Approaches to Bioinformatic Data Analysis RNA-Seq Analysis using Galaxy

David Crossman, Ph.D.

UAB Heflin Center for Genomic Science

Immersion Course Friday, April 5, 2013

Contents

Heflin Center for

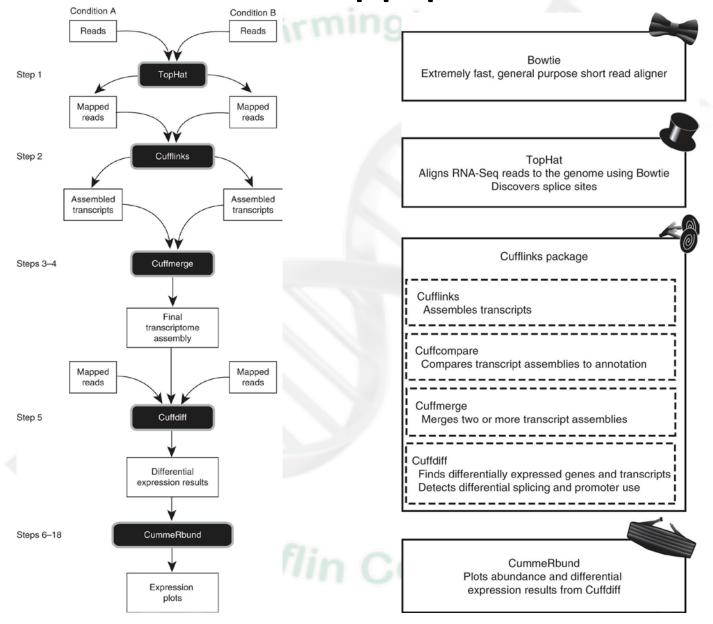
- FASTQ anatomy
- RNA-Seq demo
- Genomics Viewer (IGV) demo
- Whole Genome/Exome demo
- References and web links

NGS FASTQ file format

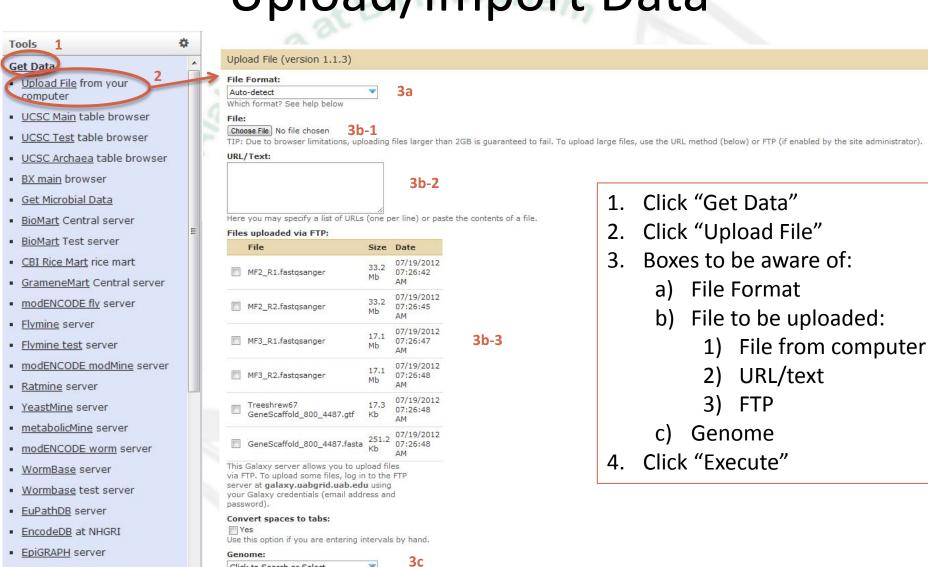
Line1: Begins with '@' and followed by a sequence identifier and optional description

Line2: Raw sequence letters

Line3: '+'


Line4: Encodes the quality values for the sequence in Line2 (see above figure)
Repeat Lines1-4 format again and again and again...

