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The puzzle of metabolomics 



Krebs et al. 1938. Biochem Journal. 32:113 

Genome-scale metabolic models as prior knowledge 



Bottleneck of untargeted metabolomics 



Mummichog for pathway/network analysis 

Li et al. 2013. PLoS Computational Biology. 9:e10031323 



Testing statistical significance in mummichog 
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Pathway vs module analysis in mummichog 

•  Pathways are predefined units with human knowledge. 
Network modules are less biased but data dependent.  
A module can be within a pathway or in between several 
pathways. The two approaches are rather complementary. 

•  Null distribution is estimated from permutation data, thus 
p-value for untargeted metabolomics data is empirically 
computed. 
 

•  Module statistics are based on a module activity score; 
pathway statistics are based on an enrichment test. 
 

•  Pathway definition may differ between databases. 
 



Application cases 

•  Immune response to virus – arginine emerging as 
master regulator (Li et al, 2013, PLoS Computational 
Biology. 9:e10031323; Ravindran et al. 2014. Science 
343:313) 

•  Combining mummichog with regression models – fly 
longevity (Hoffman et al, Aging Cell 13: 596-604) 

•  Connecting transcriptomics – T cell autophagy and 
memory (Xu et al, Nature Immunology. 15:1152-1161) 



Case study: viral activation of immune cells 

2012-03-23 11moDC infection

Validation experiment

QA: total ion counts are similar among samples

Monocyte derived dendritic cells (moDC)

+ YF-17D

+ mock

6 hrs



Li et al. 2013. PLoS Computational Biology. 9:e10031323 

Metabolite network after viral activation 



Experimental validation of mummichog prediction 

Tandem mass spectrometry 
confirmed 9/11 metabolites 

Gene expression supported 
GSH/GSSG depletion and 
Arg/Cit conversion 

Li et al. 2013. PLoS Computational Biology. 9:e10031323 



Arginine as master regulator of viral response 

Li et al. 2013. PLoS Computational Biology. 9:e10031323 

Argininosuccinate synthetase 1 
knockdown led to increased replication 
of HSV-1.  
Grady, Purdy, Rabinowitz & Shenk. 
2013. PNAS 110:E5006. 

Ravindran et al. 2014. Science 343:313  
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Summary

Researchers have used whole-genome sequencing and gene

expression profiling to identify genes associated with age, in

the hope of understanding the underlying mechanisms of

senescence. But there is a substantial gap from variation in gene

sequences and expression levels to variation in age or life

expectancy. In an attempt to bridge this gap, here we describe

the effects of age, sex, genotype, and their interactions on high-

sensitivity metabolomic profiles in the fruit fly, Drosophila

melanogaster. Among the 6800 features analyzed, we found

that over one-quarter of all metabolites were significantly

associated with age, sex, genotype, or their interactions, and

multivariate analysis shows that individual metabolomic profiles

are highly predictive of these traits. Using a metabolomic

equivalent of gene set enrichment analysis, we identified

numerous metabolic pathways that were enriched among

metabolites associated with age, sex, and genotype, including

pathways involving sugar and glycerophospholipid metabolism,

neurotransmitters, amino acids, and the carnitine shuttle. Our

results suggest that high-sensitivity metabolomic studies have

excellent potential not only to reveal mechanisms that lead to

senescence, but also to help us understand differences in

patterns of aging among genotypes and between males and

females.

Key words: age; aging; Drosophila melanogaster; genetic

variation; genotype; heritability; metabolomics; sex; systems

biology.

Introduction

Lifespan is a highly heritable trait. Over the past 20 years, researchers

working on lab-adapted organisms have been able to identify evolu-

tionarily conserved genetic pathways which, when knocked down or

overexpressed, are able to dramatically increase lifespan. These successes

underscore two critical questions: first, at the molecular level, what are

the underlying mechanisms by which these genes affect longevity;

second, at the population level, do these same genes account for

standing variation in longevity in natural populations?

These questions are complicated by the fact that the age at which an

individual dies depends not only on its genotype, but also on a lifetime of

effects accumulated through environmental exposure, the environment-

specific response of genes, and the downstream physiological

consequences of these complex factors. Fortunately, whole-genome

sequencing and genome-wide association (GWA) studies now make it

possible to identify segregating alleles that affect complex phenotypes

such as body height, diabetes, schizophrenia, and even longevity (Jeck

et al., 2012), but GWA studies suffer from numerous challenges, and

these are further compounded in analyses of lifespan. First, alleles

identified in GWA studies typically explain just 0.1–1.0% of the variation

in complex traits (Park et al., 2010). Second, the genetic basis of lifespan

appears, at least in part, to differ between the sexes (Burger &

Promislow, 2004). Third, lifespan includes a substantial degree of

stochasticity, varying dramatically even among genetically identical

individuals raised in a constant and identical environment (Kirkwood

et al., 2005). Finally, and perhaps most importantly, lifespan is a highly

composite trait potentially influenced by the functional decline of many

underlying processes. To fully understand the genetics of lifespan, we

need to understand the genetics not simply of age at death, but rather

of the underlying causes of death.

