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Disease risk is a combination of genomics and exposures

10-20% of
disease risk

Exposome

GXxE interactions
account for 80-90%
of disease risk

Jones et al 2012 Annu Rev Nutr 32:183-202



Outline

O The development of high-resolution metabolomics

U Metabolic networks and mummichog

O Broader impacts of metabolomics



Resolution and mass accuracy of high-resolution mass
spectrometers allow unprecedented detection of low-abundance
ions in human plasma and other complex mixtures
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Resolution + sensitivity

Q-TOF Premier




Genome High-resolution metabolomics developed at Emory
measures individual biochemistry with resolution
Exposome approaching that for genomics
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Measure 20,000 chemicals in
an individual plasma sample
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Technologies appear to be good
enough to measure 1 million chemicals

Jones et al 2012 Annu Rev Nutr 32:183-202



What’s in a metabolome?

i&ll'elt Metabolomic Capabilities: >20,000 metabolites (>100,000 ions by LQQ

40 Essential nutnients

Core Nutritional Metabolome Food 2000 intermediates formed by
metabolome enzymes encoded by the genome
[Non-nutntlve Chemicals in Diet Plant metabolome >200,000 chemicals
. - Largely uncharacterized (may be 10-
Microbiome-related Chemical
[ s 409% of plasma metabolome)
| Supplements and Phamaceuticals >1000 drugs in use
P[ Commercia Products
Environmental B 10000 s s e
) ) >10, agents u
metabolome Environmental Chemicals | 1 000 registered with EPA

*Metabolome refers to chemicals associated with life Jones, Park Ziegler Annu Rev Nutr 2012



Accurate mass m/z match more than half of metabolites in KEGG human
metabolic pathways (shown in black); 146 of 154 pathways are represented

Glycan Lipid Carbohydrate Cofactor
metabolism metabolism metabolism metabolism

[ Xenobiotic ] Energy Other secondary

metabolism

metabolism metabolism

Jones 2012 Annu Rev Nutr 32:183-202



xMSanalyzer data for 174 serum samples (K Uppal et al BMC:Bioinformatics 2013)

4 Improved data extraction over most approaches: 34,768 ions, triplicate analyses A
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Cross-platform validation

LCMS Signal (x106)

Comparison C18-LCMS to Comparison C18-LCMS to Comparison C18-LCMS to
automated amino acid analysis Metabolon GCMS Anion Exchange LCMS
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HRM metabolite quantification
in 30 orphan samples

Identity Mean * SD (uM) HMDB (uM)

Arginine 148 = 39 60 to 140
Glycine 280 + 62 212-329
Histidine 100 £ 12 7510 143
Ornithine 83 + 28 54 to 94
Phenylalanine 131 + 18 48 to 88
Threonine 136 22 102 to 260
Tryptophan 567 44 to 78
Tyrosine 84 + 23 54 to 143
Glucose 4310 £ 1153 3900 to 6100
Kynurenine 2.0+x0.4 141024
Carnitine 529 30 to 57
Creatinine 93 +13 59 to 109

Creatine 16+ 8 8.4 to 65



Alternate Workflows

|
Targeted Metabolomics

Select analytic target to
test hypothesis

J

Select and test analytic
method

L

Perform power calculation;
design experiment

\
Conduct experiment

L

Analyze samples and perform
statistical analysis

gh-resolution metabolomi

Pose scientific question (with or
without hypothesis)

4

Select relevant samples

!

Analyze samples by high-
resolution MS with advanced data
extraction algorithms

i

Use bioinformatic methods and
database tools to obtain significant
metabolites and pathways

i

Perform MS/MS and co-elution

\ studies to verify metabolites/




Pilot study of pulmonary Tuberculosis

A 9 R B m/z 148.0594 m/z 399.2116 m/z 801.5767
ol Glutamate D-series resolvi aT 6-my
6 20 20
74
6 2
@
=3
S
£ o T
o s =
& <
o
g 3| .
0| === 0| e
-6 -4 -4
m/z 851.5953 m/z 237.0192 m/z 2712319
KR 4 P itol Unidentified
T T T T T T T T T ¥ T T T °I zu N Zd s
o =3 =3
g g g =
m/z > I
2 0
C K]
Raw Z Score -
Color Key S
m 3
o
-
0
1= : 4 -16
- - HC L HC =] HC B
B HC ' N —
mo = =

u Commercial Products

= Environmental Chemicals
® Intermediatory Metabolites
= Microbial Metabolites

® Pharmaceuticals

u Plant-derived metabolites
= Unknowns

Frediani, Jennifer K., et al. "Plasma Metabolomics in Human Pulmonary Tuberculosis

