Birmingham

Approaches to Bioinformatic Data Analysis RNA-Seq Analysis using Galaxy

David Crossman, Ph.D. UAB Heflin Center for Genomic Science

Immersion Course

Heflin

Center for

Contents

Heflin Center for

- FASTQ anatomy
- RNA-Seq demo
- Genomics Viewer (IGV) demo
- Whole Genome/Exome demo
- References and web links

NGS FASTQ file format

		IIIIII		IIIIIIIIIIIIII	
		JJJJJ	111111111111111111111111111111111111111		•••••
LLLLLLLLLLLLL	LLLLLLLLLLL	LLLLLLLLL	LLLLL		
!"#\$%&'()*+,/	0123456789:;	<=>?@ABCDE	FGHIJKLMNOPQRSTUVW	XYZ[\]^_`abcdefghijklmnopq	{rstuvwxyz{ }
1	1	1	1	a contract of the second s	
13	59	64	73	104	12
5 - Sanger	Phred+33,	raw reads	typically (0, 40)		
- Solexa	Solexa+64,	raw reads	typically (-5, 40)	
- Illumina 1.3	+ Phred+64,	raw reads	typically (0, 40)		
7 - Illumina 1.5	+ Phred+64,	raw reads	typically (3, 40)		
with 0=unused	, 1=unused,	2=Read Seg	ment Quality Contr	ol Indicator (bold)	
(Note: See di	scussion abo	ve).			
Tllumine 1 6	Dhand 122	nour nooda	tumi an 1 1 (0 (11)		

Line1: Begins with '@' and followed by a sequence identifier and optional description Line2: Raw sequence letters Line3: '+'

Line4: Encodes the quality values for the sequence in Line2 (see above figure) Repeat Lines1-4 format again and again and again... 1 @D5VG2KN1:116:CONTMACXX:5:1101:1606:2077 2:N:0:GTGAAA 2 CTINNCTICAIGINCCTITCCTCTCAIGTCTTCCCTGAGGTCCTCGIAATC

4 B00##2=2AFDHH#2<CDHHGIII9HHIIEFF:CEHB0DGHGIIIDGEIEH 0D5VG2KN1:116:CONTMACXX:5:1101:1584:2079 2:N:0:GTGAAA GGGNNTTCATGATNAAGATGAGAGTGCACGGCTTCTCCTCTGAGAAGGACT

@?;##22=AD84D#2<<;CDH@HG<C>FHGDBFGEH??DBFGEBB<9CEFC @D5VG2KN1:116:CONTMACXX:5:1101:1526:2088 2:N:0:GTGAAA TTTNGCAGCACGGCTTTGTCCTCTGGGGTGAGGGCTGGTGTGGGGTAGGGCA

BBB#4=DDBHHHFIJIJIJJGHEGGIJJIJIJJJGIJJIJHIHJGGJGHFE @D5VG2KN1:116:CONTMACXX:5:1101:1730:2093 2:N:0:GTGAAA CCCCCCAGGCCAGGTAGCCCAAGCCAAGTGTCCAGAGGTTGACCCTGTGCGT

Contents

Heflin Center for

- FASTQ anatomy
- RNA-Seq demo
- Genomics Viewer (IGV) demo
- Whole Genome/Exome demo
- References and web links

RNA-Seq pipeline

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks Nature Protocols 7, 562-578 (2012) doi:10.1038/nprot.2012.016

Upload/Import Data

	Tools 1	Q.						
(Get Data	-	Upload File (version 1.1.3)					
	<u>Upload File</u> from your		File Format:	_	20			
	computer		Which format? See help below	•	3a			
	 <u>UCSC Main</u> table browser 		File:	. 1				
	<u>UCSC Test</u> table browser		TIP: Due to browser limitations, upl	oading	files larger than	n 2GB is guaranteed to fail. To upload	l large files	use the URL method (below) or FTP (if enabled by the site administrator).
	 <u>UCSC Archaea</u> table browse 	er	URL/Text:					
	 <u>BX main</u> browser 				3b-2			
	<u>Get Microbial Data</u>			-			1.	Click "Get Data"
	 <u>BioMart</u> Central server 	=	Here you may specify a list of URLs	(one p	per line) or paste	e the contents of a file.	2	Click "Unload Filo"
	 <u>BioMart</u> Test server 		File	Size	Date		Ζ.	
	<u>CBI Rice Mart</u> rice mart		MF2_R1.fastosanger	33.2	07/19/2012		3.	Boxes to be aware of:
	 <u>GrameneMart</u> Central serve 	er		Mb	AM			a) File Format
	 <u>modENCODE fly</u> server 		MF2_R2.fastqsanger	33.2 Mb	07/19/2012 07:26:45			b) File to be upleeded.
	 <u>Flymine</u> server 			17.1	07/19/2012			b) File to be uploaded:
	 <u>Flymine test</u> server 		MF3_R1.fastqsanger	Mb	07:26:47 AM	3b-3		1) File from computer
	 modENCODE modMine serve 	er	MF3 R2.fastosanger	17.1	07/19/2012			2) LIBI /toxt
	<u>Ratmine</u> server			MD	AM			
	 <u>YeastMine</u> server 		Treeshrew67 GeneScaffold_800_4487.gtf	17.3 Kb	07/19/2012 07:26:48			3) FTP
	 <u>metabolicMine</u> server 			251.2	07/19/2012			c) Genome
	 modENCODE worm server 		GeneScaffold_800_4487.fasta	Kb	07:26:48 AM		_	Click "Evenute"
	 <u>WormBase</u> server 		This Galaxy server allows you to up via FTP. To upload some files, log ir	load fil to the	les FTP		4.	CIICK Execute
	 Wormbase test server 		server at galaxy.uabgrid.uab.ed your Galaxy credentials (email add	u using ress ar	g nd		L	
	 <u>EuPathDB</u> server 		password). Convert spaces to tabs:					
	 EncodeDB at NHGRI 		Yes Use this option if you are entering in	nterval	s by hand.			
	 EpiGRAPH server 		Genome:		30			
			Click to Search or Select		30			

