Metabolic Imaging: Hyperpolarized Carbon for Measuring Kinetics in Living Systems

Mukundan Ragavan, Matthew E. Merritt Department of Biochemistry and Molecular Biology, University of Florida

Acknowledgments

UF

Tatsiana Tsarova

Dr. Matthew Merritt

R01s DK105346, HD087306, DK112865, P41122698, U24DK097209, and NSF DMR 1644779

- Understanding physical prerequisites
- Maximizing biological information
- Targets for metabolic imaging

- Understanding physical prerequisites
- Maximizing biological information
- Targets for metabolic imaging

When will Dynamic Nuclear Polarization work?

 Dope a stable free radical into a carbon-13 labeled metabolite of interest

The sample prep must produce a glass

Thermal Equilibrium

 ΔE is ~ 10^{-25} J, and k is $1.38x10^{-23}$ J/K, so the population difference is on the order of ppm at room temperature

$$P = \tanh\left(\frac{y \hbar B_0}{2k_B T}\right)$$

Dynamic Nuclear Polarization (DNP)

DNP Mechanism: Thermal Mixing

Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR

Jan H. Ardenkjær-Larsen*, Björn Fridlund, Andreas Gram, Georg Hansson, Lennart Hansson, Mathilde H. Lerche, Rolf Servin, Mikkel Thaning, and Klaes Golman

- 3.35 T
- VTI replaces RT bore
- 94 GHz μ-wave
- 1.4 K operation
- Dissolution by boiling solvents

Melt frozen solid and inject – Dissolution DNP

- Understanding physical prerequisites
- Maximizing biological information
- Targets for metabolic imaging

When will dDNP work?

The sample prep must produce a glass

• The T₁ of the sample must be *long enough*

T₁: "How physical facts kill beautiful experiments"

• [U-2H-13C₆] glucose

- Glycolysis in yeast
- Most of kinetics is visible because of rapid transfer to culture

T₁: "How physical facts kill beautiful experiments"

T₁s of heteronuclei are highly dependent on

- The number of attached hydrogens
- The chemical shift anisotropy
- The correlation time of the molecule
- The presence of paramagnetic species

Strong constraints on the types of molecules that can be imaged (Central Metabolism)

When will DNP work in living systems?

The sample prep must produce a glass

• The T₁ of the sample must be *long enough*

A high flux transporter is highly beneficial (e.g. MCTs)

Pyruvate Transport Can Dominate Kinetics

" ... kinetics observed for the conversion of hyperpolarized ¹³C-pyruvate to lactate in perfused T47D breast cancer cells, has a MCT1-mediated pyruvate transport as rate-limiting step."

Harris, et al., PNAS (2009)

- Understanding physical prerequisites
- Maximizing biological information
- Targets for metabolic imaging
 - Cancer

Cancer

- Elevated glycolysis implies more glucose uptake (FDG-PET)
- Elevated glycolysis implies more lactate formation
- A metabolic basis for hypothesis generation

"A Phase I Ascending-dose and Exploratory Imaging Study to Assess the Safety and Tolerability and Imaging Potential of Hyperpolarized [13C-1] Pyruvate Injection in Subjects With Prostate Cancer"

31 prostate cancer patients studied demonstrated safety and imaging feasibility in this Phase 1 dose escalation trial with no adverse events.

"A Phase I Ascending-dose and Exploratory Imaging Study to Assess the Safety and Tolerability and Imaging Potential of Hyperpolarized [13C-1] Pyruvate Injection in Subjects With Prostate Cancer"

31 prostate cancer patients studied demonstrated safety and imaging feasibility in this Phase 1 dose escalation trial with no adverse events.

Imaging Tumor In Brain

 $[1 - {}^{13}C]$ Pyruvate

"We correlated our results with standard clinical brain MRI, MRI DCE perfusion, and in one case FDG PET/CT. Our results suggest that HP ¹³C pyruvate-to lactate conversion may be a viable metabolic biomarker for assessing tumor response."

