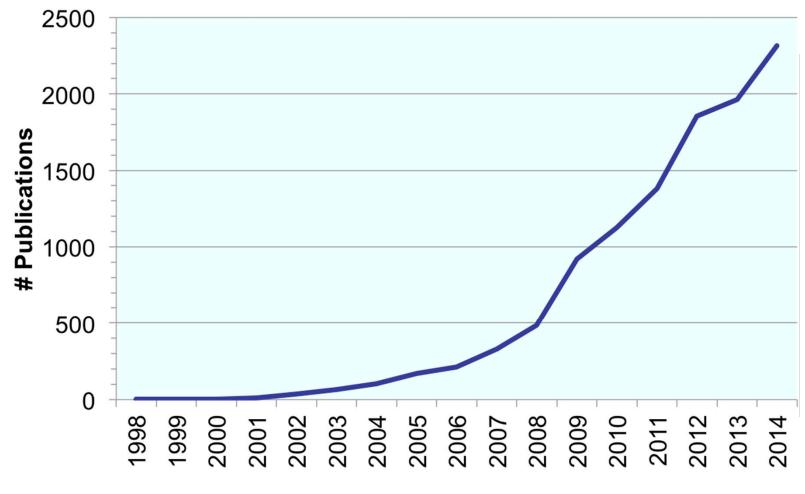
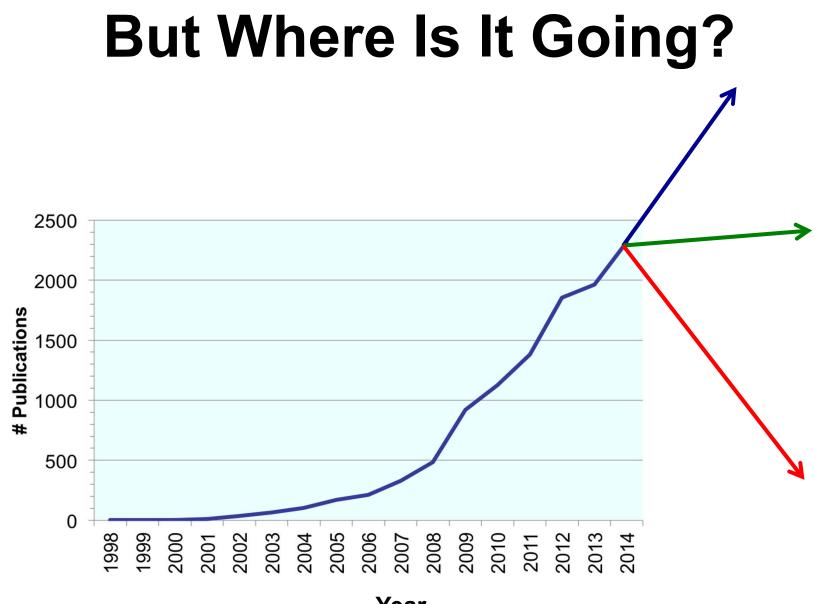
The Future of Metabolomics


David Wishart University of Alberta, Edmonton, AB, Canada Birmingham, Alabama June 18, 2015


Why Small Molecules Matter

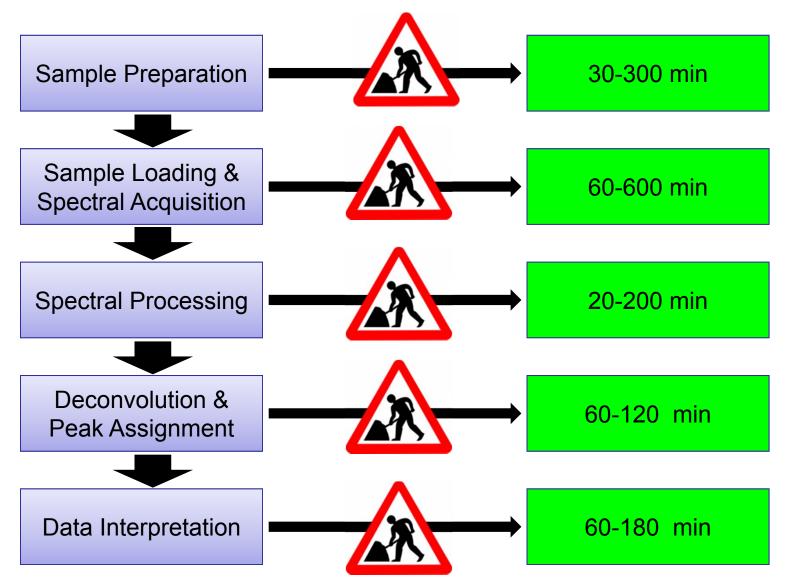
- >99% of food flavours and aromas come from small molecules
- >90% of common clinical tests measure small molecules
- 89% of all drugs are small molecules
- 83% of the most common diseases are due to the effects of small molecules
- 81% of all deaths in North America and Europe are due to the effects of small molecules
- >55% of drugs are derived via natural cmpds

Metabolomics Is Growing

Pubmed: Metabolomics OR Metabonomics OR Metabonome

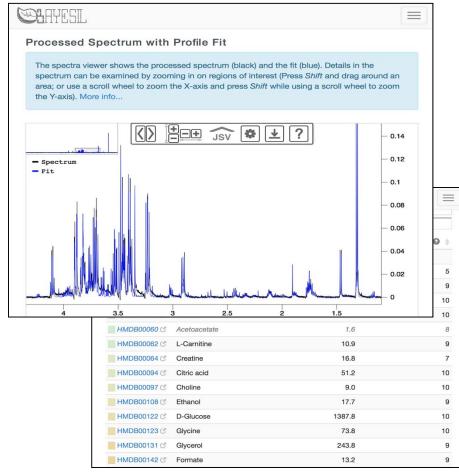
Year

Key Bottlenecks in Metabolomics


- Lack of automation
- Incomplete metabolome coverage
- Expensive/large
 equipment
- Lack of quantification
- Inability to translate findings to the clinic
- Making metabolomics matter to drug companies

Key Trends in Metabolomics

- Automated metabolomics
- Expanding metabolome coverage
- Making metabolomics portable
- Quantify, quantify, quantify...
- Moving metabolomics from the lab to the clinic
- Moving metabolomics (back) into drug development and discovery


Metabolomics Workflow

Automated Metabolomics

Bayesil (Automated NMR)

http://bayesil.ca

- Uses probabilistic graphical models (PGM) – similar to HMMs
- Fits shift & peak intensity similar to the way humans perform fitting and pattern finding
- Requires prior knowledge of probable biofluid composition
- Fully automated phasing, referencing, water removal, baseline correction, peak convolution, identification and quantification
- Free web server

Bayesil in Operation

$\Theta \Theta \Theta$	Bayesil	N ²⁷¹
	+ 📀 bayesil.ca	C Reader
🕮 🎹 Google App	ole iCloud Facebook Twitter Wikipedia Yahoo News 🔻 Popular 🔻	∫ ÷
CARVESIL	Spectral Analysis - Paper Data Contact Us	

Welcome to Bayesil

Bayesil is a web system that automatically identifies and quantifies metabolites using 1D ¹H NMR spectra of ultra-filtered plasma, serum or cerebrospinal fluid. The NMR spectra must be collected in a standardized fashion (see How To Collect NMR Spectra for Bayesil) for Bayesil to perform optimally. Bayesil first performs all spectral processing steps, including Fourier transformation, phasing, solvent filtering, chemical shift referencing, baseline correction and reference line shape convolution automatically. It then deconvolutes the resulting NMR spectrum using a reference spectral library, which here contains the signatures of more than 60 metabolites (see here for a list). This deconvolution process determines both the identity and quantity of the compounds in the biofluid mixture. Extensive testing shows that Bayesil meets or exceeds the performance of highly trained human experts.