- EpiGRAPH test server
- HbVar Human Hemoglobin Variants and Thalassemias

Click to Search or Select

Execute

3d

Shared Data

Analyze Data	Workflow	Shared Data -	Visualizat	ion - Help	o≁ User≁
			1		
Analyze Data	Workflow	Shared Data -	Visualizati	on - Help	+ User+
Welc	ome t	Data Libraries Published Histo Published Wor Published Visu	2 pries kflows alizations	the Cl	oud

3

Data Library "Immersion course prep"

Name	Message	Data type	Date uploaded	File size
Control_rep1_r1.fastq =		fastqsanger	2012-08-06	14.4 Mb
Control_rep1_r2.fastq *		fastqsanger	2012-08-06	14.4 Mb
Control_rep2_r1.fastq *		fastqsanger	2012-08-06	14.4 Mb
Control_rep2_r2.fastq *		fastqsanger	2012-08-06	14.4 Mb
Treated_rep1_r1.fastq >		fastqsanger	2012-08-06	14.4 Mb
Treated_rep1_r2.fastq •		fastqsanger	2012-08-06	14.4 Mb
Treated_rep2_r1.fastq *		fastqsanger	2012-08-06	14.4 Mb
Treated_rep2_r2.fastq •	1. Click on "Shared D	ata ³³ st (located	2012-08-06	14.4 Mb
For selected datasets: Import to current history 💌 Go	on top toolbar) 2. Drop down box ap on "Data Libraries" 3. Will see this Data L on it to expand (as	pears; click , Library. Click shown)		

Import Shared Data to Current History

Data Library "Immersion course prep"

Name 1	Message	Data type	Date uploaded	File size
Control_rep1_r1.fastq >		fastqsanger	2012-08-06	14.4 Mb
Control_rep1_r2.fastq *		fastqsanger	2012-08-06	14.4 Mb
Control_rep2_r1.fastq *		fastqsanger	2012-08-06	14.4 Mb
Control_rep2_r2.fastq *		fastqsanger	2012-08-06	14.4 Mb
Treated_rep1_r1.fastq *		fastqsanger	2012-08-06	14.4 Mb
Treated_rep1_r2.fastq *		fastqsanger	2012-08-06	14.4 Mb
Treated_rep2_r1.fastq =		fastqsanger	2012-08-06	14.4 Mb
Treated_rep2_r2.fastq =		fastqsanger	2012-08-06	14.4 Mb

For selected datasets: Import to current history 💽 Go

1. Check boxes of files you want to import

- 2. Choose "Import to current history" and then click "Go"
- Will see the files in the right-hand pane of the Galaxy window

Quality Control of raw fastq reads

Tools	\$	3a	Fastqc: Fastqc QC (version 0.4)
NGS: QC and manipulation FASTQC: FASTQ/SAM/BAM	1	3	Short read data from your current history: 4: Treated_rep1_r2.fastq Title for the output file - to remind you what the job was for:
Fastqc: Fastqc QC using FastQC from Babraham	2	\rightarrow	FastQC
ILLUMINA FASTQ			Contaminant list: Selection is Optional
 <u>FASTQ Groomer</u> convert between various FASTQ quality formats 			tab delimited file with 2 columns: name and sequence. For example: Illumina Small RNA RT Primer CAAGCAGAAGACGGCATACGA
 <u>FASTQ splitter</u> on joined paired end reads 			S S
 <u>FASTQ joiner</u> on paired end reads 		30	Fastqc: Fastqc QC (version 0.4) Short read data from your current history:
 <u>FASTQ Summary Statistics</u> by column 			1: Control_rep1_r1.fastq 💌 * Title for the output file - to remind you what the job was for:
ROCHE-454 DATA			Control rep1 r1 FastQC *
 Build base quality distribution 	ם ≡	_	Contaminant list: Selection is Optional
 Select high quality segments 			tab delimited file with 2 columns: name and sequence. For example: Illumina Small RNA RT Primer CAAGCAGAAGACGGCATACGA
 <u>Combine FASTA and QUAL</u> into FASTO 			Execute 4
			 Click on "NGS: QC and manipulation" Click on "Fastqc: Fastqc QC Select options: a) This is what the window looks like when first opened

- b) Choose fastq file and give it a useful name
- 4. Click "Execute"
- 5. Do the exact same thing for the other 3 fastq files

FastQC Output Report

This data looks awful because this is filtered data from a much larger fastq file. Better results when using entire file!

	History	\$
	🐌 🖃 Unnamed history	2 🖻 1.3 Mb
	8: Treated rep1 r2 FastQC data 4.html	• 0 %
ed and	7: Treated rep1 r1 FastQC data 3.html	• 0 %
ger	<u>6: Control rep1 r2</u> FastQC data 2.html	• 0 %
2!	5: Control rep1 r1 FastQC data 1.html	• • *
	4: Treated rep1 r2.fastq	• 0 %
	3: Treated rep1 r1.fastq	• / ¤
	2: Control rep1 r2.fastq	• / ×
	1: Control rep1 r1.fastq	• 0 %

Summary

- Sequence Duplication Levels
- Overrepresented sequences
- Kmer Content
- Basic Statistics
- Measure
 Value

 Filearme
 Control_repl_rl.fastq

 File type
 Conventional base calls

 Encoding
 Sanger (IIbrania 1.9)