Miloushev, et al., Cancer Res. (2018)

Glioblastoma

Metastatic melanoma

Tumor Cell Proliferation

$[5 - {}^{13}C]$ Glutamine

- Anaplerosis via glutaminase to form glutamate can serve as a pathway to enhance tumor cell growth
 - hepatocellular carcinomas have a 30x increase in glutamine utilization

Gallagher, et al., MRM (2008)

- Understanding physical prerequisites
- Maximizing biological information
- Targets for metabolic imaging
 - Cancer
 - Myocardium

Hyperpolarized 13C Study of Myocardial Metabolism

- Anaplerosis replenishes
 TCA cycle intermediates
 - Propionate is avidly metabolized
 - High levels of PCC expressed in the heart

Hyperpolarized 13C Study of Myocardial Metabolism

$[1 - {}^{13}C]$ Pyruvate

- Metabolic inflexibility in failing myocardium
 - Propionate Cannot ModulatePDH Flux in HypertrophiedHeart

Hyperpolarized 13C MRI- Human Myocardial Metabolism

LDH PDH

Information about tissue activity and diffusion

Cunningham, et al., Circ. Res. (2016)

- Understanding physical prerequisites
- Maximizing biological information
- Targets for metabolic imaging
 - Cancer
 - Myocardium
 - pH sensing

pH Imaging

¹³C HCO₃

- Short T₁
- Low Concentration in Solid State

Gallagher, et al., Nature (2008)

pH Imaging

Jindal, et. al., JACS (2010)

- Understanding physical prerequisites
- Maximizing biological information
- Targets for metabolic imaging
 - Cancer
 - Myocardium
 - pH sensing
 - Necrosis

Cell Necrosis

[1,4-13C] Fumarate

• Fumarate not easily transported across cell membrane

 Appearance of malate via fumarase reaction is therefore marker of necrosis

- Understanding physical prerequisites
- Maximizing biological information
- Targets for metabolic imaging
 - Cancer
 - Myocardium
 - pH sensing
 - Necrosis
 - Metabolic pathways

Glutathione Homeostasis

$y - Glutamyl [1 - {}^{13}C] glycine$

- Probe y-glutamyl transpeptidase activity
- $T_1 > 30 \text{ s in vitro}$
- Rat kidney in vivo

Nishihara, et al., Angew. Chemie (2016)

Redox Sensor For in vivo Metabolic Imaging

$[1 - {}^{13}C]$ Dehydroascorbate

- Measuring in vivo redox state with dehydroascorbate (DHA)
- DHA reduction by NADPH via glutathione
- Glutathione mediates response to ROS

Redox Sensor For in vivo Metabolic Imaging

$[1 - {}^{13}C]$ Dehydroascorbate

 Measuring in vivo redox state with dehydroascorbate (DHA)

DHA reduction by NADPH via glutathione

 Glutathione mediates response to ROS

Pentose Phosphate Pathway

 δ -[1 – ¹³C] Gluconolactone

 Image carbon metabolism related to PPP flux

 Gluconolactone labeled at 1 position can only produce ¹³CO₂ via PPP

Moreno, et al., NMR Biomed (2017)

HP bicarb production in perfused liver

Arginine mediated T-cell proliferation

- Inflammatory myeloid-derived suppressor cells (MDSCs) promote tumor development
- T-cells proliferate in presence of arginine, which can be metabolized to ornithine and urea by arginase
 - Arginine disposal prevents T-cell inhibition of cancer growth

Arginine mediated T-cell proliferation

[6 – ¹³C] Arginine

 Urea production is correlated with arginase concentration in vivo

Hexokinase Flux

[2-13C]Fructose

 Longer T₁ than glucose gives better prospects for in vivo use in mammals

Keshari, et al., JACS (2009)

Hexokinase Flux

[2-13C]Fructose

 Longer T₁ than glucose gives better prospects for *in vivo* use in mammals

Keshari, et al., JACS (2009)

BCAA Metabolism

[1-13C] Ketoisocaproate

 Branched-chain aminotransferase (BCAT) i.e. leucine metabolism

 BCAT expression found to be up-regulated in some cancers

BCAA Metabolism

[1-13C] Ketoisocaproate

 Branched-chain aminotransferase (BCAT) i.e. leucine metabolism

 BCAT expression found to be up-regulated in some cancers

DHA

Hepatic Gluconeogenesis (GNG)

[2-13C] Dihydroxyacetone

- Long T_1 (~40 s)
- Avidly consumed by liver
- Multiple metabolic fates
- First step of metabolism requires ATP for production of DHAP
- Glycerol production is redox dependent

[2-13C]Dihydroxyacetone

Gluconeogenic

Glycogenolytic

Glucose G-6-P DHA DHA-P GA-3-P Gly-3-P Glycerol 3-P-Glycerate Lactate Alanine Pyruvate PEP

Kinetics

12x

40

KI

40

Summary

- A new MR technique opens research
 - In basic biological sciences
 - *In vivo* diagnostic imaging
- Metabolic imaging with hyperpolarized nuclei is rapidly growing
- Clinical applications are on the immediate horizon
 - Several clinical trials are underway

Thank You