Contents

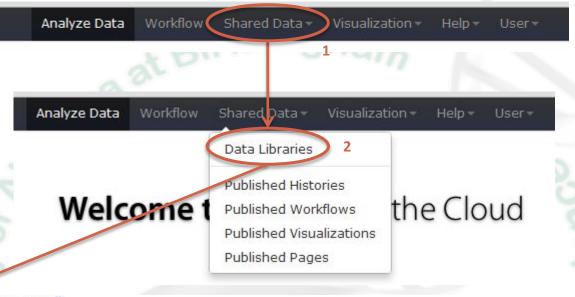

Heflin Center for

- FASTQ anatomy
- RNA-Seq demo
- Genomics Viewer (IGV) demo
- Whole Genome/Exome demo
- References and web links

RNA-Seq pipeline

Upload/Import Data

Click to Search or Select

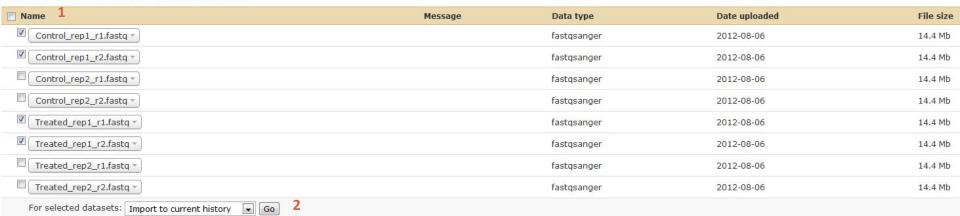

Execute

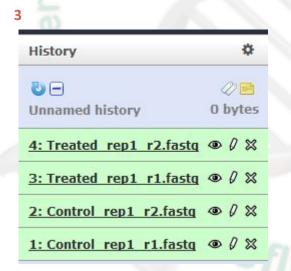
3d

EpiGRAPH test server

HbVar Human Hemoglobin Variants and Thalassemias

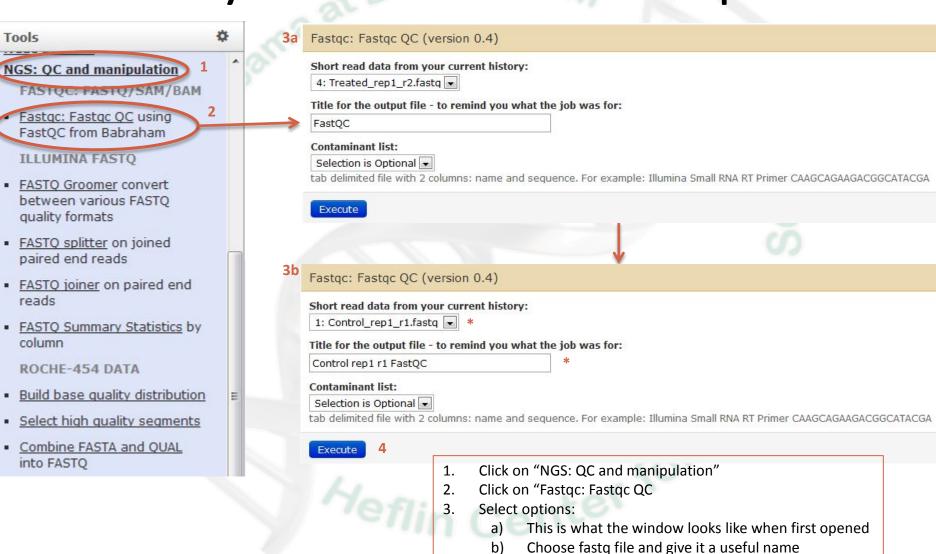
Shared Data


Data Library "Immersion course prep"


Data Library Tillinersion Course prep				
■ Name	Message	Data type	Date uploaded	File size
Control_rep1_r1.fastq =		fastqsanger	2012-08-06	14.4 Mb
Control_rep1_r2.fastq •		fastqsanger	2012-08-06	14.4 Mb
Control_rep2_r1.fastq v		fastqsanger	2012-08-06	14.4 Mb
Control_rep2_r2.fastq v		fastqsanger	2012-08-06	14.4 Mb
Treated_rep1_r1.fastq v		fastqsanger	2012-08-06	14.4 Mb
Treated_rep1_r2.fastq v		fastqsanger	2012-08-06	14.4 Mb
Treated_rep2_r1.fastq *		fastqsanger	2012-08-06	14.4 Mb
☐ Treated_rep2_r2.fastq ▼	1. Click on "Shared	Data"st (located	2012-08-06	14.4 Mb
For selected datasets: Import to current history Go	on top toolbar) 2. Drop down box a on "Data Librarie 3. Will see this Data	s"		