Citing Bayesil:

Ravanbakhsh S, Liu P, Bjordahl TC, Mandal R, Grant JR, Wilson M, Eisner R, Sinelnikov I, Hu X, Luchinat C, Greiner R, Wishart DS. (2015) Accurate, Fully-Automated NMR Spectral Profiling for Metabolomics. PLoS ONE 10(5): e0124219.

Bayesil Spectral Analysis

Instructions

To analyze a 1D ¹H NMR spectrum with Bayesil you must provide information on the biofluid being analyzed, the concentration of the reference standard, the spectrometer frequency and the 1D NMR spectral file.

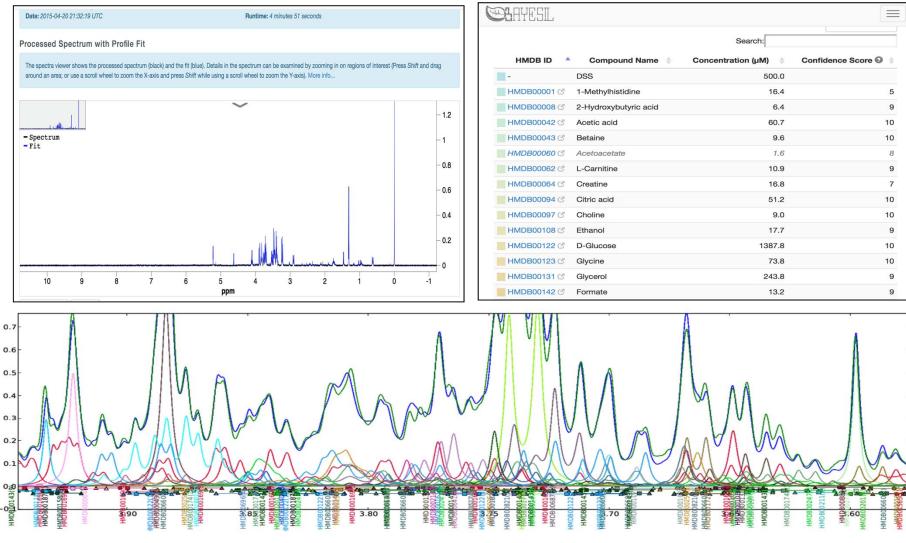
Run one of our examples:

Example 1 Example 2 Biological Serum Biological CSF

Varian 500 MHz

Biological CSF Biological Serum Varian 500 MHz Bruker 600 MHz

Example 3



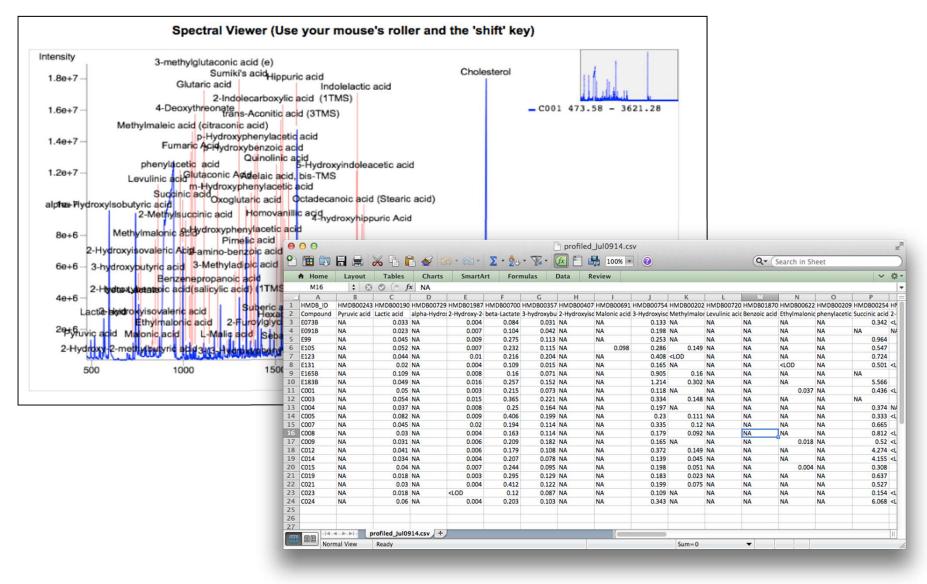
ec

C

S. Ravanbakhsh, et al. (2015) PLoS One 10(5): e0124219

Bayesil Output

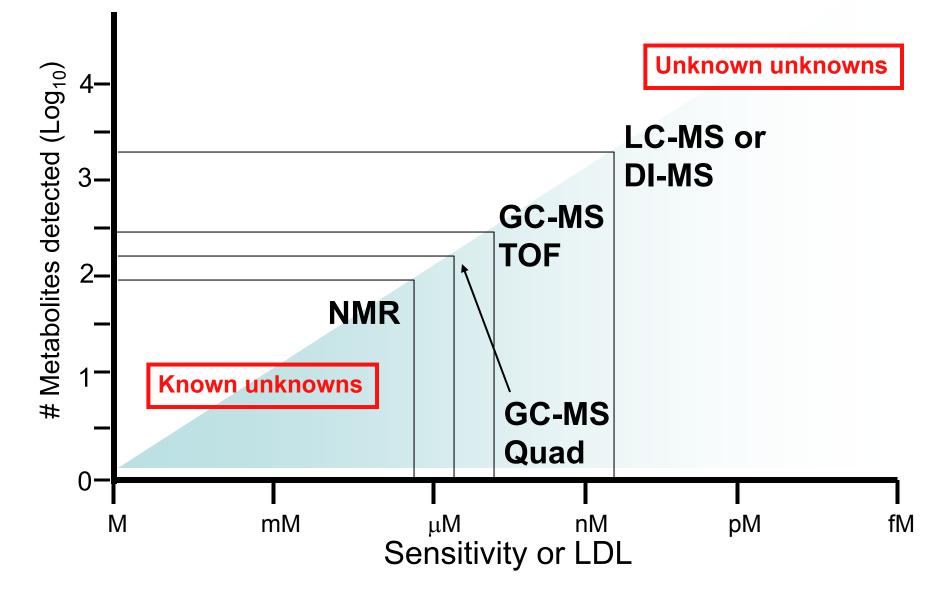
S. Ravanbakhsh, et al. (2015) PLoS One 10(5): e0124219