 Total Sequences
 100000

 Filered Sequences
 0

 Sequence length
 51

 VGC
 46
- Per base sequence quality

TopHat

NGS: RNA Analysis

RNA-SEQ

- <u>Tophat for Illumina</u> Find splice junctions using RNA-seq data
- <u>Tophat for Illumina (6hrs/6G)</u>
 Find splice junctions using
 RNA-seq data

2

- <u>Tophat for Illumina</u> (<u>12hrs/10G</u>) Find splice junctions using RNA-seq data
- <u>Tophat for Illumina</u> (<u>24hrs/16G</u>) Find splice junctions using RNA-seq data
- <u>Tophat for Illumina</u> (<u>48hrs/24G</u>) Find splice junctions using RNA-seq data
- <u>Tophat for Illumina</u> (<u>72hrs/36G</u>) Find splice junctions using RNA-seq data
- <u>Tophat for Illumina</u> (<u>96hrs/44G</u>) Find splice junctions using RNA-seq data

3 Tophat for Illumina (6hrs/6G) (version 1.5.0)

RNA-Seq FASTQ file:

4: Treated_rep1_r2.fastq 💌

Nucleotide-space: Must have Sanger-scaled quality values with ASCII offset 33

Will you select a reference genome from your history or use a built-in index?:

Use a built-in index

Built-ins were indexed using default options

-

Select a reference genome:

A. thaliana Feb. 2011 (arabidopsis.org/tair 💌

-

If your genome of interest is not listed, contact the Galaxy team

Is this library mate-paired?:

Single-end 💌

TopHat settings to use:

Use Defaults

You can use the default settings or set custom values for any of Tophat's parameters.

Execute

- 1. Click on "NGS: RNA Analysis"
- 2. Click on "Tophat for Illumina (6hrs/6G)"
- 3. Default window with options appears

TopHat

Tophat for Illumina (6hrs/6G) (version 1.5.0)

RNA-Seq FASTQ file:

1: Control_rep1_r1.fastq		1
--------------------------	--	---

Nucleotide-space: Must have Sanger-scaled quality values with ASCII offset 33

Will you select a reference genome from your history or use a built-in index?:

Use a built-in index	-
----------------------	---

Built-ins were indexed using default options

Select a reference genome:

ha19	Full

-

If your genome of interest is not listed, contact the Galaxy team

2a

Is this library mate-paired?:

Paired-end	-
------------	---

RNA-Seq FASTQ file:

2: Control_rep1_r2.fastq 💌 4

5

3

Nucleotide-space: Must have Sanger-scaled quality values with ASCII offset 33

Mean Inner Distance between Mate Pairs:

150

TopHat settings to use:

For most mapping needs use Commonly used settings. If you want full control use Full parameter list

2b

- 2. Select reference genome:
 - a) Choose "Use a built-in index"
 - b) Select the reference genome
- 3. Select "Paired-end"
- 4. Select reverse fastq read file
- 5. Input "150" (ask sequencing center for this info)
- 6. Can choose "Commonly used" or "Full parameter list"
- 7. Click "Execute"
- 8. Do the exact same thing for the other sample

Note about FASTA files not already indexed in Galaxy

- If a FASTA is not indexed in Galaxy, then it is easy to upload the appropriate FASTA file into Galaxy. (Get Data -> Upload File)
- However, it can take up to 5 hours extra to run TopHat because Bowtie has to index your uploaded FASTA file (best to have your own instance of Galaxy) each time you run TopHat!
- Where do I go to get a non-model organism FASTA file?
 - NCBI: <u>http://www.ncbi.nlm.nih.gov/genome</u>
 - Ensembl: <u>http://useast.ensembl.org/info/data/ftp/index.html</u>

Conter

- iGenome: <u>http://cufflinks.cbcb.umd.edu/igenomes.html</u>
- Your favorite species website: http://www...

TopHat output files

The following job has been successfully added to the queue:

Iniversit

13: Tophat for Illumina (6hrs/6G) on data 2 and data 1: splice junctions

14: Tophat for Illumina (6hrs/6G) on data 2 and data 1: accepted_hits

You can check the status of queued jobs and view the resulting data by refreshing the **History** pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

Ċ History DO 0 94.1 Mb Unnamed history 12: Treated Tophat for 00% Illumina (6hrs/6G) on data 4 and data 3: accepted hits 00% 11: Treated Tophat for Illumina (6hrs/6G) on data 4 and data 3: splice junctions 00% **10: Control Tophat for** Illumina (6hrs/6G) on data 2 and data 1: accepted hits 9: Control Tophat for 00% Illumina (6hrs/6G) on data 2 and data 1: splice junctions

GTF Annotation Files

airminghan

3

Data Library "Patched GTF annotation files for Cufflinks"

RefGene annotation files patched for Cufflinks in GTF format

Name	Message	Data type	Date uploaded	File size
hg19_RefGene_patched3.gtf -	None	gtf	2011-07-22	92.7 Mb
mm9_RefGene_patched3.gtf -	None	gtf	2011-07-22	65.5 Mb
m4_RefGene_patched3.gtf >		gtf	2012-02-29	38.4 Mb
Tupaia_belangeri.TREESHREW.63.sorted2.patched.gtf *	Not sure if the tupBel1 is the same build as 63!	gtf	2011-08-03	70.4 Mb
Zv9_refGene_patched3.gtf >		gtf	2012-02-29	35.6 Mb