Here, we suggest that many of the challenges that we face in our

attempts to define the pathways that account for age-related declines in

function, and for genetic variation in these declines, can be resolved

through the use of high-resolution metabolomics (Mishur & Rea, 2012).

If we can decompose the physiological processes that influence

morbidity and mortality to their constituent components (i.e., the

metabolome), we will be an important step closer to bridging the gap

between genotype and phenotype (Fig. 1). The metabolome is effec-

tively a functional intermediate between genotype and phenotype.

Previous work illustrates how the metabolome can serve as a strong

bridge between genotype and phenotype. While allelic variation typically

explains only a small fraction of the variation in complex phenotypes,

GWA studies of the metabolome have found genetic variants capable of

explaining up to 60% of the variance in the concentration of individual

metabolites (Suhre et al., 2011). The metabolome also appears to be a

sensitive indicator of age-related physiological changes both in inverte-

brates and vertebrates (e.g., Sarup et al., 2012; Yu et al., 2012).

Moreover, different mutants that extend longevity share common

metabolomic signatures (e.g., Caenorhabditis elegans: Fuchs et al.,

2010; Mus musculus: Wijeyesekera et al., 2012).

While we have learned much from these initial studies, most have

been limited by the use of relatively low-sensitivity metabolomics

technology and by limited genetic information. Studies of age and the
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Collection of known-age flies

Prior to the onset of the study, fly cultures were expanded to include four

bottles per genotype, at which point 150 virgin males and females were

collected over a 72-h period under light CO2 anesthesia. For each sex and

each of the 15 genotypes, we placed an average of 27 individuals in each

of 5 40-mL glass vials, for a total of 4032 flies distributed among 150 vials.

Flies were transferred to new vials very 2 days without anesthesia, at

which time the number of dead flies in each vial was recorded.

At seven time points (days 3, 10, 24, 36, 51, 66, and 81), we collected

two samples of three flies from each unique genotype-sex cohort

without anesthesia, placed each sample in a 1.5-mL Eppendorf tube,

instantly froze the samples in liquid nitrogen, and then placed these

samples in a !80 °C freezer until the end of the experiment. Not all

genotypes survived to age 81 day, and in some cases at later ages, only

one sample of three flies per genotype and sex was collected.

Metabolomic analysis

Each frozen fly sample was homogenized using a Pellet Pestle! Motor

(Kimble Chase, Vineland, NJ, USA) in 150 lL acetonitrile in water (2:1 v/

v) containing an isotopic standard mix (Soltow et al., 2011) and

refrozen. Immediately before analysis, the samples were thawed,

vortexed, and centrifuged at 12 300 g for 10 min at 4 °C. Extracts

(100 lL) were randomized, placed in a refrigerated autosampler, and

10 lL volumes were analyzed in duplicate with dual chromatography-

mass spectrometry (DC-MS) platforms (Soltow et al., 2011), one using

an AE column (PRPX-110S, 2.1 mm 9 10 cm; Hamilton Company,

Reno, NV, USA) and the other using a C18 column (Targa,

2.1 mm 9 10 cm; Higgins Analytical, Mtn View, CA, USA). C18 and

AE chromatography separate molecules based upon different chemical

properties. C18 is also termed ‘reverse phase’ chromatography because

the 18-carbon units are hydrophobic, retaining and separating chemicals

with partial hydrophobic character. Anion exchange, on the other hand,

has positive charges on the column, which retain and separate negatively

charged molecules. The conditions used result in about 30% overlap

between columns in chemicals detected.

Samples were fractionated with a formate or acetonitrile gradient,

respectively, ionized with electrospray ionization in the positive mode,

and detected with an LTQ Orbitrap Velos mass spectrometer (Thermo

Fisher Scientific, San Jose, CA, USA) with m/z from 85 to 2000 and

30 000 resolution. Data were extracted using apLCMS (Yu et al., 2009)

as m/z features, where an m/z feature is defined by m/z (mass/charge),

retention time, and ion intensity (integrated ion intensity for the peak).