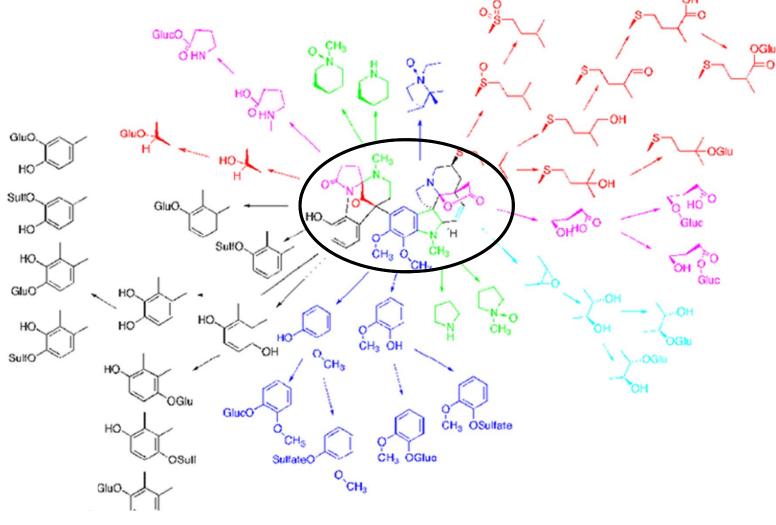

GC-AutoFit (Automated GC-MS)

gcms.wishartla	ab.com			♥ C ^e Q Search			ŧ
C	CIV	ISa	uto	-pro	fili	ng	
Home	Check Result Check Job	ID Instructions	Contact Us				
		Welcome to 0	GC-AutoFit				
the specified	The extracted EI-MS spectra from library to identify and quantify th from the query spectra. Extensive	e compounds. The inclus	ne RIs, are then c sion of blank spec	tra is optional, howev	er, it is useful for	or removing	
the specified noise effects	library to identify and quantify th	e compounds. The inclus	ne RIs, are then o sion of blank spec AutoFit meets or o	tra is optional, howev	er, it is useful for	or removing	
the specified noise effects	library to identify and quantify th	e compounds. The inclus testing shows that GC-/ Upload Sp ed) format is acceptable. / see your own library, it sho	he Ris, are then c sion of blank spec AutoFit meets or o bectrum Alternatively, a sin	tra is optional, however exceeds the performant	er, it is useful france of highly trai	or removing	
the specified noise effects	library to identify and quantify th from the query spectra. Extensive .CDF or .mzXML (suffix requin files can be used. If you wish to t	e compounds. The incluse testing shows that GC-/ Upload Sp ad) format is acceptable see your own library, it sho Broke No file select	te RIs, are then d sion of blank speed AutoFit meets or e ectrum Alternatively, a sin buld be in .csv (su	tra is optional, however exceeds the performant	er, it is useful france of highly trai	or removing	
the specified noise effects	library to identify and quantify th from the query spectra. Extensive .CDF or .mzXML (suffix requin files can be used. If you wish to u number of files cannot exceed 30 Alkane Standards file	e compounds. The incluse testing shows that GC-/ Upload Sp ed) format is acceptable, , see your own library, it sho 3. Browse No file select	te RIs, are then o sion of blank spec AutoFit meets or o sectrum Alternatively, a sin buld be in .csv (su	tra is optional, however exceeds the performant	er, it is useful france of highly trai	or removing	
the specified noise effects	Ibrary to identify and quantify th from the query spectra. Extensive .CDF or .mzXML (suffix requir files can be used. If you wish to number of files cannot exceed 33 Alkane Standards file (Required) Blank files (Optional) Sample files (Required)	e compounds. The incluse to testing shows that GC-/ Upload Sp ad) format is acceptable use your own library, it sho Browse No file selec Browse No file selec Browse No file selec	te RIs, are then o sion of blank spec AutoFit meets or o heectrum Alternatively, a sin Juld be in .csv (su ted. ted.	tra is optional, however exceeds the performant	er, it is useful france of highly trai	or removing	
the specified noise effects	library to identify and quantify th from the query spectra. Extensive .CDF or .mzXML (suffix requin files can be used. If you wish to number of files cannot exceed 33 Alkane Standards file (Required) Blank files (Optional)	e compounds. The incluse e testing shows that GC-/ Upload Sp ad) format is acceptable . use your own library, it sho Browse No file selec Browse No file selec Browse No file selec	te Ris, are then o sion of blank spec AutoFit meets or e ectrum Alternatively, a sin buld be in .csv (su ted. ted. ted.	tra is optional, however exceeds the performant	er, it is useful france of highly trai	or removing	
the specified noise effects	library to identify and quantify th from the query spectra. Extensive .CDF or .mzXML (suffix requin files can be used. If you wish to u number of files cannot exceed 33 Alkane Standards file (Required) Blank files (Optional) Sample files (Required) OR	e compounds. The incluse to testing shows that GC-/ Upload Sp ad) format is acceptable use your own library, it sho Browse No file selec Browse No file selec Browse No file selec	te Ris, are then o sion of blank spec AutoFit meets or e ectrum Alternatively, a sin buld be in .csv (su ted. ted. ted.	tra is optional, however exceeds the performant	er, it is useful france of highly trai	or removing	

http://gcms.wishartlab.com

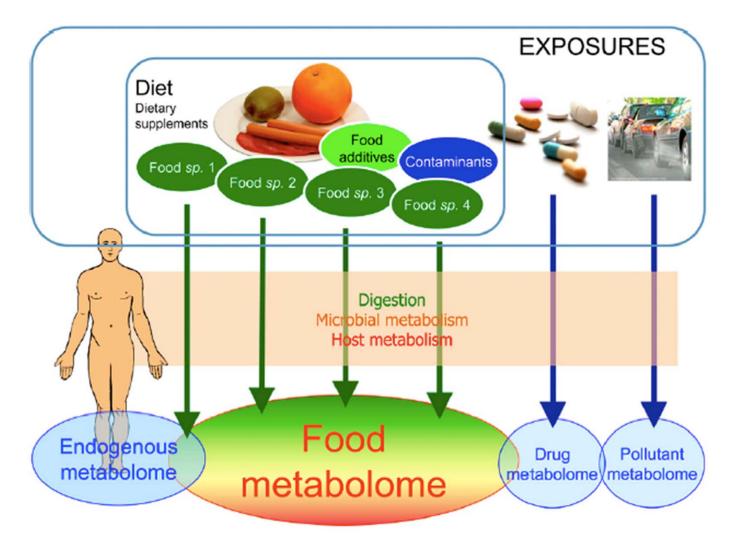
- Requires 3 spectra (sample, blank, alkane standards)
- Performs auto-alignment, peak ID, peak integration and concentration calculation
- Accepts NetCDF or mzXML files
- 60 sec per spectrum
- 45-70 cmpds ID' d and quantified, 96% accuracy
- Optimized for blood, urine, saliva and CSF
- Still requires careful sample preparation & derivatization


GC-AutoFit Output

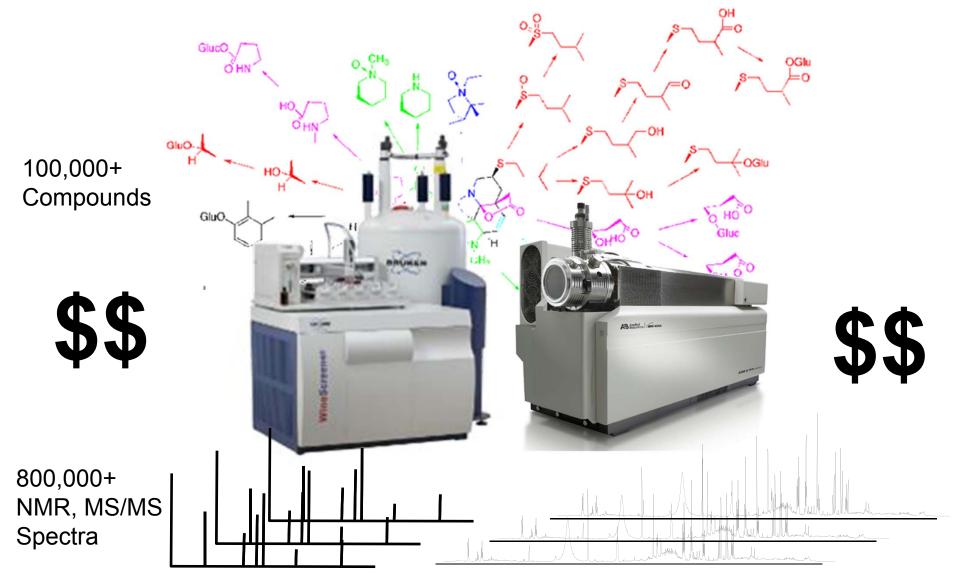

Key Trends in Metabolomics

- Automated metabolomics
- Expanding metabolome coverage
- Making metabolomics portable
- Quantify, quantify, quantify...
- Moving metabolomics from the lab to the clinic
- Moving metabolomics (back) into drug development and discovery

Technology & Sensitivity



What Are The Unknown Unknowns?


