UAB Epigenetics Retreat

July 2012

Epigenetic Mechanisms in Memory Formation

J. David Sweatt Dept of Neurobiology McKnight Brain Institute UAB School of Medicine

The Molecular Basis of Memory

Memory at the Cellular Level

Chromatin Structure

Histone Modification in Memory Formation

- Histone Acetylation, Methylation, Phosphorylation, Subunit Exchange
- HDAC Inhibitor Augmentation of Memory
- Novel AD Therapies
- Drug Addiction

Is chemical modification of DNA involved in memory?

A Model for Active DNA De-methylation In Memory

The Molecular Basis of Long-term Memory

- Epigenetic mechanisms are involved in memory formation
- Development and long-term memory are homologous molecular processes
- A universal molecular alphabet for triggering lasting cellular change

Acknowledgements

National Institute on Aging • + + +

- Mark Kilgore
- Laura Qadri
- Frankie Heyward
- Liz Rahn
- Jeremy Day
- Garrett Kaas
- Iva Zovkic
- Faraz Sultan
- Dawn Eason
- Mercy Kibe
- David Figge
- Kelsey Patterson
- Krysta Engel
- Mika Guzman
- Daniel Childs
- Caitlin Aamodt
- Jennifer King
- Daniel Ross
- Amanda James

A Model for Active DNA De-methylation In Neurons

From Bhutani, Burns and Blau, Cell 2011

The Molecular Basis of Memory

Synapse Specificity vs. Cell-wide Changes