For selected datasets: Import to current history 💌 Go

Cufflinks

NGS: RNA Analysis RNA-SEQ

 <u>Tophat for Illumina</u> Find splice junctions using RNA-seq data

1

- <u>Tophat for Illumina (6hrs/6G)</u> Find splice junctions using RNA-seq data
- <u>Tophat for Illumina</u> (<u>12hrs/10G</u>) Find splice junctions using RNA-seq data
- <u>Tophat for Illumina</u> (<u>24hrs/16G</u>) Find splice junctions using RNA-seq data
- <u>Tophat for Illumina</u> (<u>48hrs/24G</u>) Find splice junctions using RNA-seq data
- <u>Tophat for Illumina</u> (72hrs/36G) Find splice junctions using RNA-seq data
- <u>Tophat for Illumina</u> (<u>96hrs/44G</u>) Find splice junctions using RNA-seq data
- <u>Cufflinks</u> transcript assembly and FPKM (RPKM) estimates for RNA-Seq data

Cufflinks (version 0.0.5)

SAM or BAM file of aligned RNA-Seq reads:

12: Treated Tophat fo..cepted_hits 💌

Max Intron Length:

300000

Min Isoform Fraction:

0.1

Pre MRNA Fraction:

0.15

Perform quartile normalization:

No 💌

Removes top 25% of genes from FPKM denominator to improve accuracy of differential expression calls for low abundance transcripts

Use Reference Annotation:

No

Perform Bias Correction:

Bias detection and correction can significantly improve accuracy of transcript abundance estimates.

Set Parameters for Paired-end Reads? (not recommended):

-

2

Execute

- 1. Click on "NGS: RNA Analysis"
- 2. Click on "Cufflinks"
- 3. Default window with options appears

Cufflinks

Cufflinks	(version	0.0.5)	1
-----------	----------	--------	---

SAM or BAM file of aligned RNA-Seq reads:	
10: Control Tophat focepted_hits 💌 1	
Max Intron Length:	1.
300000	2.
Min Isoform Fraction:	
0.1	
Pre MRNA Fraction:	3.
0.15	
Perform quartile normalization:	
No 💌 2	
Removes top 25% of genes from FPKM denominator to improve accuracy of differential expression calls for low abundance transc	ripts.
Use Reference Annotation:	
Use reference annotation as guide 💌 3a	4.
Reference Annotation:	F
13: hg19_RefGene_patched3.gtf 🔹 3b	5. C
Gene annotation dataset in GTF or GFF3 format.	ь.

Perform Bias Correction: 4

No	-	

Bias detection and correction can significantly improve accuracy of transcript abundance estimates.

Set Parameters for Paired-end Reads? (not recommended):

No 🔻

- Choose TopHat accepted hits file 1.
- Perform quartile normalization 2. (for this demo sample, choose "No")
- **Reference Annotation:** 3.
 - For genomes in scaffolds, a) choose "Use reference annotation as guide"
 - Choose GTF file from b) history
- Perform Bias Correction (for this 4. demo, choose "No")
- Click "Execute" 5.
- Do the exact same thing for the 6. other TopHat accepted hits file

Note about GTF files for Cuff*

- If you use a GTF file from Ensembl, then you need to convert the chromosome column (column 1) to include 'chr' in front of the chromosome #. You can do this by:
 - Using Jeremy Goecks' published workflow "Make Ensembl GTF compatible with Cufflinks" in Galaxy: <u>https://main.g2.bx.psu.edu/u/jeremy/w/make-ensembl-gtf-compatible-with-cufflinks</u>
 - Use 'awk' to add 'chr' to column 1 (if using Mac or Linux)
- Where do I go to get a GTF file?
 - NCBI: <u>http://www.ncbi.nlm.nih.gov/genome</u>
 - Ensembl: <u>http://useast.ensembl.org/info/data/ftp/index.html</u>
 - iGenome: <u>http://cufflinks.cbcb.umd.edu/igenomes.html</u>
 - Your favorite species website: http://www...

flin Cent

Cufflinks output files

The following job has been successfully added to the queue:

14: Cufflinks on data 10 and data 13: gene expression

15: Cufflinks on data 10 and data 13: transcript expression

16: Cufflinks on data 10 and data 13: assembled transcripts

17: Cufflinks on data 10 and data 13: total map mass

You can check the status of queued jobs and view the resulting data by refreshing the **History** pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

Iniversity of

~

History 🌣	9
00	6
Unnamed history 361.6 Mb	
20: Treated Cufflinks●∅on data 12 and data 13:assembled transcripts	
<u>19: Treated Cufflinks</u> <u>on data 12 and data 13:</u> <u>transcript expression</u>	
<u>18: Treated Cufflinks</u> <u>on data 12 and data 13: gene</u> <u>expression</u>	
<u>16: Control Cufflinks on</u>	
15: Control Cufflinks on	
<u>14: Control Cufflinks on</u> ● Ø ☆ data 10 and data 13: gene expression	

Cuffmerge

- 1. Click on "NGS: RNA Analysis"
- 2. Click on "Cuffmerge"
- 3. Default window with options appears

Cuffmerge

Cuffmerge (version 0.0.5)	
Cuffmerge (version 0.0.5) GTF file produced by Cufflinks: 16: Control Cufflinkstranscripts 1 Additional GTF Input Files 1 Additional GTF Input Files 1 GTF file produced by Cufflinks: 20: Treated Cufflinkstranscripts 2b Remove Additional GTF Input Files 1	 Choose GTF file produced by Cufflinks Additional GTF Input Files: a) Click on "Add new Additional GTF Input Files" b) Choose other GTF file produced by Cufflinks Reference Annotation: a) Select "Yes" to Use Reference Annotation
Add new Additional GTF Input Files 2a Use Reference Annotation: Yes 3a Reference Annotation: 13: hg19_RefGene_patched3.gtf 3b Make sure your annotation file is in GTF format and that Galaxy knows that your file is GTFnot GFF. Use Sequence Data: Yes 4a	 b) Choose GTF Reference Annotation file from history 4. Sequence Data: a) Slect "Yes" to Use Sequence Data b) Choose "Locally cached" 5. Click "Excecute"

Use sequence data for some optional classification functions, including the addition of the p_id attribute required by Cuffdiff.