Metabolites of Metabolites

The Food Metabolome

Scalbert A. et al. (2014) Am. J. Clinical Nutr. 99(6):1286

Systematic Spectral Collection

Systematic Spectral Prediction

	cfmid.wishart			CFM-ID lia Yahoo N	lews ▼ Popu	lar ₹	C Read	er	
CFM-ID *	Utilities- H entation M	Help	Data C	ontact Us		(B1,)			
CFM-ID provides a method spectra generated by electrr program uses Competitive I generative model for the MS techniques to adapt the mod used for:	for accurately an ospray tandem m Fragmentation I S/MS fragmentati del parameters fr	ass spe Modelin on proce	ctrometry (ESI- g to produce a ess and machin	-MS/MS). The probabilistic ne learning		CFM-ID: Kesuits			
Spectra Prediction:	This task pr energy MS/		Google Ap			om/queries/130f1287d witter Wikipedia Yah	33fb9f46cef629f0efc239 100 News ▼ Popular ▼		ĊR
Peak Assignment:	SMILES or Annotating chemical s input spect		FM-ID	☆ Utilities MsMs Spectru	11 (12 A.C. 12 A.C.	ata Contact Us			
Compound Identification:	levels) in pe SMILES or annotation	10K	1						
	a target sp input spect levels) in pe structures ɛ spectra. Th generated f by predictir and compu the match t spectra.	Intensity		1	100				_
			ő	50	100	150 200 m/z	250 300	350	
		No Sp High E No Sp	ectra Energy Input	put MsMs Spe MsMs Spectru gs					
		Rank	Score	Structure	ID	Name	Chemical Formula	Mass	Compa
		1	0.28571429	J. T.	HMDB29101	Tyrosyl-Aspartate	C13H16N2O6	296.100836254	Cum
		2	0.19047619	L'HEO	HMDB28765	Aspartyl-Tyrosine	C13H16N2O6	296.100836254	Comp
		3	0.076923077		HMDB11685	DHAP(8:0)	C11H2107P	296.102489538	Comp

http://cfmid.wishartlab.com

- Predicts MS/MS spectra from known compounds via advanced machine learning techniques
- 50% more accurate than other systems
- Matches predicted MS/MS spectra (from HMDB, KEGG or user choice) to input MS/MS spectra
- Permits rapid compound
 ID from MS/MS spectra

Predicting Metabolites of Metabolites

A A + M http://beiseker	r.cs.ualberta.ca:8080/r	Search - MyComp mycompoundid/single.is		C Q- MycompoundID	0
				asenTutorials Tutorial:IntpenTutorials	»
Search B	atch Mode Possib	ble Reactions	erne EAQ Contact Us		
	# Reactions:	 No reaction 1 reaction 2 reactions 			
	Neutral or lon:				Google
	Query Mass:	131.094	Da (Batch Mode)		
) In Da (default: ±	0.005 Da);	Da	
	Mass Tolerand	ce: 🔘 In ppm (default:	± 5 ppm):	ppm	
Recticute Research and a second	Mass Tolerand	ce: 🔘 In ppm (default:			
Pro- distant data and a distant	Mass Tolerand	C ^{e:} O In ppm (default:	± 5 ppm):		
		Ce: O In ppm (default: Submi	± 5 ppm):	ppm	•
A. 200 MALLS - 10 - 1	11-H	Ce: O In ppm (default: Submit	± 5 ppm): tQuery -18.010565	ppm loss of water	
Rear and R MARIAN and a State of	11-H 12+F	Ce: ○ In ppm (default: Submi 120 120 CO	+ 5 ppm): -18.010565 18.010565	ppm loss of water addition of water	
ALC STANDARD STAND	111-H 12+F 13-C	(submi (submi 20 120 120 20 20 20	-18.010565 18.010565 -27.994915	ppm loss of water addition of water loss of CO	
	11-H 12+F 13-C 14+C	20 120 120 120 20 20 20 20 20 20 20 20 20	+ 5 ppm): - 18.010565 18.010565 - 27.994915 27.994915	ppm loss of water addition of water loss of CO addition of CO	
	11 -H 12 +F 13 -C 14 +C 15 -C	^{Ce²} ⊙ In ppm (default: (Submi) 120 120 00 120 12H4 22H4 22H4	+ 5 ppm): - 18.010565 18.010565 - 27.994915 27.994915 - 28.031300	Ioss of water addition of water Ioss of CO addition of CO Ioss of C ₂ H ₄	
	11 H 12 H 13 C 14 H 15 C 16 H 17 C	^{Ce²} ⊙ In ppm (default: (Submi) 120 120 00 120 12H4 22H4 22H4	± 5 ppm): ■ -18.010565 ■ 18.010565 ■ 18.010565 ■ -27.994915 ■ 27.994915 ■ -28.031300 ■ 28.031300	ppm loss of water addition of water loss of CO addition of CO loss of C ₂ H ₄ addition of C ₂ H ₄	
	11 H 12 H 13 C 14 H 15 C 16 H 17 C 18 H	20 20 20 20 20 20 20 20 20 20	-18.010565 18.010565 -27.994915 -78.031300 28.031300 -42.010565 42.010565	ppm addition of water loss of CO addition of CO loss of C2H4 addition of C2H4 Deacetylation Acetylation	
	11 H 12 ++ 13 CC 14 CC 16 +CC 16 +CC 17 C 18 +CC 19 CC	20 20 20 20 22 20 22 24 24 24 24 24 24 24 24 24	-18.010565 18.010565 18.010565 -27.994915 27.994915 -28.031300 28.031300 -42.010565 42.010565 -43.989830	ppm addition of water loss of CO addition of CO loss of C2H4 addition of C2H4 Deacetylation Acetylation loss of CO2	
	11 H 12 + 13 C C 14 C 15 C 16 + C 17 C 18 + C 19 C 20 + C	20 120 120 120 120 120 120 121 124 124 124 124 124 120 120 120 120 120 120 120 120	* 5 ppm): -18.010565 18.010565 -27.994915 27.994915 -28.031300 28.031300 -42.010565 42.010565 -43.989830 43.989830	ppm addition of water loss of CO addition of CO loss of C ₂ H ₄ addition of C ₂ H ₄ Deacetylation Acetylation loss of CO ₂ addition of CO ₂	
	11 H 12 + 13 C C 14 C 15 C 16 C 17 C 18 C 20 C 21 S	20 120 120 120 120 120 120 120 1	-18.010565 18.010565 18.010565 -27.994915 27.994915 -28.031300 -42.010565 42.010565 42.010565 43.989830 -47.984745	ppm addition of water loss of CO addition of CO loss of C ₂ H ₄ addition of C ₂ H ₄ Deacetylation Acetylation loss of CO ₂ addition of CO ₂ Sulfonic acid to Thiol	
	11 H 12 + 13 C C 14 C 15 C 17 C 18 C 20 C 21 S 22 S	20 120 120 120 120 120 120 120 1	-18.010565 18.010565 18.010565 -27.994915 27.994915 -28.031300 28.031300 -42.010565 42.010565 42.010565 43.989830 -47.984745 47.984745	ppm addition of water loss of CO addition of CO loss of C ₂ H ₄ addition of C ₂ H ₄ Deacetylation Acetylation loss of CO ₂ addition of CO ₂ Sulfonic acid to Thiol Thiol to Sulfonic acid	
	11 H 12 + 0 + 0 + 0 + 0 13 + 0 + 0 + 0 + 0 15 + 0 + 0 + 0 17 + 0 + 0 + 0 18 + 0 + 0 + 0 20 + 0 + 0 21 50 22 50 23 0	20 120 120 120 120 120 120 120 1	-18.010565 18.010565 18.010565 -27.994915 27.994915 -28.031300 28.031300 -42.010565 42.010565 42.010565 -43.989830 43.989830 -47.984745 -7.984745 -57.021464	ppm addition of water addition of water loss of CO addition of CO loss of C ₂ H ₄ addition of C ₂ H ₄ Deacetylation Acetylation loss of CO ₂ addition of CO ₂ Sulfonic acid to Thiol Thiol to Sulfonic acid loss of glycine	
	11 H 12 H 13 H 13 H 15 H 16 H 17 H 20 K 21 K 22 K 23 H 24 H	20 120 120 120 120 120 120 120 1	-18.010565 18.010565 18.010565 -27.994915 27.994915 -28.031300 28.031300 28.031300 28.031300 42.010565 42.010565 43.989830 43.989830 43.989830 47.984745 57.021464	Ioss of water addition of water Ioss of CO addition of CO loss of C2H4 addition of C2H4 Deacetylation Acetylation Ioss of CO2 addition of CO2 Sulfonic acid to Thiol Thiol to Sulfonic acid Ioss of glycine glycine conjugation	
	11 H H H H H H H H H H H H H H H H H H	20 300 300 300 300 300 300 300 3	-18.010565 18.010565 18.010565 -27.994915 27.994915 27.994915 -28.031300 28.031300 -42.010565 -43.989830 43.989830 -47.984745 47.984745 -57.021464 57.021464 -79.956817	ppm Ioss of water addition of water ioss of CO addition of CO loss of C2H4 addition of C2H4 Deacetylation Acetylation Ioss of CO2 addition of CO2 Sulfonic acid to Thiol Thiol to Sulfonic acid Ioss of glycine glycine conjugation ioss of sulfate	
	11 H 12 H 13 H 13 H 15 H 16 H 17 H 20 K 21 K 22 K 23 H 24 H	20 20 20 20 21/20 20 21/4 21/20 20 22/4 21/20 22/4 22/4 22/4 22/4 22/4 22/4 20 22/4 20 20 20 20 20 20 20 20 20 20	-18.010565 18.010565 18.010565 -27.994915 27.994915 -28.031300 28.031300 28.031300 28.031300 42.010565 42.010565 43.989830 43.989830 43.989830 47.984745 57.021464	Ioss of water addition of water Ioss of CO addition of CO loss of C2H4 addition of C2H4 Deacetylation Acetylation Ioss of CO2 addition of CO2 Sulfonic acid to Thiol Thiol to Sulfonic acid Ioss of glycine glycine conjugation	

