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When will Dynamic Nuclear Polarization work?

* Dope a stable free radical into a carbon-13 labeled
metabolite of interest

* The sample prep must produce a glass



Thermal Equilibrium
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AE Is ~ 102 J, and k is 1.38x10-22 J/K,
so the population difference is on the
order of ppm at room temperature




Dynamic Nuclear Polarization (DNP)
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DNP Mechanism: Thermal Mixing
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Goldman, Appl. Magn. Reson. (2008)




Increase in signal-to-noise ratio of >10,000 times in
liquid-state NMR

Jan H. Ardenkjser-Larsen*, Bjorn Fridlund, Andreas Gram, Georg Hansson, Lennart Hansson, Mathilde H. Lerche,
Rolf Servin, Mikkel Thaning, and Klaes Golman

* 3.35T

* VTl replaces RT bore
* 94 GHz u-wave

* 1.4 K operation

[ s

* Dissolution by bolling
solvents




Melt frozen solid and inject — Dissolution DNP

DNP Polarizer

Figure Credit: CNRS, France
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When will ADNP work?

* The sample prep must produce a glass

* The T, of the sample must be long enough
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T,: “How physical facts kill beautiful experiments”
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Meier, et al., Molecular Biosystems (2011)

[U-2H-13C,] glucose

Glycolysis in yeast

Most of kinetics is visible
because of rapid transfer to
culture
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T,: “How physical facts kill beautiful experiments”
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T,s of heteronuclel are highly dependent on

* The number of attached hydrogens

ne chemical shift anisotropy

* The correlation time of the molecule

* The presence of paramagnetic species

Strong constraints on the types of molecules that can be
Imaged (Central Metabolism)
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When will DNP work In living systems?

* The sample prep must produce a glass

* The T, of the sample must be long enough

* A high flux transporter is highly beneficial (e.g. MCTS)
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Pyruvate Transport Can Dominate Kinetics

. kinetics observed for the conversion
of hyperpolarized *C-pyruvate to lactate
In perfused T47D breast cancer cells, has
a MCT1-mediated pyruvate transport as
rate-limiting step.”

Harris, et al., PNAS (2009)
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Cancer

* Elevated glycolysis implies more glucose uptake (FDG-PET)

* Elevated glycolysis implies more lactate formation

* A metabolic basis for hypothesis generation
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“A Phase | Ascending-dose and Exploratory Imaging Study to Assess the Safety and Tolerability
and Imaging Potential of Hyperpolarized [**C-1] Pyruvate Injection in Subjects With Prostate
Cancer”

Dynamic C-13 data A
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UCSF 31 prostate cancer patients studied demonstrated safety and imaging feasibility in this Phase 1
dose escalation trial with no adverse events.



“A Phase | Ascending-dose and Exploratory Imaging Study to Assess the Safety and Tolerability
and Imaging Potential of Hyperpolarized [**C-1] Pyruvate Injection in Subjects With Prostate
Cancer”

Dynamic C-13 data
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UCSF 31 prostate cancer patients studied demonstrated safety and imaging feasibility in this Phase 1
dose escalation trial with no adverse events.

~20 NIH funded trials currently underway



Imaging Tumor In Brain

[1 — 13C] Pyruvate D

“We correlated our results with standard clinical
brain MRI, MRI DCE perfusion, and in one case
FDG PET/CT. Our results suggest that HP 13C
pyruvate-to lactate conversion may be a viable
metabolic biomarker for assessing tumor

response.”

Miloushev, et al., Cancer Res. (2018)

Glioblastoma
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Tumor Cell Proliferation
[5 — 13C] Glutamine

* Anaplerosis via glutaminase to
form glutamate can serve as a
pathway to enhance tumor cell
growth

— hepatocellular carcinomas
have a 30x increase in
glutamine utilization

&
-
2.
=5
2
FQ‘IHE
= B
ey
=z 2
ey
-
-4

O

Gallagher, et al., MRM (2008)
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Hyperpolarized 13C Study of Myocardial Metabolism

* Anaplerosis replenishes
TCA cycle intermediates

" Propionate is avidly
metabolized

" High levels of PCC AKG
expressed In the heart /
® 33C label A SuC

MAL

O Natural Abundance \UM b
® 3C Isotopomers ®

(Work In progress) e



Hyperpolarized 13C Study of Myocardial Metabolism

[1 —3C] Pyruvate

* Metabolic inflexibility in failing
myocardium
—Propionate Cannot Modulate
PDH Flux in Hypertrophied
Heart

SHAM/PROP TAC/PROP

PYR-HYD LAC
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BICARB

SHAM/CON TAC/CON
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(Work in progress) 26



Hyperpolarized 13C MRI- Human Myocardial Metabolism
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PH Imaging

B pH 7.7
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* Short T, ‘

* Low Concentration In
Solid State
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Gallagher, et al., Nature (2008)