Disease: A Pilot Study." PloS one 9.10 (2014): e108854.



Connecting HRM with metabolic pathways

Oxaloacetic acid + carbohydrate derivative
\\ (pyruvic acid?)

(-Malic acid Citric acid

Fumaric acid a-Ketoglutaric acid
N
N\

Succinic acid

Krebs et al. 1938. Biochem Journal. 32:113



Mummichog interpretation of metabolomics data

Processed samples

LC/MS spectra

Feature table

Class comparison

A4

o

Metabolite identification

A4

Pathway/network mapping

Conventional approach

C

Li et al.

2013. PLoS Computational Biology. 9:e10031323



Metabolite network after viral activation

SR RRRRRN RN

Arginine

l\x/)

AMP

"

Xanthine Glutamate GMP

|

Glutamylcysteine

!

Glutathione

N\

GSSG Thyroxine

Li et al. 2013. PLoS Computational Biology. 9:e10031323



Experimental validation of mummichog prediction
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Mummichog application cases

with wild-type bone marrow (Fig. 2, D and E, and
fig. $9). To determine whether GON2 expression

Teell

compared cytokine by DCs from wild-

type and GCNZ™ mice, cultured in vitro with

YF-17D. Induction of the nflammatory cy!
erlk -6),

in DCs is required for YF-| mkpmnc LDX
responses,

CDe-cre mice [in which GCN2 was abhudm

cics of IFN-y-producing CDS” Tcells inthe lung.
and liver, as compared with that of lttermate con-
trols (Fig. 2, F and G).

“To investigate the mechanism by which GON2
expression in DCs controls T cell responses, we

ytokines
factor (TNF),
1L-12, IL-1B, or anti-inflammatory IL-10 (fig. S11)
or antiviral IFNa (fig. S12) was unaffected by
G iency. Furthermo

2 ore, there was no
difference in the induction of m»llmu]zlury mol-

ccules in vivo in response to vith
YE-17D (fig. S13) or in the npmt of soluble
antigens (figs. S14 and $15).

EPORT

Because GON2 is a sensor of amino acid star-
vation (4), we determined whesher YF-17D induced
an

(LC/MS) to analyze the intracellular concentra-
tion of free amino acids. Culture of hmDCs with
YE-17D resulted in a rapid decrease of the intra-
cellular concentration of free argininc and several
other amino acids and a comesponding increase in
citrlline (Fig. 3A). Arginine metabolism can lead
o enhanced citrulline levels, a process catalyzed
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Fig. 3. YF-17D induces autophagy in dendritic cells via a mechanism  cultured in vitro with YF-17D. ﬂhrqxsemsznmmafmb(nnuﬂmdl\km
N2 between ions of

autophagy (LC3 punctate staning) in mBMOC: from il
cultured in vitro with YF-17D for 6 hours. (D) Counts of LC3 granules per c
Comparison of the autophagy proteins in BMDC from wild-type or GINZ™ mice P < 0.05; **P < 0005, Student’s  test. Error bars indicate mean + SEM

F-17D. Basal levels of AtgS and

free argiine and citrline n hmDCS stimulated ith YF-17D. Mocktreated  Atg i feshly olaed DC were smir inwik-type and GONZ~ mice (i, 520).
Githout itometric analysis of Wester b i

dance + 5D of arginine and cituline. (B) Cultre of hmDCs with YF-17D induces (G) Autophagy flux experiments depicting pé2 and LGl accumulation by
' ith YF-17D. ulation

or GCNZ™" mice,  of LC31 6 hours after YF-17D culture after treatment with lysasomal inhibitors
A ® and E64D). Dat i p
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Summary