http://mycompoundid.org

- Calculates the MW of metabolic transformations (+adducts, neutral loss fragments) from HMDB "parent" metabolites
- 375,809 compounds from one metabolic reaction and 10,583,901 from two reactions
- Number of putative compound hits (via mass matching) for MS-based metabolomic experiments increases 4-5X

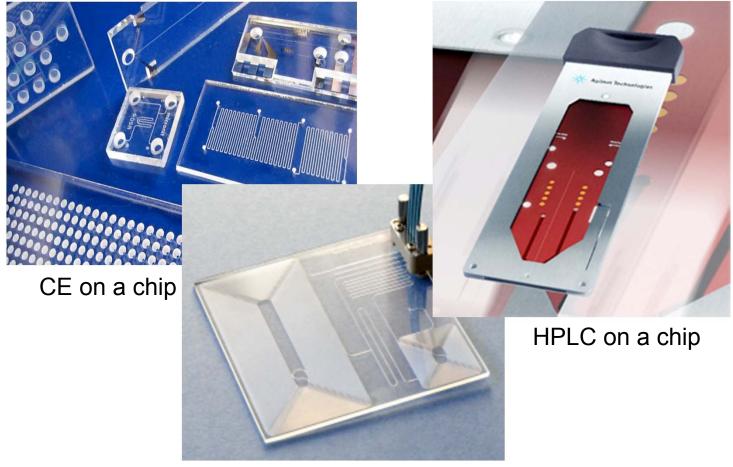
Key Trends in Metabolomics

- Automated metabolomics
- Expanding metabolome coverage
- Making metabolomics portable
- Quantify, quantify, quantify...
- Moving metabolomics from the lab to the clinic
- Moving metabolomics (back) into drug development and discovery