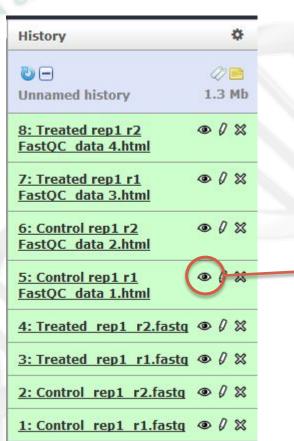
on it to expand (as shown)

Import Shared Data to Current History


Data Library "Immersion course prep"

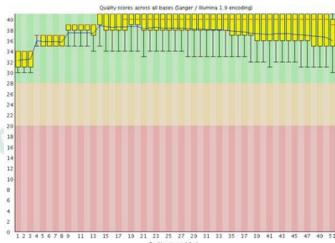
- 1. Check boxes of files you want to import
- Choose "Import to current history" and then click "Go"
- 3. Will see the files in the right-hand pane of the Galaxy window

Quality Control of raw fastq reads



Click "Execute"

Do the exact same thing for the other 3 fastq files


FastQC Output Report

This data looks awful because this is filtered data from a much larger fastq file. Better results when using entire file!

Heflin Ce

Control_repl_rl.fastq FastQC Report Summary Basic Statistics Sequence length 51 Per base sequence quality Quality scores across all bases (Sanger / Illumina 1.9 encoding

TopHat

NGS: RNA Analysis

1

RNA-SEQ

- Tophat for Illumina Find splice junctions using RNA-seq data
- Tophat for Illumina (6hrs/6G)
 Find splice junctions using
 RNA-seq data
- Tophat for Illumina (12hrs/10G) Find splice junctions using RNA-seq data
- Tophat for Illumina (24hrs/16G) Find splice junctions using RNA-seq data
- Tophat for Illumina (48hrs/24G) Find splice junctions using RNA-seq data
- Tophat for Illumina (72hrs/36G) Find splice junctions using RNA-seq data
- Tophat for Illumina (96hrs/44G) Find splice junctions using RNA-seq data

3 Tophat for Illumina (6hrs/6G) (version 1.5.0)

RNA-Seq FASTQ file: 4: Treated_rep1_r2.fastq Nucleotide-space: Must have Sanger-scaled quality values with ASCII offset 33 Will you select a reference genome from your history or use a built-in index?: Use a built-in index Built-ins were indexed using default options Select a reference genome: A. thaliana Feb. 2011 (arabidopsis.org/tair If your genome of interest is not listed, contact the Galaxy team Is this library mate-paired?: Single-end TopHat settings to use: Use Defaults You can use the default settings or set custom values for any of Tophat's parameters.

1. Click on "NGS: RNA Analysis"

Execute

- 2. Click on "Tophat for Illumina (6hrs/6G)"
- 3. Default window with options appears

TopHat

Tophat for Illumina (6hrs/6G) (version 1.5.0)

RNA-Seq FASTQ file:
1: Control_rep1_r1.fastq 🔻 1
Nucleotide-space: Must have Sanger-scaled quality values with ASCII offset 33
Will you select a reference genome from your history or use a built-in index?:
Use a built-in index 2a
Built-ins were indexed using default options
Select a reference genome:
hg19 Full
If your genome of interest is not listed, contact the Galaxy team
Is this library mate-paired?:
Paired-end ▼ 3
RNA-Seq FASTQ file:
2: Control_rep1_r2.fastq 💌 4
Nucleotide-space: Must have Sanger-scaled quality values with ASCII offset 33
Mean Inner Distance between Mate Pairs:
150 5
TopHat settings to use:

For most mapping needs use Commonly used settings. If you want full control use Full parameter list

- 1. Select forward fastq read file
- 2. Select reference genome:
 - a) Choose "Use a built-in index"
 - b) Select the reference genome
- Select "Paired-end"
- 4. Select reverse fastq read file
- 5. Input "150" (ask sequencing center for this info)
- 6. Can choose "Commonly used" or "Full parameter list"
- 7. Click "Execute"
- 8. Do the exact same thing for the other sample