Choose the source for the reference list:

Locally cached 🚽 4b

Execute 5

Cuffmerge output files

The following job has been successfully added to the queue:

1

22: Cuffmerge on data 16, data 13, and data 20: merged transcripts

You can check the status of queued jobs and view the resulting data by refreshing the **History** pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

Cuffdiff

Cuffdiff (version 0.0.5)

Transcripts:

22: Cuffmerge on data..transcripts 💌

A transcript GTF file produced by cufflinks, cuffcompare, or other source.

Perform replicate analysis:

No
Perform cuffdiff with replicates in each group.

SAM or BAM file of aligned RNA-Seq reads:

12: Treated Tophat fo..cepted_hits 💌

SAM or BAM file of aligned RNA-Seq reads:

12: Treated Tophat fo..cepted_hits 💌

False Discovery Rate:

0.05

2

The allowed false discovery rate.

Min Alignment Count:

10

The minimum number of alignments in a locus for needed to conduct significance testing on changes in that locus observed between samples.

Perform quartile normalization:

No 👻

Removes top 25% of genes from FPKM denominator to improve accuracy of differential expression calls for low abundance transcripts.

Perform Bias Correction:

No 🔻

Bias detection and correction can significantly improve accuracy of transcript abundance estimates.

Set Parameters for Paired-end Reads? (not recommended):

No 💌

Execute

- 1. Click on "NGS: RNA Analysis"
- 2. Click on "Cuffdiff"
- 3. Default window with options appears

Cuffdiff find significant changes in transcript expression, splicing, and promoter use

Cuffdiff

Cuffdiff (version 0.0.5)	
Transcripts: 22: Cuffmerge on datatranscripts 1 A transcript GTF file produced by cufflinks, cuffcompare, or other source. Perform replicate analysis:	 Choose GTF transcript file from either Cuffmerge or Cuffcompare Perform replicate analysis:
Yes 2a Perform cuffdiff with replicates in each group. Group 1 Group name (no spaces or commas): Control 2C Replicates Replicate 1 Add file: 10: Control Tophat focepted_hits 2d Remove Replicate 1	 2. Perform replicate analysis: a) Choose "Yes" b) Click "Add new Group" c) Select a name to give the Group d) Choose TopHat accepted hits file associated with this Group e) If you have more than one TopHat accepted hits file associated with this Group, then click "Add new Replicate"
Add new Replicate 2e Remove Group 1 Group 2 Group name (no spaces or commas):	 f) Click "Add new Group" g) Select a name to give the Group h) Choose TopHat accepted hits file associated with this Group
Replicates Replicate 1 Add file: 12: Treated Tophat focepted_hits 2h Remove Replicate 1 Add new Replicate 2i	 i) If you have more than one TopHat accepted hits file associated with this Group, then click "Add new Replicate" j) Click "Add new Group" if you have another Group you want to add
Remove Group 2 Add new Group 2b, 2f, 2j False Discovery Rate: 0.05 3 The allowed false discovery rate.	 Select a False Discovery Rate cutoff Select the minimum # of reads that will align to a locus in order to perform significant testing Perform quartile normalization (for this demo,
Min Alignment Count: 10 4 The minimum number of alignments in a locus for needed to conduct significance testing on changes in that locus observed between samples. Perform quartile normalization: No J 5	 choose "No") 6. Perform bias correction (for this demo, choose "No") 7. Okal "Free ba"
Removes top 25% of genes from FFRM denominator to improve accuracy of differential expression calls for low abundance transcripts. Perform Bias Correction:	7. CIICK "EXECUTE"

No 😱 6

Bias detection and correction can significantly improve accuracy of transcript abundance estimates.

Set Parameters for Paired-end Reads? (not recommended):

No 🖕

Execute

7

Cuffdiff output files

The following job has been successfully added to the queue:

23: Cuffdiff on data 12, data 10, and data 22: splicing differential expression testing

24: Cuffdiff on data 12, data 10, and data 22: promoters differential expression testing

25: Cuffdiff on data 12, data 10, and data 22: CDS overloading diffential expression testing

26: Cuffdiff on data 12, data 10, and data 22: CDS FPKM differential expression testing

27: Cuffdiff on data 12, data 10, and data 22: CDS FPKM tracking

28: Cuffdiff on data 12, data 10, and data 22: TSS groups differential expression testing

29: Cuffdiff on data 12, data 10, and data 22: TSS groups FPKM tracking

30: Cuffdiff on data 12, data 10, and data 22: gene differential expression testing

31: Cuffdiff on data 12, data 10, and data 22: gene FPKM tracking

32: Cuffdiff on data 12, data 10, and data 22: transcript differential expression testing

33: Cuffdiff on data 12, data 10, and data 22: transcript FPKM tracking

You can check the status of queued jobs and view the resulting data by refreshing the **History** pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

ter for Ge

25: Cuffdiff on data ● Ø ☎ 12, data 10, and data 22: CDS overloading diffential expression testing