Personalized Medical Monitoring Devices

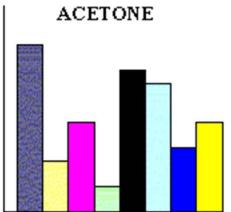
Democratizing Metabolomics

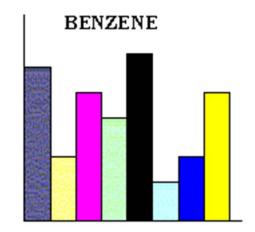
\$10 million instrument, \$200/test

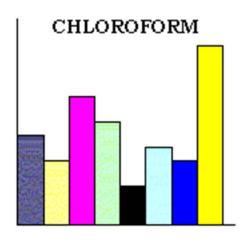

\$1000 instrument, \$2/test

Not As Absurd As You Think

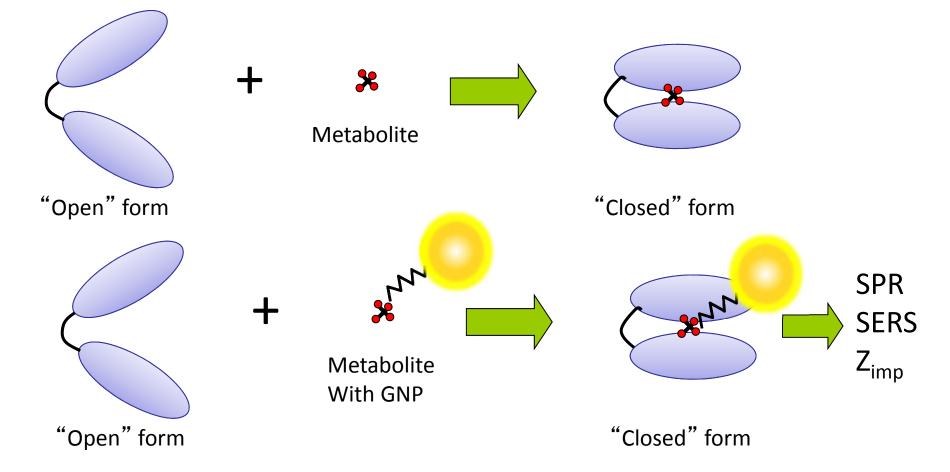
QUALCOMM TRICORDER PRIZE

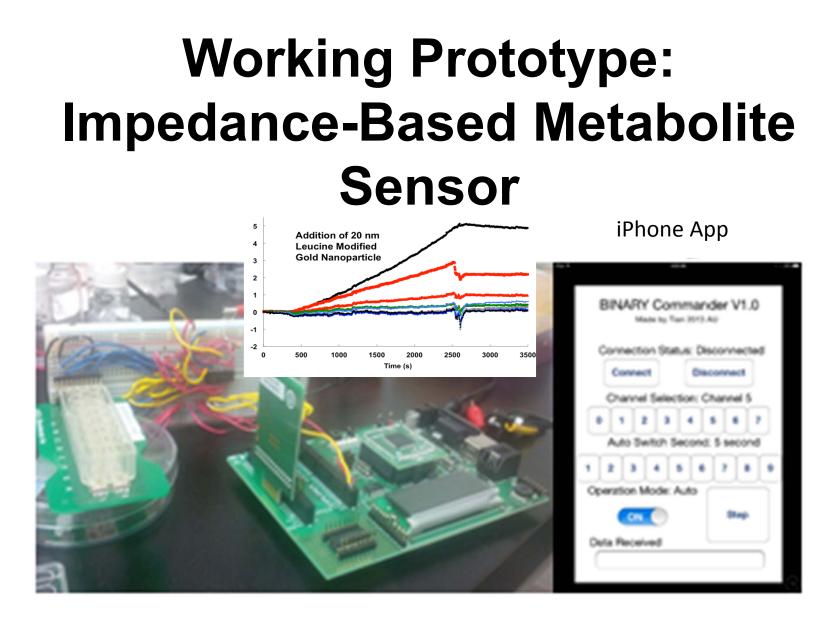

Miniaturization via Microfluidics & Nanotech



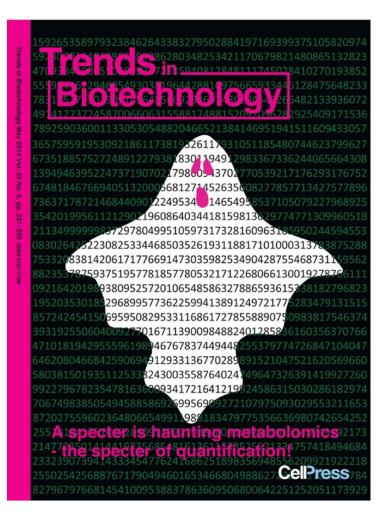

GC on a chip

E-Nose for Volatile Metabolites





Protein and Aptamer-Mediated Metabolite Sensing


Developed by Dr. Jie Chen, University of Alberta

Key Trends in Metabolomics

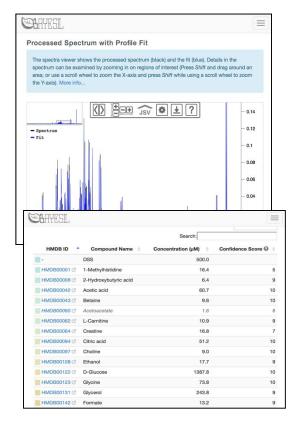
- Automated metabolomics
- Expanding metabolome coverage
- Making metabolomics portable
- Quantify, quantify, quantify...
- Moving metabolomics from the lab to the clinic
- Moving metabolomics (back) into drug development and discovery

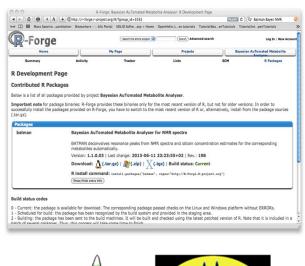
Quantification & Metabolomics

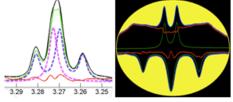
- >90% of published metabolomics studies are semi-quantitative (relative peak areas, intensities)
- <10% of published metabolomics studies use absolute quantification
- The field MUST become more quantitative if findings are to be translated to practical applications

Quantitative Metabolomics (Commercial)

CHENOMX NMR SUITE is an integr


DISCOVER MOR




Bruker – Automated NMR

Biocrates – Automated MS

Quantitative Metabolomics (Academic)

Bayesil

Batman

GC-Autofit

Some Impressive Results...

Human Biofluid Omics "Records" for Absolute Quantification

	Metabolomics	Proteomics	Genomics (Transcripts)
Serum/Plasm a	288 Identified & Quantified ¹	73 Identified & Quantified ⁴	0
CSF	172 Identified & Quantified ²	130 Identified & Quantified ⁵	0
Urine	378 Identified & Quantified ³	63 Identified & Quantified ⁶	0

- 1. Psychogios N. et al. (2011) PLoS One 6(2): e16957
- 2. Mandal R. et al. (2012) Genome Med.;4(4):38.
- 3. Bouatra S. et al. (2013) PLoS One 8(9): e73076
- 4. MRM Proteomics Inc. (Victoria BC) reported in 2014
- 5. Percy AJ. et al. (2014) J. Proteome Res. (ePub Jun 9)
- 6. Chen YT. et al. (2012) J. Proteomics 75(12):3529

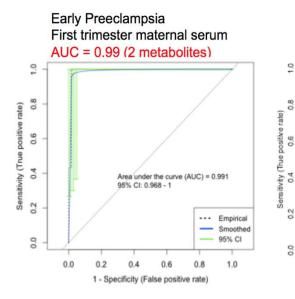
Key Trends in Metabolomics

- Automated metabolomics
- Expanding metabolome coverage
- Making metabolomics portable
- Quantify, quantify, quantify...
- Moving metabolomics from the lab to the clinic
- Moving metabolomics (back) into drug development and discovery

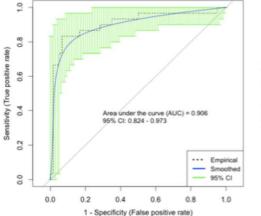
Some Grim Statistics

- Since 1970 > 700,000 biomarker papers published in PubMed
- Since 1970 <250 biomarkers have been approved for clinical use
- No markers approved (yet) using proteomics methods (lots use ELISA)
- 5 biomarker tests approved using transciptomics or gene chips

But Did You Know... Almost Everyone <25 Has Had A Metabolomic Test?


Newborn Screening

"Omics" Testing


- Number of "approved" tests arising from Metabolomics/Clinical Chem. – 195
- Number of "approved" tests arising from or using Genomics – 100-110
- Number of "approved" single Protein tests (ELISA) – 60
- Number of "approved" tests arising from or using Transcriptomics – 5
- Number of "approved" tests arising from or using Proteomics - 0

How Does Metabolomics Do? (Prediction & Diagnosis)

Predicting Diseases

Trisomv 18 First trimester maternal serum AUC=0.91 (7 metabolites)

Trisomy 21 First trimester maternal serum AUC=0.90 (3 metabolites + Age)

1 - Specificity (False positive rate)

