

Proudly Operated by Battelle Since 1965

Ion Mobility Spectrometry: Analyzing Molecules as They Tumble through Life

ERIN S. BAKER

Pacific Northwest National Laboratory

Outline

- What is ion mobility spectrometry (IMS)?
- What are the differences between the diverse IMS methods? (i.e. DTIMS, TWIMS, FAIMS, DMA, TIMS, etc.)?
- The benefits of using IMS
- Current and future IMS applications

Have you been within 50 feet of an IMS device in the last 5 days?

IMS concept

- Defines how an ion drifts through a gas under the influence of an electric field
- Separation based on the mass, charge, size & shape
- Variables in diverse IMS methods
 - 1. Electric field
 - 2. Pressure
 - 3. Gas composition
 - 4. Gas flow
 - 5. Temperature

Drift Cell

Evolution of IMS

Historical Developments in Ion Mobility (IM) Technologies

Charles "Steve" Harden

- Studied gas phase ion molecule reactions for Ph.D. research
- In 1967, he was placed on Active Duty at the Edgewood Arsenal - Army center for chemical warfare agent (CWA) research
- Harden's preparation was pivotal to the development and fielding of IMS-based nerve agent detectors in the 1970s and 80s

Trace warfare agent devices

- Prior to the 1960s, the main CWA detection methods were colorimetric techniques or indicating paper tapes
- M8 Portable Automatic Chemical Agent Alarm was developed for continuous and automated detection of nerve agent vapors

 The Army needed a more reliable, solutionfree dry chemistry detector

Slide courtesy of Abigail Eiceman

Trace warfare agent devices

- In 1973, Harden linked atmospheric pressure ionization and the Honeywell ionization detector to create the M8A1
- Compact dry detector, no larger than a lunchbox replaced the M8

IMS in the military

- Current IMS devices: powerful for explosive and CWA detection
- Used for airport security, drug discovery, forensics, and customs
- Low detection limits and high sensitivity offered broader applications

What are the differences between the diverse IMS methods

(DTIMS, TWIMS, FAIMS, DMA, TIMS)?

If you say "I perform ion mobility spectrometry measurements"

It is similar to saying "I drive a car"

What type of IMS?

Which buffer gas?

Which instrument do you use?

What is your resolving power?

What pressure?

How rapid are your measurements?

Static Fields

- 1. Drift Tube IMS (DTIMS)
- 2. Differential Mobility Analyzer (DMA)

Dynamic Fields

- 1. Field Asymmetric IMS (FAIMS)
- 2. Traveling Wave IMS (TWIMS)
- 3. Trapped IMS (TIMS)

Biochimica et Biophysica Acta 1811, 935–945 (2011).

Temporal Separation

Spatial Separation

Types of ion mobility spectrometers

Temporal Separation (All Ion Analysis)

- 1. Drift Tube IMS (DTIMS)
- 2. Traveling Wave IMS (IMS)

Spatial Separation (Scanning Analysis)

- 1. Field Asymmetric IMS (FAIMS)
- 2. Differential Mobility Analyzer (DMA)
- 3. Trapped IMS (TIMS)

Biochimica et Biophysica Acta 1811, 935–945 (2011).

Drift Tube IMS (DTIMS)

Constant Velocity

 $v = K \overrightarrow{E}$ K = ion mobility

Ion-neutral collision cross section (CCS)

- Value related to the size and shape of an ion
 Corresponds to the area that collides with the drift gas
- Robust physicochemical property
- Can easily be compared between labs
- Varies depending on drift gas

DTIMS – collision cross section (CCS) determination

Drift Voltage	<i>t</i> _A
50 V	19 ms
55 V	18 ms
60 V	16 ms
70 V	14 ms
100 V	11 ms
150 V	8 ms

Slide courtesy of Professor Kevin Pagel

DTIMS – collision cross section (CCS) determination

Mason-Schamp Equation

$$CCS = \Omega = \frac{3 q}{16 N} \left(\frac{2 \pi}{\mu k_B T}\right)^{1/2} \frac{1}{K_0}$$

Utility of accurate CCS measurements

Skiing analogy

Drift Tube IMS DTIMS

Traveling Wave IMS TWIMS

TWIMS is based on a dynamic electric field

- Calibration needed to estimate TWIMS CCS values
- Calibrant and analyte ions should be of the same molecular type

www.youtube.com/user/WatersCorporation

For details and spreadsheet visit: www.bcp.fu-berlin.de/chemie/pagel

Slide courtesy of Professor Kevin Pagel

Utility of TWIMS measurements

Y. Zhao, et al. Analyst. 2015, 140, 6980–6989.

Longitudinal, sagital section of whole body rat

*Sample courtesy of Dr. Lars Bendahl Data courtesy of Dr. Kevin Giles

Field Asymmetric IMS (FAIMS)

- Also known as Differential Mobility Spectrometry (DMS) or Differential Ion Mobility Spectrometry (DIMS)
- Separation based on the difference in an ion's mobility at low and high electric fields
- Performed either between plates or cylindrical electrodes

FAIMS Separations

Slide courtesy of Drs. Susan Abbatiello and Michael Belford

Slide courtesy of Drs. Susan Abbatiello and Michael Belford

https://yost.chem.ufl.edu/research/faims/

FAIMS operation and applications

- FAIMS operates at atmospheric pressure
- Has a narrow band filter so you must scan over CVs to acquire all ions
- Measured mobilities cannot be directly correlated to an ion's structure

Slide courtesy of Dr. Susan Abbatiello

Differential Mobility Analyzer (DMA)

Slide courtesy of Mario Amo Gonzalez and Professor Juan de la Mora

- Can analyze large particles
- DMA mobilities are directly related to structure
- Must scan over mobilities to acquire all ions