Transcript differential expression testing output

test_id	gene_id	gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat	p_value	q_value	significant
TCONS_0000001	XLOC_000001	OR4F5	chr1:69090-70008	Control	Treated	NOTEST	0	7.91888	1.79769e+308	1.79769e+308	0.369441	1	no
TCONS_0000002	XLOC_000002	LOC100132062	chr1:323891-328581	Control	Treated	OK	6512.86	50.1428	-7.0211	4.36714	1.25886e-05	0.000667762	yes
TCONS_0000003	XLOC_000002	LOC100133331	chr1:323891-328581	Control	Treated	OK	40727.9	1208.59	-5.07462	3.12382	0.00178519	0.0157435	yes
TCONS_0000004	XLOC_000003	OR4F29	chr1:367658-368597	Control	Treated	NOTEST	120.192	11.5757	-3.37617	0.827381	0.408021	1	no
TCONS_0000005	XLOC_000004	LOC643837	chr1:763015-791316	Control	Treated	OK	0	1136.01	1.79769e+308	1.79769e+308	0.0959697	0.130354	no
TCONS_0000006	XLOC_000004	LOC643837	chr1:763015-791316	Control	Treated	LOWDATA	0	0	-1.79769e+308	0	1	1	no
TCONS_0000007	XLOC_000005	SAMD11	chr1:861120-894687	Control	Treated	NOTEST	0	165.375	1.79769e+308	1.79769e+308	0.0784572	1	no
TCONS_0000008	XLOC_000006	KLHL17	chr1:895863-901099	Control	Treated	OK	0	935.161	1.79769e+308	1.79769e+308	0.0958257	0.130354	no
TCONS_0000009	XLOC_000006	KLHL17	chr1:895863-901099	Control	Treated	OK	0	1552.38	1.79769e+308	1.79769e+308	0.098175	0.130354	no
TCONS_00000010	XLOC_000006	KLHL17	chr1:895863-901099	Control	Treated	OK	0	653.036	1.79769e+308	1.79769e+308	0.0842346	0.130354	no
TCONS_00000011	XLOC_000007	PLEKHN1	chr1:901876-917473	Control	Treated	OK	0	259.895	1.79769e+308	1.79769e+308	0.0782193	0.130354	no
TCONS_0000012	XLOC_000007	PLEKHN1	chr1:901876-917473	Control	Treated	NOTEST	0	0	0	0	1	1	no
TCONS_0000013	XLOC_000007	PLEKHN1	chr1:901876-917473	Control	Treated	OK	0	366.221	1.79769e+308	1.79769e+308	0.077757	0.130354	no
TCONS_0000014	XLOC_000007	PLEKHN1	chr1:901876-917473	Control	Treated	NOTEST	0	0	0	0	1	1	no
TCONS_0000015	XLOC_000008	ISG15	chr1:948846-949919	Control	Treated	OK	0	6611.59	1.79769e+308	1.79769e+308	0.0677355	0.130354	no
TCONS_0000016	XLOC_000009	AGRN	chr1:955502-991492	Control	Treated	OK	0	27000.8	1.79769e+308	1.79769e+308	0.215057	0.219233	no
TCONS_0000017	XLOC_000010	LOC254099	chr1:1072396-1079434	Control	Treated	NOTEST	0	0	0	0	1	1	no
TCONS_0000018	XLOC_000011	MIR200B	chr1:1102483-1102578	Control	Treated	NOTEST	0	0	0	0	1	1	no
TCONS_0000019	XLOC_000012	MIR200A	chr1:1103242-1103332	Control	Treated	NOTEST	0	0	0	0	1	1	no
TCONS_0000020	XLOC_000013	MIR429	chr1:1104384-1104467	Control	Treated	NOTEST	0	0	0	0	1	1	no
TCONS_0000021	XLOC_000014	TTLL10	chr1:1109285-1133313	Control	Treated	NOTEST	0	0	0	0	1	1	no
TCONS_0000022	XLOC_000014	TTLL10	chr1:1109285-1133313	Control	Treated	NOTEST	0	0	0	0	1	1	no

