January 13, 2006

2D electrophoretic and other highresolution separations and analysis of proteins in biological samples

Helen Kim 934-3880 helenkim@uab.edu McCallum Building, room 460

Jan 13, 2006

HelenKim/UAB/PharmTox

1

Learning objectives

2-D gel proteomics: What it involves:

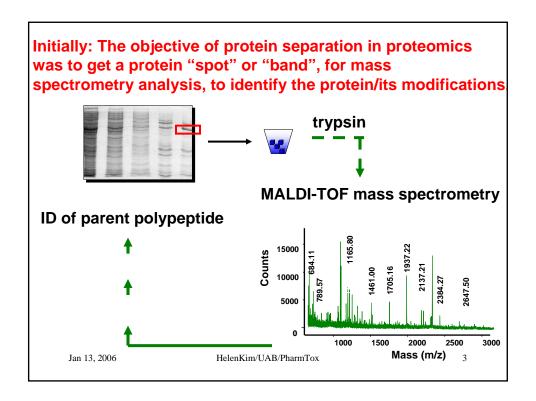
2D separation image, statistical analysis

MS

Other types of 2D protein separations;

Free-flow

2D Blue native electrophoresis


Other types of protein analysis technologies:

protein arrays

antibody arrays

Jan 13, 2006

HelenKim/UAB/PharmTox

Types of high-throughput separation & analysis technologies

- I. 2-dimensional electrophoresis (2-DE)
 - A. "regular" IEF/SDS-PAGE
 - B. 2D-blue-native electrophoresis
 - C. Visualization methods
- II. 2-dimensional liquid-based LC/LC
- III. Free-flow electrophoresis
- IV. "Chip" technology: arrays of ligands for proteins

Jan 13, 2006

HelenKim/UAB/PharmTox

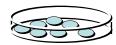
Parameters that govern the choice of protein separation method

- · Purity of protein
- · Speed of purification
- · Quantity of protein
- What is the question:most important
 - Discovering a new protein/proteome
 - Identifying protein-protein interactions
 - Identifying potential modifications of known proteins

Jan 13, 2006

HelenKim/UAB/PharmTox

5


The Elements of any 2-D separation in proteomics

- The experiment!! that generates the "signal"
- Subfractionation to enrich for suspected proteins
- (Trypsin-digestion to generate peptides of the parent proteins)
- Sample work-up
- 2-D separation
- Image or other analysis to identify gel "spot" differences between untreated & treated
- MS of (trypsin-digests) spots/proteins/peptides of interest, to identify and characterize the protein

Jan 13, 2006

HelenKim/UAB/PharmTox

Sample preparation for 2DE:

Harvest, rinse, and pellet the cells;

or

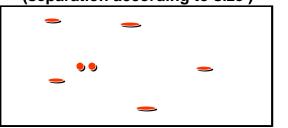
Dissect out tissue, organ, or fluids;

- •Homogenize/lyse in buffer that unfolds the proteins w/o adding or disturbing the charges:
 - •High urea usually 5-8 M---unfolds the protein
 - •Sometimes 2 M thiourea--unfolds the protein
 - •1-4% detergent--solubilizes hydrophobic components
 - •Beta-mercaptoethanol or other reductant, such as TBP, DTT
 - •Inhibitors: of proteases, kinases, & phosphatases
- •Clarify by centrifugation to get rid of insoluble matter;
- յ<u>ա Protein</u> assay to know how much and how concentrated

What 2-D electrophoresis involves:

• 1st dimension: Isoelectric focussing

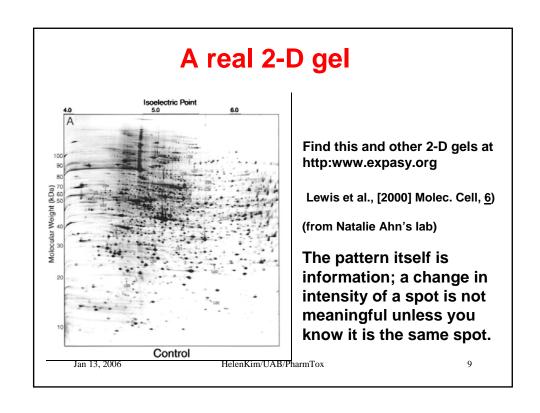
(separation according to charge)