0.6

Area under the curve (AUC) = 0.962

···· Empirical

0.8

- Smoothed

95% CI

95% CI: 0.918 - 0.988

Late Preeclampsia

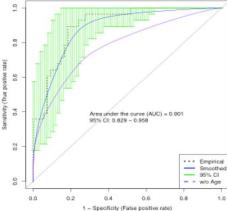
2

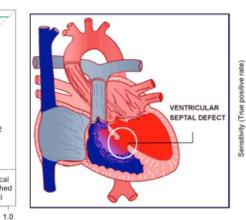
0.8

40

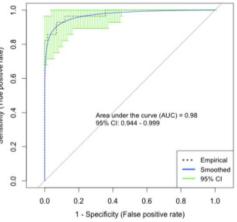
02

0.0

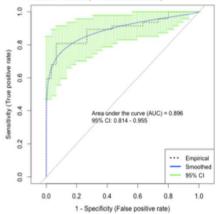

0.0

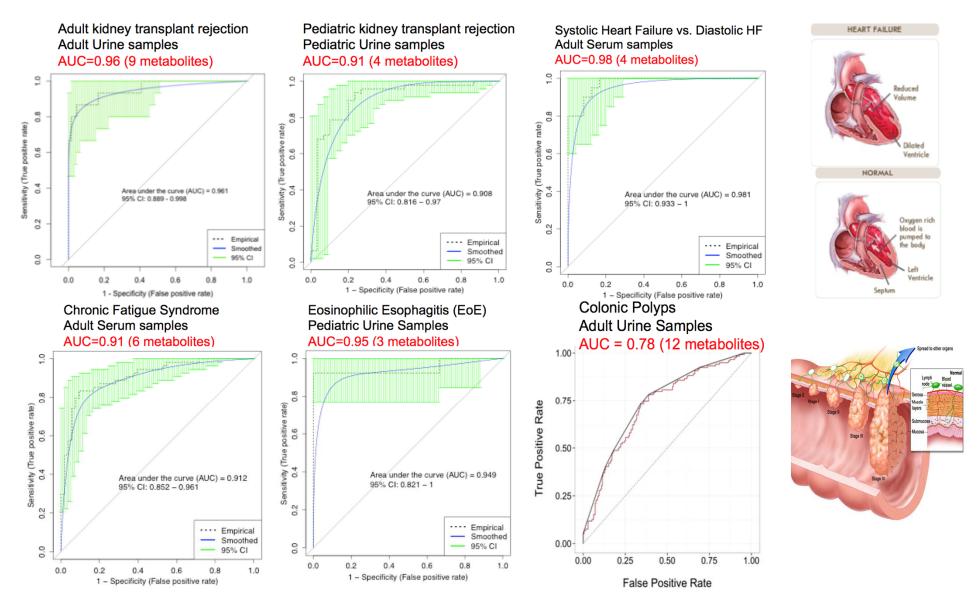

0.2

0.4


First trimester maternal serum

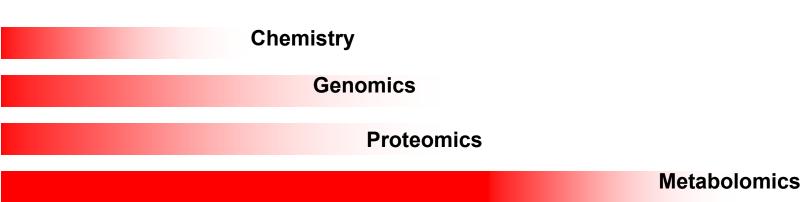
AUC=0.96 (8 metabolites)



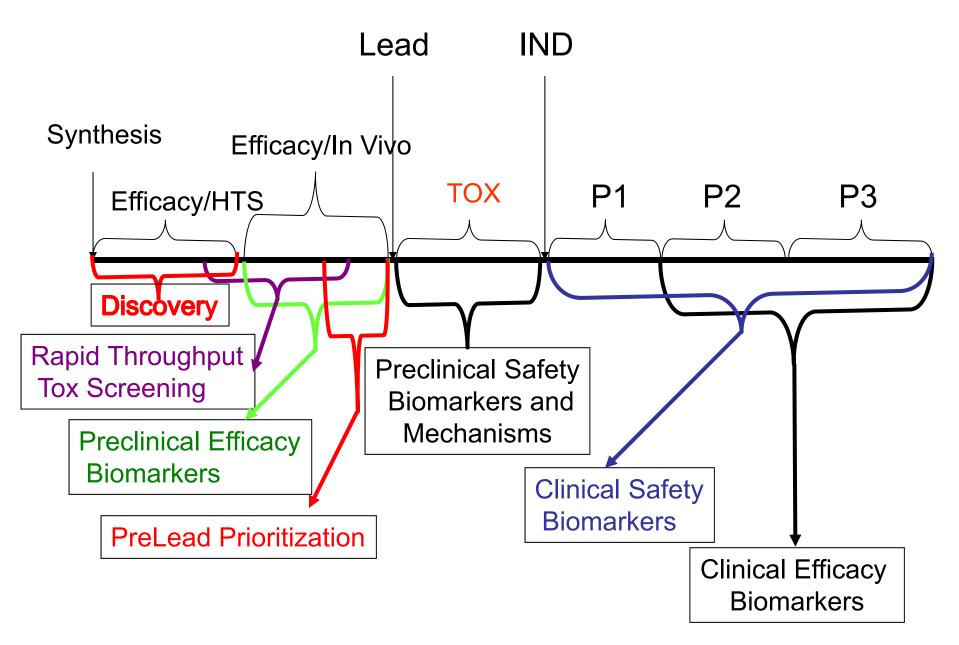

Congenital Heart Defects (CHD) Maternal Serum AUC=0.98 (3 metabolites)

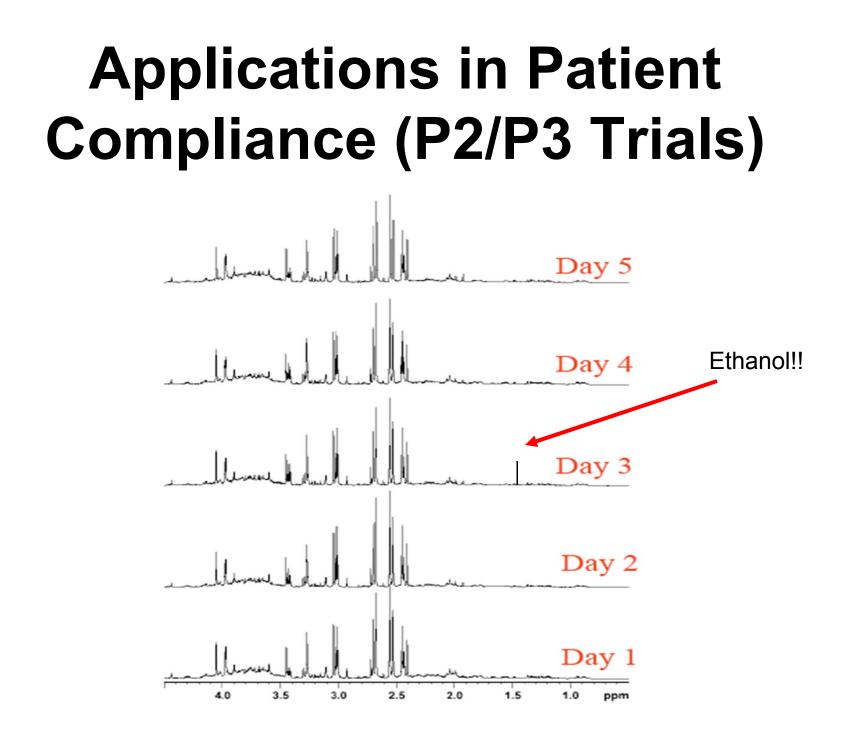
Cancer Cachexia Adult Urine samples AUC=0.90 (4 metabolites)