Gene differential expression testing output

test_id	gene_id	gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat	p_value	q_value	significant
XLOC_000001	XLOC_000001	OR4F5	chr1:69090-70008	Control	Treated	NOTEST	0	7.91888	1.79769e+308	1.79769e+308	0.369441	1	no
XLOC_000002	XLOC_000002	LOC100132062,LOC100133331	chr1:323891-328581	Control	Treated	OK	47240.8	1258.73	-5.22999	3.58623	0.00033549	0.00357856	yes
XLOC_000003	XLOC_000003	OR4F29	chr1:367658-368597	Control	Treated	NOTEST	120.192	11.5757	-3.37617	0.827381	0.408021	1	no
XLOC_000004	XLOC_000004	LOC643837	chr1:763015-791316	Control	Treated	OK	0	1968.53	1.79769e+308	1.79769e+308	0.0161068	0.0355459	yes
XLOC_000005	XLOC_000005	SAMD11	chr1:861120-894687	Control	Treated	NOTEST	0	165.375	1.79769e+308	1.79769e+308	0.0784572	1	no
XLOC_000006	XLOC_000006	KLHL17	chr1:895863-901099	Control	Treated	OK	0	3140.58	1.79769e+308	1.79769e+308	0.00733214	0.0213299	yes
XLOC_000007	XLOC_000007	PLEKHN1	chr1:901876-917473	Control	Treated	OK	0	626.115	1.79769e+308	1.79769e+308	0.0132232	0.0313439	yes
XLOC_000008	XLOC_000008	ISG15	chr1:948846-949919	Control	Treated	OK	0	6611.59	1.79769e+308	1.79769e+308	0.0677355	0.0852164	no
XLOC_000009	XLOC_000009	AGRN	chr1:955502-991492	Control	Treated	OK	0	27000.8	1.79769e+308	1.79769e+308	0.215057	0.218471	no
XLOC_000010	XLOC_000010	LOC 254099	chr1:1072396-1079434	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000011	XLOC_000011	MIR200B	chr1:1102483-1102578	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000012	XLOC_000012	MIR200A	chr1:1103242-1103332	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000013	XLOC_000013	MIR429	chr1:1104384-1104467	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000014	XLOC_000014	TTLL10	chr1:1109285-1133313	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000015	XLOC_000015	B3GALT6	chr1:1167628-1170420	Control	Treated	OK	0	1211.76	1.79769e+308	1.79769e+308	0.0668946	0.0852164	no
XLOC_000016	XLOC_000016	SCNN1D	chr1:1215815-1227409	Control	Treated	NOTEST	0	74.5236	1.79769e+308	1.79769e+308	0.0721728	1	no
XLOC_000017	XLOC_000017	PUSL1	chr1:1243993-1260046	Control	Treated	OK	0	2317.82	1.79769e+308	1.79769e+308	0.0649866	0.0852164	no
XLOC_000018	XLOC_000018	GLTPD1	chr1:1260142-1264276	Control	Treated	OK	0	1597.74	1.79769e+308	1.79769e+308	0.0669804	0.0852164	no
XLOC_000019	XLOC_000019	TAS1R3	chr1:1266725-1269844	Control	Treated	NOTEST	0	31.2299	1.79769e+308	1.79769e+308	0.0912112	1	no
XLOC_000020	XLOC_000020	LOC148413	chr1:1334909-1342693	Control	Treated	OK	0	2591.73	1.79769e+308	1.79769e+308	0.101067	0.109708	no
XLOC_000021	XLOC_000021	TMEM88B	chr1:1361507-1363167	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000022	XLOC_000022	VWA1	chr1:1370902-1378262	Control	Treated	NOTEST	0	4.59925	1.79769e+308	1.79769e+308	0.230105	1	no
XLOC_000023	XLOC_000023	ATAD3C	chr1:1385068-1405538	Control	Treated	OK	0	270.979	1.79769e+308	1.79769e+308	0.0615518	0.0852164	no
XLOC_000024	XLOC_000024	ATAD3B	chr1:1407163-1431582	Control	Treated	OK	0	9725.9	1.79769e+308	1.79769e+308	0.0932631	0.106586	no
XLOC_000025	XLOC_000025	ATADBA	chr1:1447522-1470067	Control	Treated	OK	0	15128.3	1.79769e+308	1.79769e+308	0.125562	0.131737	no
XLOC_000026	XLOC_000026	MIB2	chr1:1550794-1565990	Control	Treated	OK	0	1139.11	1.79769e+308	1.79769e+308	0.00159396	0.00822516	yes

Contents

Heflin Center for

- FASTQ anatomy
- RNA-Seq demo
- Genomics Viewer (IGV) demo
- Whole Genome/Exome demo
- References and web links

Load aligned BAM files into IGV

6	IGV	
	ilov	
	Load from File	
	Load from URL	
	Load from Server	/ sample information
	Load from DAS	
	New Session	
	Open Session	GeneScatfold_800 GeneScatfold_4487
_	Save Session	
	Load Genome from Lile	
	Import Genome	
	Remove Imported Genomes	
	Save Image	
	Run Batch Script	
_	Run igvtools	
	Exit	
	1.	Click "File"
	2	Choose "Load from File"
	3.	Choose *.bam files (*.bai files need to be in the same folder)
L		
(Gene	
L		
		000 01 2390

IGV

🕌 IGV		Sanda Sa	
File View Tracks Region	ns He	Help	
Human hg19	-	dr1 → dr1:893,967-903,099 Go 👚 ◄ ► 🛷 🗖 💥 💭 🗌	
		p36.23 p36.12 p34.3 p33 p32.1 p31.1 p22.2 p21.1 p13.1 q11 q12 q21.2 q23.2 q24.3 q25.3 q31.3	q32.2 q42.11 q43
	NAME DATA TYPE DATA FILF	9,113 bp 00 bp 895,000 bp 896,000 bp 897,000 bp 898,000 bp 899,000 bp 900,000 bp 901,000 bp 91 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	902,000 Бр 903,000 1 1 1 т
Control.bam		[0. 10]	
Control.bam			
Treated.bam		(P. 527)	* III
Treated.bam			
RefSeq Genes			PLEKHN1
6 tracks loaded	chr1:9	:901,285	104M of 259M

IGV

			IGV	
🛃 IGV	*			x
File View Tracks Region	ns He	lp		
Human hg 19	-	chr1 👻	✓ dr1:898,074-898,150 Go	+
		p36.23 p36.12 p34.3	3 p33 p32.1 p31.1 p22.2 p21.1 p13.1 q11 q12 q21.2 q23.2 q24.3 q25.3 q31.3 q32.2 q42.11 q43	
	NAME DATA TYPE DATA FILE	898,080 bp	78 bp	,150 I
Control.bam		[0- 10]		_^
Control.bam				
				-
Treated.bam		p- 527]		* III
Treated.bam				
Saguanca →				
RefSeq Genes		\rightarrow \rightarrow \rightarrow \downarrow L	M K C V R L P L L S R D F L L G H V D A E KLHL17	
6 tracks landed	lah-1.1	08.075		-
o tracks loaded	Christen 1:8	30,013	10/// 01259	Ind

Contents

Heflin Center for

- FASTQ anatomy
- RNA-Seq demo
- Genomics Viewer (IGV) demo
- Whole Genome/Exome demo
- References and web links

Whole Genome/Exome GATK pipeline

GATK Best Practices

(http://www.broadinstitute.org/gatk/)

Best Practice Variant Detection with the GATK v4, for release 2.0

There are 18 comments on this article. To see them or add your own, read this post on the forum >

P

Introduction

1. The basic workflow

Our current best practice for making SNP and indel calls is divided into four sequential steps: initial mapping, refinement of the initial reads, multisample indel and SNP calling, and finally variant quality score recalibration. These steps are the same for targeted resequencing, whole exomes, deep whole genomes, and low-pass whole genomes. Example commands for each tool are available on the individual tool's wiki entry. There is also a list of which resource files to use with which tool.