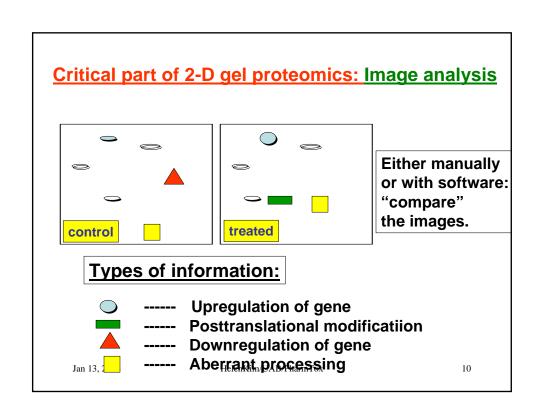

pH 10

• 2nd dimension: (SDS)-PAGE

pH 3

Jan 13, 2006


(separation according to size)

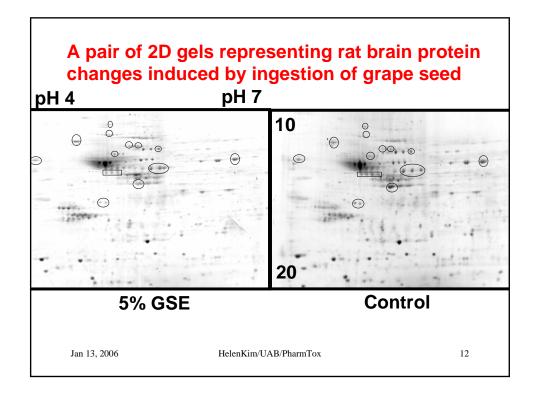


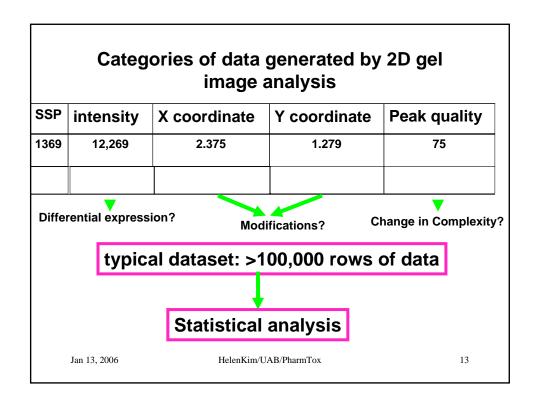
HelenKim/UAB/PharmTox

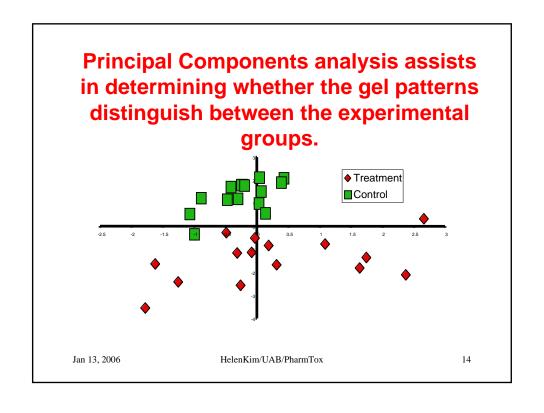
High m.w.

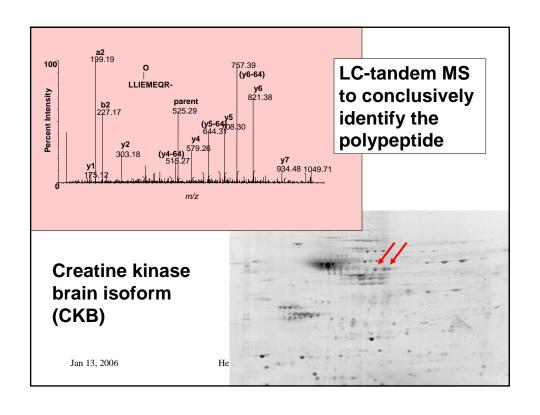
Low m.w.