Researchers have used whole-genome sequencing and gene
expression profiling to identify genes associated with age, in
the hope of understanding the underlying mechanisms of
senescence. But there is a substantial gap from variation in gene
sequences and expression levels to variation in age or life
expectancy. In an attempt to bridge this gap, here we describe
the effects of age, sex, genotype, and their interactions on high-
sensitivity metabolomic profiles in the fruit fly, Drosophila
melanogaster. Among the 6800 features analyzed, we found
that over one-quarter of all metabolites were significantly
assodated with age, sex, genotype, or their interactions, and
multivariate analysis that individual metabolomic profiles
are highly predictive of these traits. Using a metabolomic
equivalent of gene set enrichment analysis, we identified
numerous metabolic pathways that were enriched among
metabolites associated with age, sex, and genotype, including
pathways involving sugar and glycerophospholipid metabols
neurotransmitters, amino acids, and the camitine shuttle. Our
results suggest that high-sensitivity metabolomic studies have
excellent potential not only to reveal mechanisms that lead to
senescence, but akso to help us understand differences in
patterns of aging among genotypes and between males and
females.
Key words: age; aging; Drosophila melanogaster; genetic
variation; genotype; heritability; metabolomics; sex; systems
biology.
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. Effects of age, sex, and genotype on high-sensitivity
metabolomic profiles in the fruit fly, Drosophila melanogaster

Introduction

Lifespan is a highly heritable trait. Over the past 20 years, researchers
working on lab-adapted organisms have been able to identify evolu-
tionarily conserved genetic pathways which, when knocked down or

able

st il qaston: St o the il e

the ey, mecharars. oy hch thse gene s o

second, at the population level, do these same genes account for
standing variation in longevity in natural populations?

These questions are complcated by the fact that the age at which an

but also on a Ketime of

e exposuse,
specfic response of genes, and the downstream physiological
consequences of these complex factors. Fortunately, whole-genome
sequencing and genome-wide association (GWA) studies now make it
possble to identify segregating allels that affect complex phenotypes
such as body height, iabetes, schizophrenia, and even longevity (Jeck
et al, 2012), but GWA studies suffer from numerous challenges, and
these are further compounded in analyses of ffespan. First, allles
identified in GWA studies typicaly explain just 0.1-1.0% of the variation
in complex traits (Park et aL, 2010). Second, the genetic bass of kfespan
appears, at least in part, to differ between the sexes (Burger &
Promislow, 2004). Third, lfespan includes a substantial awm nc
sochusicty, vang cramaicaly even amang gentaly i
induiduals raised in a constant and identical environment LKlrkwnad
et al, 2005). Finall, and perhaps most importantly, lfespan is a highly
composite trait potentially influenced by the functional decline of many
underlying processes. To fully understand the genetics of lifespan, we.
need to understand the genetics not simply of age at death, but rather
of the underlying causes of death.

Here, we suggest that many of the challenges that we face in our
attempts to.
function, and for genetic variation in these declines, can be resoved
ot the use of high-resolution metabolomics (Mishur & Rea, 2012).

n decompose the physiological processes that influence
mc-ww and mortalty to their consttuent components (ie., the
metabolome), we will be an important step closer to bridging the gap

notype and phenotype (Fig. 1). The metabolome is effec-
tively a functional intermediate between genotype and phenotype.

Previous work ilustrates how the metabolome can serve as a strong

While typically
explains only a small fraction of the variation in complex phenatypes,
dies of have

explaining up to 60% of the variance in the concentration of indvidual
metabolites (Suhre et al, 2011). The metabolome also appears to be a
sensitive indicator of age-related physiological changes both in inverte-
brates and vertebrates (e.g. Saup etal, 2012; Yu etal, 2012).

Moreaver, different mutants that extend longevity share common
metabolomic sgnatures (e.g., Caenorhabitis elegans: Fuchs et al,
2010; Mus musculs: Wieyesekera et al, 2012).