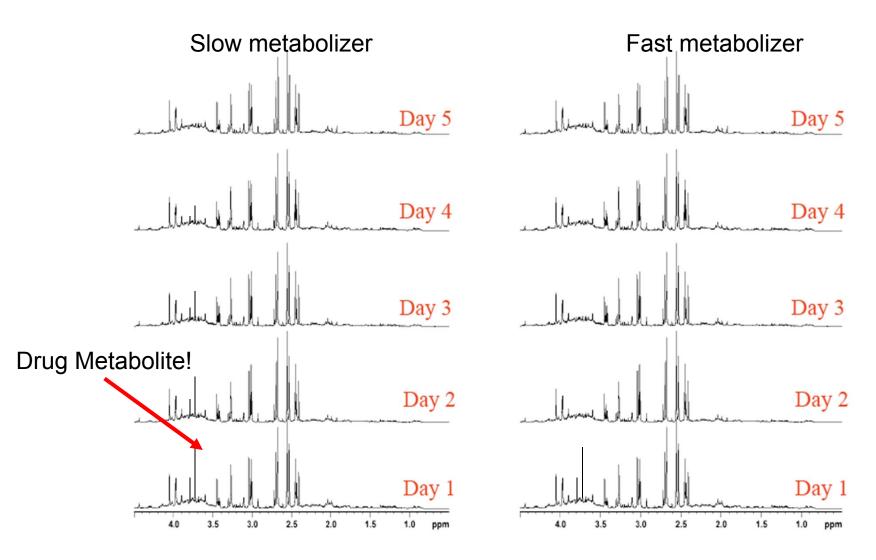
Diagnosing Diseases


Key Trends in Metabolomics

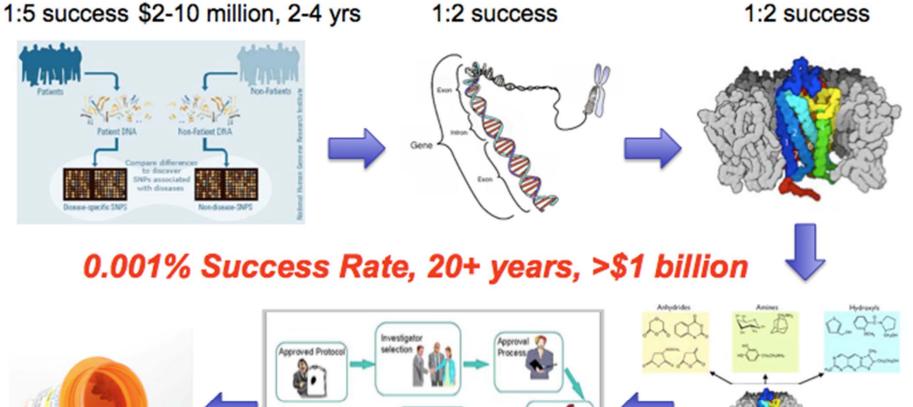
- Automated metabolomics
- Expanding metabolome coverage
- Making metabolomics portable
- Quantify, quantify, quantify...
- Moving metabolomics from the lab to the clinic
- Moving metabolomics (back) into drug development and discovery

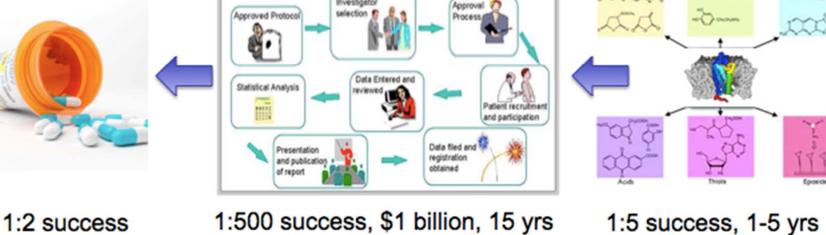

Metabolomics & The Drug Industry



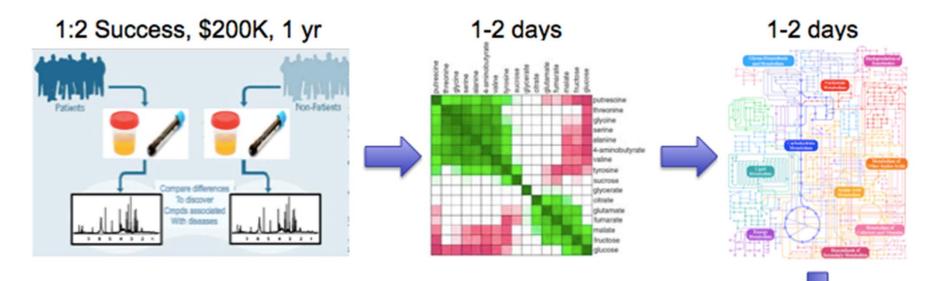


Metabolomics in Drug Development





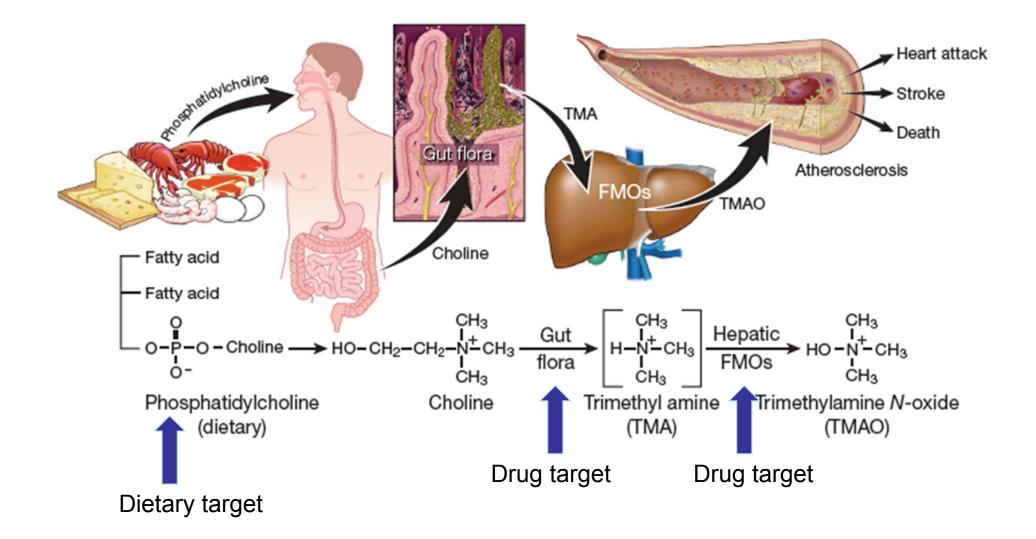
Applications in Drug Monitoring/Customization



Traditional Drug Discovery

Metabolite-Based Drug Discovery

15% Success Rate, 1+ years, <\$250,000


1:2 Success, 1-2 hours

DrugBank

1:2 Success, \$200/yr

1-2 weeks (cmpds/diet) 5-10 yrs (enzymes, MAbs)

Metabolomics, CVD & Therapy

Summary – The Future of Metabolomics

- Automated metabolomics
- Expanding metabolome coverage
- Making metabolomics portable
- Quantify, quantify, quantify...
- Moving metabolomics from the lab to the clinic
- Moving metabolomics (back) into drug development and discovery

Acknowledgements

- Augustin Scalbert •
- **Russ Greiner**
- **Jie Chen** •
- Khalid Aziat
- **Felicity Allen** •
- **Richard Fedorak**
- Liang Li •
- **Rupa Mandal**
- **Jennifer Reid**
- **Tamara Lim**

- Jason Dyck
- **David Rush**
- Tom Blydt-Hansen
- Siamak Ravanbaksh
- Beomsoo Han
- Jeff Xia
- **Tim Jewison**
- Allison Pon
- Craig Knox

- **Ray Bahado-Singh** S
 - **Genome**Alberta

GenomeCanada

Canadian

Health Research

en santé du Canada