

GBS 724 02-08-16

Applying MetaboAnalyst

Xiangqin Cui, PhD

	MetaboAnalyst 3.0 – a comprehensive tool suite for n	netabolomic data análysis
Home	Please choose a functional module to proceed:	-
Overview	O Statistical Analysis	C Enrichment Analysis
Data Formats		
FAQs	This module offers various commonly used statistical	This module performs metabolite set enrichment
Tutoriale	ANOVA, PCA and PLS-DA. It also provides clustering	based on several libraries containing ~6300 groups of
Tutonais	and visualization tools to create dendrograms and	metabolite sets. Users can upload either 1) a list of
Resources	heatmaps as well as to classify based on random	compounds, 2) a list of compounds with
Update History	forests and SVM.	concentrations, or 3) a concentration table.
User Stats	Pathway Analysis	O Time Series Analysis
Contact	This module supports pathway analysis (integrating	This module supports temporal and two factor data
About	enrichment analysis and pathway topology analysis)	analysis including data overview, two-way ANOVA, and
	and visualization for 21 model organisms, including	empirical Bayes time-series analysis for detecting
	Human, Mouse, Rat, Cow, Chicken, Zebrafish,	distinctive temporal profiles. It also supports ANOVA-
	Arabidopsis thaliana, Rice, Drosophila, Malaria, S.	simultaneous component analysis (ASCA) to identify
ТМІС	cerevisae, E.coli. and others, with a total of ~1600	major patterns associated with each experimental
	metabolic pathways.	factor.

Tab-delimited	text (.txt) or comma-separated values (.csv) file:	
Data Type:	Concentrations Spectral bins Peak intensity table	
Format:	Samples in rows (unpaired)	Submit
Data File:	Browse No file selected.	
Zipped Files (.	zip) :	
Data Type:	NMR peak list MS peak list MS spectra	
Data File:	Browse Posmode_diet.zip	Submit
Pair File:	Browse No file selected.	

	Higo TankO Oris DMA Oris DMA Children Children	MetaboAnalyst 3.0 - a comprehensive tool suite for metabolomic data analysis
Processing MS peak list data : Processing	Datase Pre-process Data check Masing value Data filter Data editor Image options Normalization Statistics Download	Processing MS peak list data : Processing MS peak list data : Beaks need to be matched across samples in order to be compared. For two-column format (mass and intensities), peaks are grouped by their m/z values. For three column data (mass, retention time, and intensities), the program will further group peaks based on their retention time. Users need to supply tolerance values in order to proceed. Here are some suggested values: mass tolerance - 0.25 (m/z); retention time to groups will be replaced by their sum; some groups will be none of the classes has at least half its sample are presented. Finally, the program orceate a peak intensity table in which each sample occupies arow and each column represents a peak group identified by the median values of its position (m/z and/or retention time). Mass tolerance (m/z): 0.025 Retention time tolerance: 0.025

Processing MS peak list data :	
Peaks need to be matched across samples in order to be compared. For two-column format (mass and intensities), peaks are grouped by their m/z values. For three column data (mass, retention time, and intensities), the program will further group peaks based on their retention time. Users need to supply tolerance values in order to proceed. Here are some suggested values: mass tolerance - 0.25 (m/z); retention time - 30 (seconds) for LC-MS peak, and 5 (seconds) for GC-MS peaks. Please note, If a sample has more than one peak in a group, they will be replaced by their sum; some groups will be excluded if none of the classes has at least half its samples represented. Finally, the program create a peak intensity table in which each sample occupies a row and each column represents a peak group identified by the median values of its position (m/z and/or retention time).	
Mass tolerance (m/z): 0.025 Retention time tolerance: 30.0	
MS peak processing information	
The uploaded files are peak lists and intensities data.	
A total of 6 samples were found.	
These samples contain a total of 14304 peaks.	
with an average of 2384 peaks per sample	
A total of 2346 peak groups were formed.	
Peaks of the same group were summed if they are from one sample.	
Peaks appear in less than half of samples in each group were ignored.	

	_
Non-informative variables can be characterized in two groups: variables of very small values - these variables can be detected using mean or	
median; variables that are near-constant throughout the experiment conditions - these variables can be detected using standard deviation	
(SD); or the robust estimate such as interquantile range (IQR). The relative standard deviation(RSD = SD/mean) is another useful variance	
measure independent of the mean. The following empirical rules are applied during data filtering:	
a Loss than 350 underlas: 5% will be filtered.	
Less trait 20 variables, 5% will be intered; Bokuran 200, Bokurah (20) will be filmed;	
Between 20 - 500 variables. 10/5 will be intered,	
Between sub - 1000 vanables: 25% will be filtered;	
Over 1000 variables: 40% will be hitered;	
Please note, in order to reduce the computational burden to the server, the None option is only for less than 2000 features. Over that, if you	
choose None, the IQR fliter will still be applied. In addition, the maximum allowed number of variables is 5000. If over 5000 variables were left	
after filtering, only the top 5000 will be used in the subsequent analysis.	
Interquantile range (IQR)	
Standard deviation (SD)	
Median absolute deviation (MAD)	
Relative standard deviation (RSD = SD/mean)	
On-parametric relative standard deviation (MAD/median)	
Mean intensity value	
Median intensity value	
Whone (less than 2000 features)	
·	
Process	

Sample normalization		
None		
Sample specific normalization (i.e. dry weigh	t, volume)	Click here to specify
Normalization by sum		
Normalization by median		
Normalization by reference sample		
Specify a reference sample	posmode_ir1	
Create a pooled average sample from grou	p Posmode_IR *	
Normalization by reference feature 50.0177/11.0	2 •	

Univariate Analysis	Statistical methods available to
Fold Change Analysis T-tests Volcano plot	process the data on MetaboAnalyst
One-way Analysis of Variance (ANOVA)	
Correlation Analysis Pattern Searching	Today we'll focus on univariate
Multivariate Analysis Principal Component Analysis (PCA)	analysis (Volcano plots) and multivariate analysis (PCA and PLS-DA)
Partial Least Squares - Discriminant Analysis (P	PLS-DA)
Significant Feature Identification	
Significance Analysis of Microarray (and Metabo	<u>olites) (SAM)</u>
Empirical Bayesian Analysis of Microarray (and	Metabolites) (EBAM)
Cluster Analysis	
Hierarchical Clustering: Dendrogram Heatma	aps
Partitional Clustering: K-means Self Organiz	ing Map (SOM)
Classification & Feature Selection	
Random Forest	
Support Vector Machine (SVM)	

7/14/2016

Volca	no plot set up
Volcan	no Plot
The volca	ano plot is a combination of fold change and t-tests. Note, for unpaired samples, the x-axis is log (FC). For paired analysis, the x-
axis is nu	imber of significant counts. Y-axis is -log10(p.value) for both cases.
Analysi	s type: Unpaired
X-axis:	Fold change threshold: 1.5 Comparison type: Grubbs_neg_1/G * Sig. count threshold (paired): 75.0 %
Y-axis:	Non-parametric tests: P value threshold: 0.01 Group variance: Equal
	Submit