Commonly used

Note about FASTA files not already indexed in Galaxy

- If a FASTA is not indexed in Galaxy, then it is easy to upload the appropriate FASTA file into Galaxy. (Get Data -> Upload File)
- However, it can take up to 5 hours extra to run TopHat because Bowtie has to index your uploaded FASTA file (best to have your own instance of Galaxy) each time you run TopHat!
- Where do I go to get a non-model organism FASTA file?
 - NCBI: http://www.ncbi.nlm.nih.gov/genome
 - Ensembl: http://useast.ensembl.org/info/data/ftp/index.html
 - iGenome: http://cufflinks.cbcb.umd.edu/igenomes.html
 - Your favorite species website: http://www...

TopHat output files

The following job has been successfully added to the queue:

13: Tophat for Illumina (6hrs/6G) on data 2 and data 1: splice junctions

14: Tophat for Illumina (6hrs/6G) on data 2 and data 1: accepted_hits

You can check the status of queued jobs and view the resulting data by refreshing the **History** pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

GTF Annotation Files

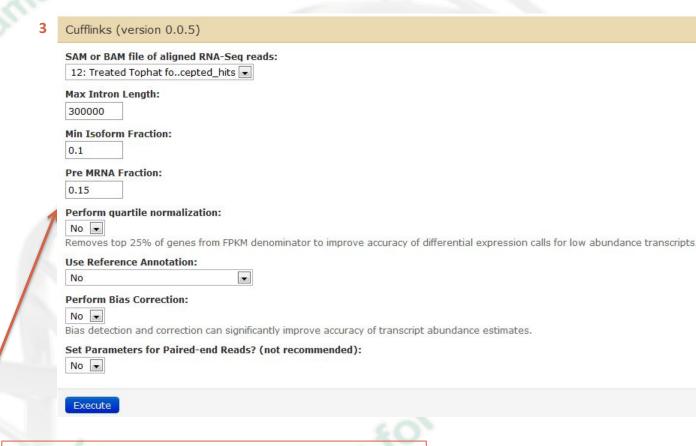
Data Library "Patched GTF annotation files for Cufflinks"

3

RefGene annotation files patched for Cufflinks in GTF format Message Data type Date uploaded File size hg19_RefGene_patched3.gtf = None gtf 2011-07-22 92.7 Mb mm9_RefGene_patched3.gtf = None gtf 2011-07-22 65.5 Mb rn4 RefGene patched3.gtf = atf 2012-02-29 38.4 Mb Tupaia_belangeri.TREESHREW.63.sorted2.patched.gtf 🔻 Not sure if the tupBel1 is the same build as 63! qtf 2011-08-03 70.4 Mb Zv9_refGene_patched3.gtf = 2012-02-29 35.6 Mb gtf For selected datasets: Import to current history

Cufflinks

Click on "NGS: RNA Analysis"


Default window with options appears

2. Click on "Cufflinks"

NGS: RNA Analysis

1

- Tophat for Illumina Find splice junctions using RNA-seq data
- Tophat for Illumina (6hrs/6G)
 Find splice junctions using
 RNA-seq data
- Tophat for Illumina (12hrs/10G) Find splice junctions using RNA-seq data
- Tophat for Illumina (24hrs/16G) Find splice junctions using RNA-seq data
- Tophat for Illumina (48hrs/24G) Find splice junctions using RNA-seq data
- Tophat for Illumina (72hrs/36G) Find splice junctions using RNA-seq data
- Tophat for Illumina (96hrs/44G) Find splice junctions using RNA-seq data
- <u>Cufflinks</u> transcript assembly and FPKM (RPKM) estimates for RNA-Seq data

Cufflinks

Cufflinks (version 0.0.5)

SAM or BA	M file of aligned RNA-Seq reads:
10: Contro	ol Tophat focepted_hits 🔻 👤
Max Intron	Length:
300000	
Min Isofori	n Fraction:

Pre MRNA Fraction:

0.15

0.1

Perform quartile normalization:

Removes top 25% of genes from FPKM denominator to improve accuracy of differential expression calls for low abundance transcripts.

Use Reference Annotation:

Use reference annotation as guide - 3a

Reference Annotation:

13: hg19_RefGene_patched3.gtf ▼ 3b

Gene annotation dataset in GTF or GFF3 format.