As part of quality control, we also generated a ‘fly standard’, consisting

of a large volume of identical sample taken from 350 flies, which was

run alongside samples daily to evaluate reproducibility. While some

overlap in metabolites between the two columns is expected, data from

both columns cannot efficiently be combined for analysis due to very

different column chemistries which can lead to the same metabolite

showing different ion intensities and retention times. Therefore, we

analyzed data from both columns separately.

Data analysis

Quality control

Many metabolites show significant stochastic variation even within

samples and thus are likely to be uninformative. To minimize the impact

of ‘noisy’ metabolites, prior to data analysis, we carried out a set of

quality control procedures to limit our analysis to the most informative

metabolites. First, we only included metabolites with a signal-to-noise

ratio (SNRi = mean/sample standard deviation) ≥ 15. Second, we log-

transformed the data, which led to a normal distribution of concentra-

tions across all metabolites. Third, we removed any metabolites that

were missing from more than 5% of either all male samples or all female

samples. Fourth, we used the LSimpute imputation procedure (Bo et al.,

2004) to estimate the values of missing samples. Fifth, we limited our

analysis to metabolites with a mass-charge ratio of < 900, as data

collection parameters were optimized for m/z ≤ 900. Finally, once all

these procedures were complete, we normalized the data such that each

sample had a mean value of 0.

Metabolite-specific analysis

All statistical analyses were carried out using the statistics package R

(R Core Team, 2013).

We used a general linear model to test for the effects of age (A), sex

(S), and genotype (G) on metabolite intensity (Y):

Y ¼ lþ Aþ S þ Gþ A$ S þ A$ Gþ G$ S þ e ð1Þ

treating all predictors as fixed effects, where l is the grand mean and e is
the residual error. We treated age as an ordered factor (effectively a

categorical variable, with the proviso that we know that age 3< age 10,

age 10< age 24, and so forth). Due to small sample sizes and not all

genotypes being present, age 81 flies were removed, leaving 274

samples for metabolite-specific analyses.

By including all parameters in the model, we are asking, for example,

whether sex has a significant effect on metabolite intensity after

controlling for the effects of age and genotype. To determine signifi-

cance for each factor in the model shown in Eqn 1, we set the false

discovery rate (Benjamini & Hochberg, 1995) at 1% using all P-values

associated with that specific factor. To obtain P-values for the effects of

genotype and of its interactions with age or sex, we carried out a

likelihood ratio test using the lrtest function in the epicalc package in R.

We followed Hoffmann & Parsons (1988) to obtain approximate

estimates of narrow-sense heritability (h2) from the intraclass correlation

(t) between lines. Here, t ¼ r2
b=ðr2

b þ nr2
wÞ, where r2

b and r2
w are the

between-line and within-line variances, respectively, and n = 3 is the

number of individuals within each sample. Within- and between-

genotype variances were determined using the lme function in the

package NLME in R, treating age and sex as fixed effects and genotype

(line) as a random effect. While Hoffmann & Parsons (1988) and

subsequent authors suggest various equations to convert t to h2, here

we present only the intraclass correlation.

Metabolome-wide analysis

To determine the degree to which metabolomic profiles could be used to

predict sex or age, we used the sparse partial least squares discriminant

analysis function (splsda) as implemented in the R packagemixOmics (for

sex and genotype) and partial least squares regression as implemented

by the mvr function in the PLS package in R (for age). We set the number

of components as (k!1), where k is the number of classes (2 for sex, 7

for age, 15 for genotype). For splsda, we chose the number of

metabolites to include in each analysis based on that number which

minimized the classification error rate (CER), using ten-fold cross-

validation. Supervised classification schemes with relatively low numbers

of samples and high numbers of variables can lead to overfitting

(Westerhuis et al., 2008). Accordingly, we compared observed CER with

mean CER ('1 SE) obtained from ten permutation tests in which the

classification group (sex or age) was sampled randomly without
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•  Modeling effect on metabolite concentration (Y).  
A: age, S: sex, G: genotype 

•  Using significant features from the model to test 
pathway/network enrichment in mummichog 



Top features in regression model  
used for mummichog input 

Example output module from mummichog analysis with 
color hue determined by the sign and size and color 
intensity determined by the magnitude of the regression 
coefficient in the age model (blue is negative, red is 
positive). The metabolites are putatively annotated 
based on m/z ratio. This particular module is enriched 
for metabolites associated with glycolysis, for 
metabolites that feed the glycolytic pathway, and for 
metabolites associated with glycophospholipid 
metabolism.  
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Pathways significantly associated with aging in this 
Drosophila model. 
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A RT I C L E S

CD8+ T cells provide protection against intracellular bacterial, para-
sitic and viral infections, as well as cancers1,2. Following stimulation 
with antigens, naive CD8+ T cells go through many rounds of prolif-
eration, giving rise to effector T cells, which eliminate infected cells. 
Upon clearance of the antigens, most effector CD8+ T cells undergo 
apoptosis, leaving only a small pool of cells to survive and differenti-
ate into memory cells3–5. During this naive-to-effector to memory- 
differentiation process, T cells undergo cellular and metabolic 
reprogramming to shift from anabolic processes and proliferation to 
catabolic processes and contraction of cell populations to generate 
memory. It is important to define the role of macroautophagy (called 
‘autophagy’ here) during this process.

