INTRODUCTION TO XCMS

H. Paul Benton

WHAT IS XCMS

- Non-linear alignment tool
- LC-MS data processing platform
 - LC-MS data is several 10-100s (poss 1000s) of samples

Urine Grubb Group 1

Urine Grubb Group 2

Metabolomics Data Analysis Software

Mass Profiler Pro

Agilent Technologies

Waters THE SCIENCE OF WHAT'S POSSIBLE."

apLCMS

mzMatch

GENERAL PRINCIPALS

KEEP CALM AND FOLLOW THE YELLOW BRICK ROAD

Grouping Groups similar Peaks across replicates

> Retention Time Alignment

> > Statistical Analysis of Classes

EASY PEAK DETECTION

RIGHT?

HAT FITTING

- Different hat for different heads (& faces apparently)
- A hat has to fit well so it must be sized

PEAK DETECTION

- Data comes in two types in MS : centroid & profile
- Generally high resolution or low resolution ~ high mass accuracy or low mass accuracy
- Two main choices in XCMS
 - MatchedFilter profile low res
 - CentWave centroid high res

GENEBADPRINGPALS

Peak Detection

Grouping Groups similar Peaks across replicates

> Retention Time Alignment

> > Statistical Analysis of Classes

GROUPING

- First time using all of the files
- Looks for closely clustered/dense peaks across multiple files.
 - Once peaks are grouped they're know as a group or feature

Detected features for mz:130.1-130.2and rt:305-315

GROUPING = NEAREST

- Based on mzMine grouping/alignment algorithm
 - Uses nearest neighbor estimation.

GENERAL PRINCIPALS

Peak Detection

Grouping Groups similar Peaks across replicates

> Retention Time Alignment

> > Statistical Analysis of Classes

RETENTION TIME ALIGNMENT

• XCMS finds 'well behaved groups'

- These include group that have missing peaks, extra peaks or perfect groups (parameters)
 - Missing < n/2 !!
- Median found for each group
- Local regression used for each sample to find the deviation profile

RETENTION TIME ALIGNMENT -LOESS

Retention Time Deviation vs. Retention Time

median rt of each 'well behaved' group vs rt of each file

A good spread of anchors/'well behaved peak groups'

- After peaks are aligned we must regroup the peaks into features again.
 - Alignment has shifted the peaks and grouping information is lost
 - The New groups 'will be' single molecular features (hopefully)

FILLPEAKS

 Going back to each file to find any intensity that wasn't peak picked

FINALLY !!

- We have all of our data corrected in a form we can use.
 - Lets look at some data processing:
 - heatmaps
 - PCA
 - Some Stats

WAIT !!!!

3774-T (19.9 min)

SUMMARY

- XCMS processes LC-MS data and is complex
- XCMS processes LC-MS data and uses some simple algorithms. There are multiple algorithm for different jobs/data types.

QUESTIONS?