Perform Bias Correction:

No **▼** 4

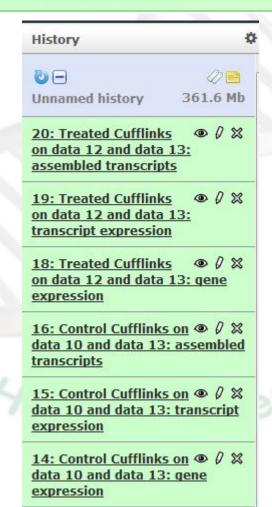
Bias detection and correction can significantly improve accuracy of transcript abundance estimates.

Set Parameters for Paired-end Reads? (not recommended):

No ▼

- Choose TopHat accepted hits file 1.
- Perform quartile normalization (for this demo sample, choose "No")
- Reference Annotation: 3.
 - For genomes in scaffolds, choose "Use reference annotation as guide"
 - Choose GTF file from history
- Perform Bias Correction (for this 4. demo, choose "No")
- Click "Execute"
- Do the exact same thing for the other TopHat accepted hits file

Note about GTF files for Cuff*


- If you use a GTF file from Ensembl, then you need to convert the chromosome column (column 1) to include 'chr' in front of the chromosome #. You can do this by:
 - Using Jeremy Goecks' published workflow "Make Ensembl GTF compatible with Cufflinks" in Galaxy:
 https://main.g2.bx.psu.edu/u/jeremy/w/make-ensembl-gtf-compatible-with-cufflinks
 - Use 'awk' to add 'chr' to column 1 (if using Mac or Linux)
- Where do I go to get a GTF file?
 - NCBI: http://www.ncbi.nlm.nih.gov/genome
 - Ensembl: http://useast.ensembl.org/info/data/ftp/index.html
 - iGenome: http://cufflinks.cbcb.umd.edu/igenomes.html
 - Your favorite species website: http://www...

Cufflinks output files

- 14: Cufflinks on data 10 and data 13: gene expression
- 15: Cufflinks on data 10 and data 13: transcript expression
- 16: Cufflinks on data 10 and data 13: assembled transcripts
- 17: Cufflinks on data 10 and data 13: total map mass

You can check the status of queued jobs and view the resulting data by refreshing the **History** pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

Cuffmerge

NGS: RNA Analysis
RNA-SEQ

 <u>Cuffmerge</u> merge together several Cufflinks assemblies Cuffmerge (version 0.0.5)

GTF file produced by Cufflinks:

20: Treated Cufflinks..transcripts

Additional GTF Input Files

Add new Additional GTF Input Files

Use Reference Annotation:

No

Use Sequence Data:

No

Use sequence data for some optional classification functions, including the addition of the p_id attribute required by Cuffdiff.

- 1. Click on "NGS: RNA Analysis"
- Click on "Cuffmerge"

Execute

3. Default window with options appears

Cuffmerge

Cuffmerge (version 0.0.5) GTF file produced by Cufflinks: 16: Control Cufflinks..transcripts 1 Additional GTF Input Files Additional GTF Input Files 1 GTF file produced by Cufflinks: 20: Treated Cufflinks..transcripts 2b Remove Additional GTF Input Files 1 Add new Additional GTF Input Files 2a Use Reference Annotation: Yes 3a Reference Annotation: 13: hg19_RefGene_patched3.gtf 3b Make sure your annotation file is in GTF format and that Galaxy knows that your file is GTF--not GFF.

- 1. Choose GTF file produced by Cufflinks
- 2. Additional GTF Input Files:
 - a) Click on "Add new Additional GTF Input Files"
 - b) Choose other GTF file produced by Cufflinks
- 3. Reference Annotation:
 - a) Select "Yes" to Use Reference Annotation
 - b) Choose GTF Reference Annotation file from history
- 4. Sequence Data:
 - a) Slect "Yes" to Use Sequence
 Data
 - b) Choose "Locally cached"
- 5. Click "Excecute"

Use Sequence Data:

Yes ▼ 4a

Use sequence data for some optional classification functions, including the addition of the p_id attribute required by Cuffdiff.