Autophagy is an evolutionarily conserved process that involves the 
engulfment and delivery of cytosolic contents to the lysosome for 
degradation6–10. This catabolic activity of autophagy is essential for 
cellular homeostasis and has been suggested to be inversely correlated 
with cell growth and proliferation11. In contrast to that paradigm, 
it has been reported that autophagy is upregulated in proliferating  
T cells9,12,13. Stimulation via the T cell antigen receptor (TCR) pro-
motes the activation and proliferation of T cells and also induces 
signaling via the metabolic checkpoint kinase mTOR, which would 
be expected to inhibit rather than induce autophagy8. Thus, questions 
remain about why and how proliferating T cells upregulate autophagy 
in the presence of positive mTOR signaling when cells need more pro-
teins and organelles to donate to daughter cells. Furthermore, because 
autophagy has been studied mainly in vitro during the activation of 

T cells after stimulation via the TCR, little is known about in vivo 
autophagy activity in antigen-specific T cells during the course of the 
differentiation of effector and memory T cells after viral infection.

The in vivo function of autophagy in antigen-specific T cells during 
viral infection remains unclear but is important, as pharmacological 
manipulation of autophagy is being considered as a treatment for 
many human diseases14. Mice with a conditional null mutation result-
ing in selective deletion of the gene encoding either of the autophagy-
related molecules Atg5 or Atg7 during early T cell development 
(through the use of Cre recombinase expressed from T cell–specific 
gene Lck) have fewer mature peripheral T cells than their wild-type 
counterparts have10,15. Similarly, chimeric mice reconstituted with 
Atg5−/− fetal liver cells have fewer peripheral T cells than do chi-
meric mice reconstituted with wild-type fetal liver cells9. That study 
also showed that Atg5-deficient T cells exhibit diminished prolifera-
tive capacity following in vitro stimulation via the TCR9. Although 
such data indicate that autophagy has a key role in the development 
and homeostasis of T cells, they shed less light on the function of 
autophagy molecules in T cells responding to antigen because the cells 
studied had developed in the absence of autophagy molecules such 
as Atg5 or Atg7 and exhibited abnormalities in gene expression and 
mitochondrial number and function10,15. Thus, a new approach using 
phenotypically normal naive T cells is needed to study the function 
of autophagy during T cell activation in vivo.

Here we investigated two issues: the kinetics of autophagy activ-
ity, and the role of autophagy during the response to lymphocytic  
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Tennessee, USA. 5These authors contributed equally to this work. Correspondence should be addressed to R.A. (rahmed@emory.edu), H.W.V. (virgin@wustl.edu) or 
K.A. (karaki@emory.edu).
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Autophagy is essential for effector CD8+ T cell 
survival and memory formation
Xiaojin Xu1,5, Koichi Araki1,5, Shuzhao Li2, Jin-Hwan Han1, Lilin Ye1, Wendy G Tan1, Bogumila T Konieczny1, 
Monique W Bruinsma3, Jennifer Martinez4, Erika L Pearce3, Douglas R Green4, Dean P Jones2,  
Herbert W Virgin3 & Rafi Ahmed1

The importance of autophagy in the generation of memory CD8+ T cells in vivo is not well defined. We report here that autophagy 
was dynamically regulated in virus-specific CD8+ T cells during acute infection of mice with lymphocytic choriomeningitis 
virus. In contrast to the current paradigm, autophagy decreased in activated proliferating effector CD8+ T cells and was then 
upregulated when the cells stopped dividing just before the contraction phase. Consistent with those findings, deletion of the 
gene encoding either of the autophagy-related molecules Atg5 or Atg7 had little to no effect on the proliferation and function of 
effector cells, but these autophagy-deficient effector cells had survival defects that resulted in compromised formation of memory 
T cells. Our studies define when autophagy is needed during effector and memory differentiation and warrant reexamination of 
the relationship between T cell activation and autophagy.
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Enzymes associated with significant metabolites 
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3.2.2.6, 3.2.2.5, 3.5.99.6, 3.2.2.8, 
1.1.1.8, 3.7.1.3, 1.13.11.34 