Hyperpolarized YDOTP

pH Imaging
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Cell Necrosis

[1,4-3C] Fumarate

* Fumarate not easily transported
across cell membrane

* Appearance of malate via
fumarase reaction iIs therefore
marker of necrosis

Gallagher, et. al., PNAS 2009 =



Outline

* Understanding physical prerequisites
* Maximizing biological information

* Targets for metabolic imaging
— Cancer
— Myocardium
— pH sensing
— Necrosis
— Metabolic pathways



Glutathione Homeostasis
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Redox Sensor For in vivo Metabolic Imaging

[1 — 3C] Dehydroascorbate

* Measuring in vivo redox
state with dehydroascorbate
(DHA)

* DHA reduction by NADPH
via glutathione

* Glutathione mediates
response to ROS

A Cyclic in vivo DHA Reduction via Glutathione and NADPH
NADPH X GSSG X Vitamin C
NADP* I GSH I DHA

Glutathione Reductase 1. Glutaredoxin (EC 1.20.4.1)
EC1.81.7 2.PDI (EC 5.3.4.1)
3.GSTOs (EC 2.5.1.18)

B Two Electron Reduction of DHA to Vitamin C

(o]
[1-13C] DHA

[1-13C] Vitamin C

D Reduction of Hyperpolarized [1-*C] DHA using NaBH,CN

0.4
@5mM ©20mM ©50mM ©100mM
C Decay of Hyperpolarized Signals After Dissolution

e
w

[1-13C] DHA [1-13C] Vitamin C

VitC/ VitC + DHA

Keshari, et al., PNAS (2011)
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Redox Sensor For in vivo Metabolic Imaging

[1 — 3C] Dehydroascorbate

* Measuring in vivo redox
state with dehydroascorbate Vitamin C
(DHA)

* DHA reduction by NADPH
via glutathione

* Glutathione mediates
response to ROS Keshari, et al., PNAS (2011)
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Pentose Phosphate Pathway

O0-[1 — 13C] Gluconolactone

* Image carbon metabolism related to
PPP flux

* Gluconolactone labeled at 1 position
can only produce 3CO, via PPP

Moreno, et al., NMR Biomed (2017)




HP bicarb production in perfused liver
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Arginine mediated T-cell proliferation

* Inflammatory myeloid-derived suppressor cells (MDSCs) promote
tumor development

* T-cells proliferate in presence of arginine, which can be
metabolized to ornithine and urea by arginase

— Arginine disposal prevents T-cell inhibition of cancer growth

=12



Arginine mediated T-cell proliferation
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* Urea production is Tine 3
correlated with arginase
concentration in vivo

Najac, et al., Scientific Reports (2016) 40



Hexokinase Flux

[2-13CJ]Fructose

* Longer T, than glucose gives

better prospects for in vivo
use in mammals

Keshari, et al., JACS (2009)
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Hexokinase Flux

[2-13CJ]Fructose

* Longer T, than glucose gives

better prospects for in vivo
use in mammals

Keshari, et al., JACS (2009)
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BCAA Metabolism

[1-13C] Ketoisocaproate

* Branched-chain
aminotransferase (BCAT)
l.e. leucine metabolism

* BCAT expression found to
be up-regulated in some
cancers

o-Keto-[1-13Clisocaproic acid (KIC)
a-Keto-p-methylvaleric acid
o-Ketoisovaleric acid

Glutamate -
ranched-chain
aminotransferase
o-Ketoglutarate

R

,HC CH

+NH, CH,

"0

[1-13C]Leucine

Karlsson, et al., I1JC (2009) i



BCAA Metabolism

[1-13C] Ketoisocaproate

* Branched-chain
aminotransferase (BCAT)
l.e. leucine metabolism Intestine

Leucine

* BCAT expression found to
be up-regulated in some
cancers

Karlsson, et al., I1JC (2009)

A4



ATP ADP ,ﬂ)ﬂoo‘;

00— 0._PH -
HO® ®OH <« » HO L_”\,./Dﬂ”o 3

S Hepatic Gluconeogenesis (GNG)

2
Q4P o, OH 2-
O O
W._-0PO3
hit

oS T o B [2-13C] Dihydroxyacetone

Glycerol Gly-3-P

R g JHTWO; * Long T, (~40 s)

R

* Avidly consumed by liver
* Multiple metabolic fates

OH

Lactate

k * First step of metabolism requires ATP for
) production of DHAP

oH .
o B —— - - _@._0-P0,

A, o gt "1 * Glycerol production is redox dependent

Alanine Pyruvate 3-P-Glycerate

/
Q

45

2-P-Glycerate




[2-13C]Dihydroxyacetone
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Summary

* Anew MR technique opens research
— In basic biological sciences
— In vivo diagnostic imaging

* Metabolic imaging with hyperpolarized nuclei is rapidly growing

* Clinical applications are on the immediate horizon
— Several clinical trials are underway
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Thank You
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