L. F. Pease, Y.-H. Tseng , Nanomedicine: Nanotechnology, Biology and Medicine, 10, 1591–1600 (2014).

- Funnel-based device
- Ions accumulate in analyzer section
- Must scan over mobilities to acquire all ions
- Calibration required to get CCS values

Slide courtesy of Dr. Lucy Woods

Slide courtesy of Dr. Lucy Woods

Slide courtesy of Dr. Lucy Woods

Skiing analogy

TWIMS

DMA

FAIMS (low field)

FAIMS (high field)

Ion Mobility Spectrometers

- DTIMS
 - > 760 Torr
 - 760 Torr -
 - < 760 Torr</pre>
- TWIMS
- FAIMS ⁻
- DMA -
- TIMS ^

Mass Spectrometers

- Quadrupole
 - Time-of-flight
- Trapping instruments (Orbitraps & FTICRs)

Non-exhaustive list of companies selling IMS devices:

 AB Sciex 	DMS	www.absciex.com
 Agilent 	DTIMS	www.chem.agilent.com
 Bruker Daltonics 	TIMS/DIMS	www.bruker.com
 Excellims 	DTIMS	www.excellims.com
 Owlstone 	FAIMS	www.owlstonenanotech.com
 Thermo Scientific 	FAIMS	www.thermo.com
 TOF-Werk 	DTIMS	www.tofwerk.com
 Waters Co. 	TWIMS	www.waters.com

Noncommercial Devices – Cyclic IMS

F2

Fork 1

F1/IA1/G1

- Cyclic DTIMS Instrument
- Resolution limited by mobility differences:
 - ightarrow "The ATD bites its tail"
 - \rightarrow Avoid by ejecting unwanted ions

ESI

000

Fork 2

F5a

MS Detector

Noncommercial Devices – Serpentine IMS

 Convert ring-based lenses to parallel surfaces using Structures for Lossless Ion Manipulations (SLIM)

Noncommercial Devices – Serpentine SLIM IMS

- Long path separations are performed in a small chamber
- Resolution not restricted to mobility differences
- Multilevel devices allow even greater resolution

Why would anyone (including yourself) want to

use IMS in their studies?

IMS Application – Isomer separation

IMS Application – Molecular class separation

IMS Application – Increased feature detection

Only 3 features discerned without drift time dimension (*)

IMS Application – Multidimensional library matching

Extra dimension adds confidence to LC-IMS-MS Features Matches in a Library

IMS Application – Protomer Separation

Warnke, S. et al. J. Am. Chem. Soc. 2015, 137, 4236-4242

IMS Application – Multiplexed fragmentation

Fragments have the same drift time as precursors

Interesting Future IMS Applications

Novel IMS applications – Chemical warfare agents detectors

- Lightweight compact detector (cell phone size)
- Sample the air for traces of nerve gas, blister agents, toxic industrial chemicals, and blood/choking agents
- The unit can check cargo, equipment, personnel or facilities

LCD 3.2E Handheld CWA & TIC Detector

smiths detection

Novel IMS applications – Drone analyses

 "The U.S. Army's Edgewood Chemical Biological Center has outfitted drones with ion mobility spectrometers for real-time detection of chemical weapons."

Home > Volume 94 Issue 9 > Drones detect threats such as chemical weapons, volcanic eruptions

Volume 94 Issue 9 | pp. 36-37 Issue Date: February 29, 2016

COVER STORIES: DRONES SWARM TO SCIENCE Drones detect threats such as chemical weapons, volcanic eruptions

By Sarah Everts and Matt Davenport

Chemical firms survey their plants from the sky

[+]Enlarge

Novel IMS applications – Space travel

- NASA is working to put IMS devices on future space craft
- IMS is a fast, highly sensitive method for separating and identifying gaseous molecules
- Need consistent, high-level operation in harsh conditions without maintenance

Novel IMS applications – Drug analyses

M. J. Binette, P. Pilon, "Detecting black cocaine using various presumptive drug tests", Microgram 2013, 10, 8 – 11.

Slide courtesy of Professor Brian Clowers

Novel IMS applications – Marijuana detection

Marijuana Legalization by State

Recreational Marijuana

Alaska
California
Colorado
Massachusetts
Nevada
Oregon
Washington
Washington, D.C.

Mod	ical	N/ -	. eiii	120	•

Arizona	Montana
Arkansas	New Hampshir
Connecticut	New Jersey
Delaware	New Mexico
Florida	New York
Hawaii	North Dakota
Illinois	Ohio
Maine	Pennsylvania
Maryland	Rhode Island
Michigan	Vermont
Minnesota	

Limited Me	dical Marijuana
Alabama	Texas
Georgia	Utah
Iowa	Virginia

Alabama	Texas
Georgia	Utah
Iowa	Virginia
Kentucky	Wisconsin
Louisiana	Wyoming
Mississippi	
Missouri	
North Carolina	
South Carolina	
Tennessee	

THC Detection

Novel IMS applications – Broad application space

Summary

- Define ion mobility spectrometry (IMS)
- Differences between the diverse IMS methods (i.e. DTIMS, TWIMS, FAIMS, DMA, TIMS, etc.)
- Benefits of using IMS
- Current and future IMS applications

Acknowledgements

Slide Contributions:

- Brian Clowers
- John McLean
- Kevin Pagel
- Kevin Giles
- Susan Abbatiello
- Michael Belford
- Mario Amo Gonzalez
- Juan de la Mora
- Guillermo Vidal
- Abigail Eiceman
- Jody May

PNNL SLIM and IMS-MS Team