Note that due to the specific attributes of a project the specific values used in each of the commands may need to be selected/modified by the analyst. Care should be taken by the analyst running our tools to understand what each parameter does and to evaluate which value best fits the data and project design.

2. Lane, Library, Sample, Cohort

There are four major organizational units for next-generation DNA sequencing processes that used throughout this documentation:

- Lane: The basic machine unit for sequencing. The lane reflects the basic independent run of an NGS machine. For Illumina machines, this is the physical sequencing lane.
- Library: A unit of DNA preparation that at some point is physically pooled together. Multiple lanes can be run from aliquots from the same library. The DNA library and its preparation is the natural unit that is being sequenced. For example, if the library has limited complexity, then many sequences are duplicated and will result in a high duplication rate across lanes.
- Sample: A single individual, such as human CEPH NA12878. Multiple libraries with different properties can be constructed from the original
 sample DNA source. Here we treat samples as independent individuals whose genome sequence we are attempting to determine. From this
 perspective, tumor / normal samples are different despite coming from the same individual.
- Cohort: A collection of samples being analyzed together. This organizational unit is the most subjective and depends intimately on the design goals of the sequencing project. For population discovery projects like the 1000 Genomes, the analysis cohort is the ~100 individual in each population. For exome projects with many samples (e.g., ESP with 800 EOMI samples) deeply sequenced we divide up the complete set of samples into cohorts of ~50 individuals for multi-sample analyses.

This document describes how to call variation within a single analysis cohort, comprised for one or many samples, each of one or many libraries that were sequenced on at least one lane of an NGS machine.

Note that many GATK commande can be run at the lane level but will give better results seeing all of the data for a single cample, or even all of

GATK (beta) on Galaxy

NGS: GATK Tools (beta)

ALIGNMENT UTILITIES

- <u>Depth of Coverage</u> on BAM files
- Print Reads from BAM files
 REALIGNMENT
- <u>Realigner Target Creator</u> for use in local realignment
- 4 <u>Indel Realigner</u> perform local realignment

BASE RECALIBRATION

- <u>Count Covariates</u> on BAM files
 - <u>Table Recalibration</u> on BAM files
 - <u>Analyze Covariates</u> draw plots

GENOTYPING

7 • <u>Unified Genotyper</u> SNP and indel caller

ANNOTATION

- Variant Annotator
 FILTRATION
- <u>Variant Filtration</u> on VCF files
- 11 <u>Select Variants</u> from VCF files VARIANT QUALITY SCORE RECALIBRATION
- 8 Variant Recalibrator
- 9 Apply Variant Recalibration VARIANT UTILITIES
 - Validate Variants
 - Eval Variants
- 10 Combine Variants

Basic Steps* (options are up to you):

- 1. BWA alignment
- 2. Mark duplicates (Picard)
- 3. Realigner Target Creator
- 4. Indel Realigner
- 5. Base Recalibrator (Count Covariates)
- 6. Print Reads
- 7. Unified Genotyper (new in Ver2 is Haplotype Caller) (SNPs and Indels done separately)
- 8. Variant Recalibrator (SNPs and Indels done separately)
- 9. Apply Recalibration (SNPs and Indels done separately)
- 10. Combine Variants
- 11. Select Variants
- 12. Compare/contrast variants
- 13. snpEFF

* This follows the **basic** pipeline shown 2 slides ago. Each project is different and may need additional tools to answer the biological question(s). Also, options for each tool will vary as well.

Contents

Heflin Center for

- FASTQ anatomy
- RNA-Seq demo
- Genomics Viewer (IGV) demo
- Whole Genome/Exome demo
- References and web links

References and web links

- TopHat
 - Trapnell C, Pachter L, Salzberg SL. <u>TopHat: discovering splice junctions with RNA-Seq</u>.<u>Bioinformatics</u> doi:10.1093/bioinformatics/btp120
 - <u>http://tophat.cbcb.umd.edu/</u>
- Bowtie
 - Langmead B, Trapnell C, Pop M, Salzberg SL. <u>Ultrafast and memory-efficient alignment of short DNA</u> sequences to the human genome. <u>Genome Biol</u> 10:R25.
 - <u>http://bowtie-bio.sourceforge.net/index.shtml</u>
- Cufflinks
 - Trapnell C, Williams BA, Pertea G, Mortazavi AM, Kwan G, van Baren MJ, Salzberg SL, Wold B, Pachter L. <u>Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform</u> <u>switching during cell differentiation</u> <u>Nature Biotechnology</u> doi:10.1038/nbt.1621
 - Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. <u>Improving RNA-Seq expression estimates by</u> <u>correcting for fragment bias</u> <u>Genome Biology</u> doi:10.1186/gb-2011-12-3-r22
 - Roberts A, Pimentel H, Trapnell C, Pachter L.<u>Identification of novel transcripts in annotated genomes using</u> <u>RNA-Seq *Bioinformatics*</u> doi:10.1093/bioinformatics/btr355
 - <u>http://cufflinks.cbcb.umd.edu/</u>
- TopHat and Cufflinks protocol
 - Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L.
 <u>Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks</u> <u>Nature Protocols</u> 7, 562-578 (2012) doi:10.1038/nprot.2012.016

enter

- IGV
 - <u>http://www.broadinstitute.org/igv/</u>

Thanks! Questions?

Contact info:

David K. Crossman, Ph.D. **Bioinformatics Director** Heflin Center for Genomic Science University of Alabama at Birmingham http://www.heflingenetics.uab.edu dkcrossm@uab.edu