Gpd1l, Kdsr, Ado, Acox1, Gmpr2, Tkt, Alg5, 
Alg13, Hprt, Nampt, Gsta4, Gstk1, Gstm1, 
Gstm4, Gsto1, Gstp1, Gstp2, Gstt2, Hpgds, 
Gfpt1, Adk, Nagk, Dck, Sphk1, Sphk2, Prps1, 
Prps2, Cept1, Ept1, Cept1, Cdipt, Plb1, Acot2, 
Lpin1, Lpin2, Pde1b, Pde2a, Pde3b, Pde4a, 
Pde4d, Pde7a, Pde8a, Pde5a, Arsa, Gba2, 
Galc, Bst1, Cd38, Asah1, Asah2, Ada, Ampd1, 
Ampd2, Ampd3, Cant1, Enpp1, Itpa, Enpp4, 
Aldoa, Aldoc, Sgpl1, Npl, Acsl1, Acsl3, Acsl4, 
Acsl5 
Gpda, Acox3, Oxla, Gmpr1, T23o, Lox5, Cp4f3, 
Cp4fe, Cp19a, Cp1a1, Cp1a2, Cp1b1, Cp237, 
Cp238, Cp239, Cp240, Cp254, Cp255, Cp270, 
Cp2a4, Cp2a5, Cp2ac, Cp2b9, Cp2ba, Cp2bj, 
Cp2ct, Cp2d9, Cp2da, Cp2db, Cp2dq, Cp2j5, 
Cp2j6, Cp2s1, Cp2u1, Cp341, Cp3ab, Cp3ad, 
Cp3ag, Cp3ap, Cp4b1, Cp4ca, Cp4x1, Cy250, 
Tph1, Tph2, Alkmo, Nnmt, Tktl1, Tktl2, Taldo, 
Cegt, Pnph, Typh, Apt, Nadc, Sia8a, Siat9, 
Gsta1, Gsta2, Gsta3, Gstm2, Gstm5, Gstm6, 
Gstm7, Gsto2, Gstt1, Gstt4, Maai, Mgst1, 
Mgst3, Aadat, Aatm, Kat1, Kat3, Gfpt2, Hkdc1, 
Hxk1, Hxk2, Hxk3, Cerk1, Pcy2, Chpt1, Pgps1, 
Gpt, Hrsl3, Pa21b, Pa24a, Pa24b, Pa24d, 
Pa24e, Pa24f, Pa2g5, Pa2ga, Pa2gc, Pa2gd, 
Pa2ge, Pa2gf, Pa2gx, Pg12a, Plpl9, Aco15, 
Acot1, Acot3, Acot4, Acot5, Baat, Bach, Them4, 
Lpin3, Lpp1, Lpp2, Lpp3, Lppr2, Lppr3, Lppr4, 
Ppc1a, Ppc1b, 5nt1a, 5nt1b, 5nt3a, 5nt3b, 
5ntc, 5ntd, Ppap, Gpcp1, Asm, Nsma2, Nsma3, 
Nsma, Pde10, Pde11, Pde1a, Pde1c, Pde3a, 
Pde4c, Pde7b, Pde8b, Cncg, Cnrg, Pde10, 
Pde11, Pde6a, Pde6b, Pde6c, Pde9a, Neur1, 
Neur2, Neur3, Neur4, Glcm, Kfa, Acer1, Acer2, 
Guad, Gnpi1, Gnpi2, Entp1, Entp8, Entp4, 
Entp5, Enpp3, Ap4a, Nud12, Fhit, Kynu, Aldob, 
Echa, Echm, Echp, Pur8, Sywc, Sywm, Acbg1, 
Acbg2, Acsl6, S27a2, Pura1, Pura2, Nade, 
Guaa, Pur4 



Enzymes associated with significant metabolites, 
significantly up in KO by GSEA analysis 

Expression of genes 
corresponding to related 
enzymes are enriched for 
KO cells, DNA microarray 
data, GSEA (Gene Set 
Enrichment Analysis).  
Nominal p = 0,  
FWER p = 0.024. 



Summary and future directions 

•  Mummichog rewrites the workflow of untargeted metabolomics, 
enabling rapid generation of quality hypotheses 
 

•  Limited by metabolic models, i.e. known metabolic knowledge 
 

•  Download sites: http://clinicalmetabolomics.org 
(phasing out http://atcg.googlecode.com) 
 

•  Version 1.0 is out. Version 2 is in the making 
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