While we have learned much from these inital studies, most have
been limited by the use of relatively low-sensitity metabolomics.
technology and by kmited genetic information. Studies of age and the
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Hoffman et al, 2014.
Aging Cell 13: 596-604

ARTICLES

Figure 6 Antigen-specific CD8* T cells
lacking Atg7 exhibit cell-intrinsic defects in
the development into long-term memory cells
in chimeras. (a,b) Flow cytometry of CO8* T
cell obtained from chimeras generated (a5

in Supplementary Fig. 5a) by reconstitution

of wild-type mice with a mixture of bone
marrow cells from Atg7"" mice and wild-type
C578L/6 mice (Atg7™ vs C57BLE) or from
Atg7¥Gzmb-Cre mice and wild-type C578L6
mice and (Atg7"Gzmb-Cre vs C57BLS6), gated

P
P
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g,,

02 o » %

(far left) as populations specific for H-20%-gp33
(a) or H-2D5-NP396 (b) and then assessed, on
days 8, 15 and 30 after infection of recipients
with LCMV Armstrong infection, as CD45.2
(Atg7n or Atg7¥1Gzmb-Cre) donor cells or
CD45.1+ (C578U6) donor cells (middle).
Farright, appearance of tetramer-positive

T cells (key, donor source) in the peripheral
blood of chimeras from day & to day 30 after
infection, presented relative to that at day 8

infection as in a,b. Data are representative of
two independent experiments with three to four
mice per group (error bars, 5.e.m.).

liquid chromatography-coupled e

Pl

trometry metabolomics platform. Among the
metabolites that were significantly et
in Atg7-sufficent cells versus Atg7-deficient
cells (Supplementary Table 1), many were
in well-defined metabolic pathways with clear links to cell survival,
and some have been linked to T cell S
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the stable development of long-lived memory T cells2”. These data
might indicate that autophagy contributes to the production of the
lipid substrates for mitochondrial FAO and the fueling of oxidative
phosphorylation in these cells?. Consistent with a role for autophagy
in lipid metabolism in T cells during the transition to the memory
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Xu et al, 2014.

Fig. 6). The hexosamine pathway provides substrates for the gly
osyltion of receptors for growth factor cytokines, which leads to
receptor stability and the maintenance of survival signals™. Given

factor cy P
ment of memory T cells%, it i possible that T cells lacking autophagy
machinery cannot maintain the proper growth factor signals that
support memory T cell development, linking autophagy to gycosyla-
tion and the maintenance of cellular metabolism.

Figure 7 Metabolomic and transcriptomic
analysis of Atg7-deficient CD8* T

(2) Pathways of metabolites regulated
differently in H-20-g033* CD8* T cells
isolated from Atg7™1Gzmb-Cre mice (n= 3)
at day 8 after infection with LMV Armsirong
strain, relative to the regulation of these
metabolites in their counterparts from Atg7™!
mice (n = 3) treated the same way (columns
indicate two independent experiments

(Expt 1 and Expt 2)). (b) Gene-set-enrichment
analysis of genes in T cells associated with the
metabolic enzymes underlying the metabolic
pathways with the greatest difference in
regulation in Atg7™MGzmb-Cre cells (KO)
relative to that in Atg7V cells (WT) in a
P=0.024 (calculated by the gene-set-
enrichment analysis program). Data are

from two independent experiments with
samples pooled from three mice per genotype.

VOLUME 15 NUMBER 12 DECEMBER 2014 NATURE IMMUNOLOGY

Nature Immunology. 15:1152



Gauging environmental exposure
and bioeffect simultaneously

KMonigoring, trace\ / High performance metabolomics
analysis, geography

Exposure Internal dose Bioeffect
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Metabolome-wide association study (MWAS)

of LDL cholesterols
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Integration of metabolomics
and transcriptomics

Unpublished data deleted



Towards Universal health screen
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Computational metabolomics in the making

Genomics

Automated sequencer Assembly Reference genome  Variations

—> —> ’? - ’? - ’? Metabolomics




Summary

* High-resolution metabolomics leads to new
work flow

* Mummichog is an effective tool to bridge
genomics and metabolomics

* Impacts to environmental sciences,
epidemiology, systems biology, medicine...

* Many challenges ahead
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