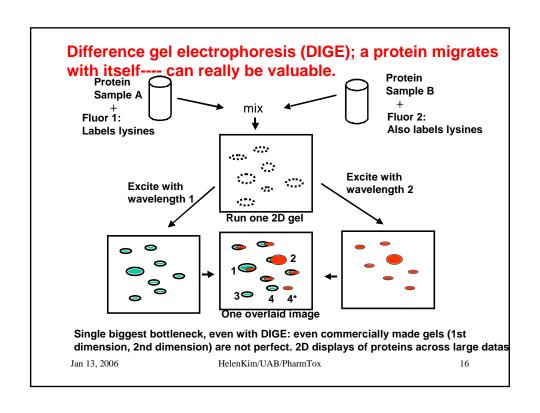
Elements of image analysis of "regular" 2D gels:

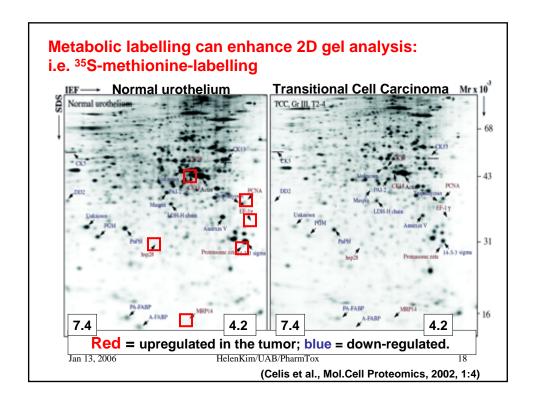

- 1. Compare the 2D displays of spots
- 2. Determine total spot number for each display
- 3. Quantify spot intensities, identify differences
- 4. Identify spots that may have "moved" horizontally; these are candidates for those may have alterations in charge.


<u>Ultimate and simple goal of image analysis</u>


to answer the question,
"What is changing, and by how much?"


11


Jan 13, 2006 HelenKim/UAB/PharmTox



Database obtained from proteomics analysis of breast cancer cell lines

Sample	Spot#	Protein Name	MOWSE	Accession#	Obs:	Pred:	Obs:	Pred:
					kDa	kDa	pI	pI
MCF-7	BR-8	Cytoskeletal keratin-7	132	gi12803727	20.7	51.3	8.6	5.3
	BR-9	Alpha-1 anti-trypsin	90	gi1942953	19.7	44.3	9.6	
	BR-1	Human	94	gi87303	56.2	53.5	5.9	5.6
MCF-		Cytoskeletal keratin-8		-				
10AT	BR-6	Human	74	gi18573275	23.4	24.1	6.3	
	BR-5	hypo:XP109048	60	gi5106591	18.1	6.4	5.7	
		IgG heavy chain		•				
	BR-7	variable region	105	gi1942953	37.0	44.3	6.9	
		Intact recomb: alpha-		0				
	BR-4	1 antitrypsin mutant	65	qi5106591	10.0	6.4	4.6	
		F-L		0				
		IgG heavy chain						
		var:reg						
MCF-	BR-3	Human cytokeratin-8	65	qi87303	56.0	53.5	5.8	5.6
10A	BR-2	DNA replication	58	gi1705520	22.8	96.5	6	6.6
		silencing factor MCM-		5			_	0.0
		4						

(Deshane, Johanning, and Kim, unpublished data)

Jan 13, 2006 HelenKim/UAB/PharmTox 1

Make use of databases and the internet:

I. Check existing databases and web-links:

www.expasy.org

many are annotated helpful links:

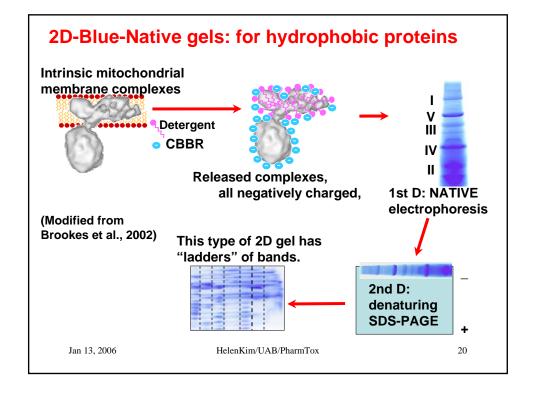
proteomics tools

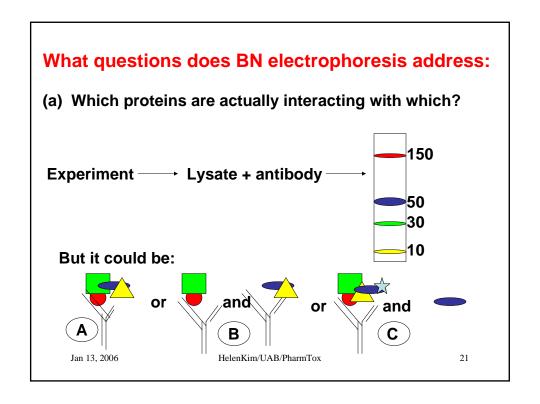
II. Keep up with the literature/ competition:

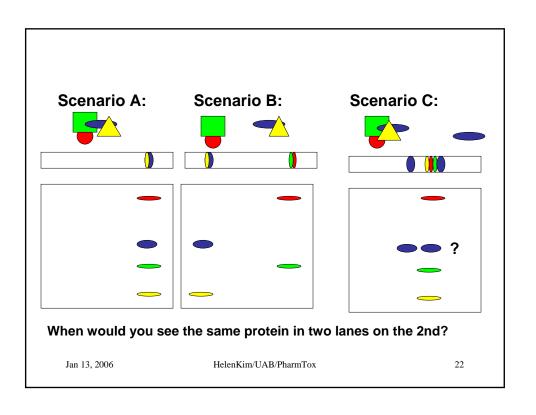
Electrophoresis

Proteomics

Molecular & Cellular Proteomics


J. Proteome Research

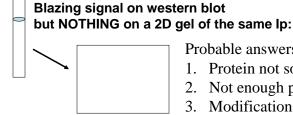

III. Use genomics information when available:


The polypeptide sequence (from the cDNA) can predict electrophoretic parameters-- m.w. & pl;

helpful in setting up 2D gel conditions

Jan 13, 2006 HelenKim/UAB/PharmTox 19

Take home message

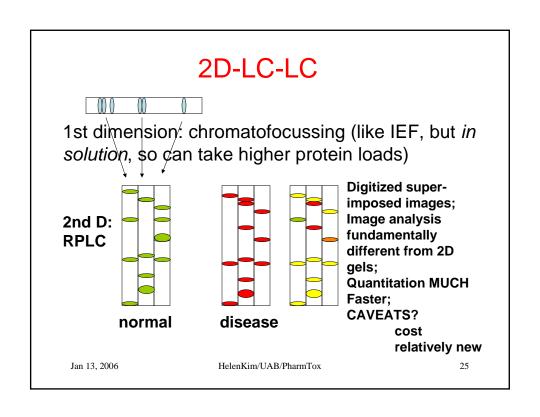

- Use of proteomics technologies enables global analysis of protein changes;
- 2D electrophoresis can indicate both differential expression or posttranslational modifications;
- Choice of separation governed by
 - Abundance of sample
 - Question being asked
 - Technology available to you
 - Cost is a factor;

Jan 13, 2006

HelenKim/UAB/PharmTox

Issues in 2D gel analysis:

I. Now you see it, now you don't:


Probable answers/what are the solutions:

- 1. Protein not solubilized by IEF buffer
- 2. Not enough protein!!!
- 3. Modification lost during preparation?

I see the band on my 1D gel that runs with my western blot band; Why do I need to run a 2D gel anyway?

Jan 13, 2006

HelenKim/UAB/PharmTox

