nkdadnfeqwfekq
wfei

MOWSE
2. For each protein, place fragments into 100 Da bins.

Mol. Wt. Fragment
2098.8909 IVTMEEEWENDADNFEK
1183.5266 DFQEASDFPK
1007.4251 ACEDFHSAK
722.3508 QWFEL

1740.7500 DFHSADFQEASDFPK
1407.6460 IVTMEEEWENK
1456.6127 DADNFEQWFEK
722.3508 QWFEI

Bin Fragment
2000-2100 IVTMEEEWENDADNFEK
1900-2000
1800-1900
1700-1800 DFHSADFQEASDFPK
1600-1700
1500-1600
1400-1500 IVTMEEEWENK, DADNFEQWFE
1300-1400
1200-1300
1100-1200 DFQEASDFPK
1000-1100 ACEDFHSAK
900-1000
800-900
700-800
600-700
500-600
400-500

QWFEL, QWFEI

From 
Bioinformatics.ca
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MOWSE
The MOWSE frequency distribution plot looks like this:

From 
Bioinformatics.ca
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MOWSE

• 3. Normalize our frequency factor 
matrix by the largest value in the 
column to give the MOWSE factor 
matrix M
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MOWSE
• 4. Create MOWSE Score after searching 

experimental mass values against 
peptide mass database.

• Mprot is the molecular weight of the 
entry
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MOWSE
5.  Compare spectrum masses against fragment mass
list for each protein in the database.  Retrieve the 
frequency score for each match and multiply.

Bin Fragment Total Frequency
2000-2100 IVTMEEEWENDADNFEK 1 0.125 0.5
1900-2000 0 0.000 0
1800-1900 0 0.000 0
1700-1800 DFHSADFQEASDFPK 1 0.125 0.5
1600-1700 0 0.000 0
1500-1600 0 0.000 0
1400-1500 IVTMEEEWENK, DADNFEQWFE 2 0.250 1
1300-1400 0 0.000 0
1200-1300 0 0.000 0
1100-1200 DFQEASDFPK 1 0.125 0.5
1000-1100 ACEDFHSAK 1 0.125 0.5
900-1000 0 0.000 0
800-900 0 0.000 0
700-800 0 0.000 0
600-700 2 0.250 1
500-600 0 0.000 0
400-500 0 0.000 0

Normalized

QWFEL, QWFEI

1740.7500 
1456.6127 
722.3508

0.5 x 1 x 1 = 0.5
From 
Bioinformatics.ca
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MOWSE
6. Invert and multiply, and normalize to an 'average' 
protein of 50 000 k Da:

PN = product of distribution frequency scores

H = 'Hit' Protein MW
= 5672.48

50 000 
PN x H

Score = 

= 0.5 x 1 x 1 = 0.5

50 000       
0.5 x 5672.48

= = 17.62 

From 
Bioinformatics.ca
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MASCOT

• Details of probability model are not 
published.

• The Mascot Score is given as 
S = -10*Log(P), where P is the 
probability that the observed match is a 
random event

Perkins DN, Pappin DJC, Creasy DM, and Cottrell JS (1999) Probability-based protein identification 
by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551-3567.
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Mascot Scoring

Mascot Score: 
120 = 1x10-12

– The Mascot Score is given as S = -10*Log(P), where P is the 
probability that the observed match is a random event

– The significance of that result depends on the size of the 
database being searched.  Mascot shades in green the 
insignificant hits using a P=0.05 cutoff. 

In this example, 
scores less than 74 are 
insignificant

From 
Bioinformatics.ca
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More haste, less speed?

• Post analysis, the masses of 
the peptides triggering MS-
MS are used to create a set 
of virtual peptides with 
masses within + 1 Da

• Predicted MS-MS are 
compared to the observed 
and the best fit is reported as 
a hit

• The abundance of these hits 
are plotted in the figure as 
closed circles

• Post analysis, the masses of 
the peptides triggering MS-
MS are used to create a set 
of virtual peptides with 
masses within + 1 Da

• Predicted MS-MS are 
compared to the observed 
and the best fit is reported as 
a hit

• The abundance of these hits 
are plotted in the figure as 
closed circles

However, if the proteome is reversed 
and sequences of the peptides 
within + 1 Da and their predicted 
MS-MS compared to the observed 
spectra, a similar histogram is 
obtained (open circles), but without 
the right side tail

A forced fit to a set of data will always come up 
with a match, but not necessarily the truth

A forced fit to a set of data will always come up 
with a match, but not necessarily the truth

Resing et al. (2004)
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b ions         262 375  446 503   632   760 875 989 1088 1187 1343  
N   F   L    A   G   E   K    D   N   V   V   R

y ions       1361 1247 1100  987 916   859   730  602   487 373   274  175

b ions         256 355   469 584  712 841 898 969 1082 1229 1343  
R   V V N D      K  E    G     A  L  F N

y ions       1361 1205 1106 1007 893 778   650  521   464 393   280   133

Normal sequence

Reversed sequence

b ions         262 375  446 503   632   760 875 989 1088 1187 1343
N   F   L    A   G   E   K    D   N   V   V   R

y ions       1361 1247 1100  987 916   859   730  602   487 373   274  175

b ions         256 355   469 584  712 841 898 969 1082 1229 1343  
R   V V N D      K  E    G     A  L  F N

y ions       1361 1205 1106 1007 893 778   650  521   464 393   280   133

Effect of reversing a peptide on the 
fragment ions that are observed
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Are the reversed sequence fragment 
ions correlated with the normal 

fragment ions?

0
200
400
600
800

1000
1200
1400
1600

0 500 1000 1500
Normal b ions

Yes, the reversed y 
ions are the normal b 
ions+18 
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Conclusion 
• The reversed peptide sequence 

generates b ions that are similar to the 
normal sequence y ions
– Off by 18 Da (i.e., H2O)

• A random peptide sequence library is 
needed to assess the quality MUDPIT 
data
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How to improve MUDPIT
• Reproducible column engineering

– Tandem columns, each built to separate, but 
high specifications

– Columns on a chip
• More careful selection of the parent ion

– Accurate measurement of the peptide’s mass 
will eliminate many false peptides

– Accurate measurement of peptide fragments’
masses

• Greater stringency in assessing score 
cutoff