Choose the source for the reference list:

Locally cached - 4

4b

Cuffmerge output files

The following job has been successfully added to the queue:

22: Cuffmerge on data 16, data 13, and data 20: merged transcripts

You can check the status of queued jobs and view the resulting data by refreshing the **History** pane. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.

Cuffdiff

NGS: RNA Analysis RNA-SEQ

Cuffdiff find significant changes in transcript expression, splicing, and promoter use

Cuffdiff (version 0.0.5)

Transcripts:

22: Cuffmerge on data..transcripts

A transcript GTF file produced by cufflinks, cuffcompare, or other source.

Perform replicate analysis:

Perform cuffdiff with replicates in each group.

SAM or BAM file of aligned RNA-Seg reads:

12: Treated Tophat fo..cepted_hits -

SAM or BAM file of aligned RNA-Seq reads:

12: Treated Tophat fo..cepted_hits -

False Discovery Rate:

0.05

The allowed false discovery rate.

Min Alignment Count:

The minimum number of alignments in a locus for needed to conduct significance testing on changes in that locus observed between samples.

Perform quartile normalization:

Removes top 25% of genes from FPKM denominator to improve accuracy of differential expression calls for low abundance transcripts.

Perform Bias Correction:

No 🔻

Bias detection and correction can significantly improve accuracy of transcript abundance estimates.

Set Parameters for Paired-end Reads? (not recommended):

Execute

- Click on "NGS: RNA Analysis"
- 2. Click on "Cuffdiff"
- Default window with options appears

Cuffdiff

Cuffdiff (version 0.0.5) 22: Cuffmerge on data..transcripts A transcript GTF file produced by cufflinks, cuffcompare, or other source Perform replicate analysis: Perform cuffdiff with replicates in each group. Groups Group name (no spaces or commas): Replicates Replicate 1 Add file: 10: Control Tophat fo..cepted_hits Remove Replicate 1 Add new Replicate Remove Group 1 Group 2 Group name (no spaces or commas): Replicates Replicate 1 12: Treated Tophat fo..cepted_hits Remove Replicate 1 Add new Replicate Remove Group 2 Add new Group The allowed false discovery rate. Min Alignment Count: minimum number of alignments in a locus for needed to conduct significance testing on changes in that locus observed between samples. Perform quartile normalization: Removes top 25% of genes from FPKM denominator to improve accuracy of differential expression calls for Perform Bias Correction: Bias detection and correction can significantly improve accuracy of transcript abundance estimates. Set Parameters for Paired-end Reads? (not recommended):

- 1. Choose GTF transcript file from either Cuffmerge or Cuffcompare
- 2. Perform replicate analysis:
 - a) Choose "Yes"
 - b) Click "Add new Group"
 - c) Select a name to give the Group
 - d) Choose TopHat accepted hits file associated with this Group
 - e) If you have more than one TopHat accepted hits file associated with this Group, then click "Add new Replicate"
 - f) Click "Add new Group"
 - g) Select a name to give the Group
 - h) Choose TopHat accepted hits file associated with this Group
 - i) If you have more than one TopHat accepted hits file associated with this Group, then click "Add new Replicate"
 - j) Click "Add new Group" if you have another Group you want to add
- 3. Select a False Discovery Rate cutoff
- 4. Select the minimum # of reads that will align to a locus in order to perform significant testing
- 5. Perform quartile normalization (for this demo, choose "No")
- Perform bias correction (for this demo, choose "No")
- 7. Click "Execute"

Cuffdiff output files

You can check the status of queued jobs and view the resulting data by refreshing the History pane. When the job has been run the status will change from

'running' to 'finished' if completed successfully or 'error' if problems were encountered.

Unnamed history 482.8 Mb 33: Cuffdiff on data ● Ø 🛭 12, data 10, and data 22: transcript FPKM tracking 32: Cuffdiff on data ● Ø 🛭 12, data 10, and data 22: transcript differential expression testing 12, data 10, and data 22: gene FPKM tracking 30: Cuffdiff on data ● Ø 🛭 12, data 10, and data 22: gene differential expression 29: Cuffdiff on data ● Ø 🛭 12, data 10, and data 22: TSS groups FPKM tracking expression testing 27: Cuffdiff on data ◆ Ø X 12, data 10, and data 22: CDS FPKM tracking 26: Cuffdiff on data ● Ø 🛭 12, data 10, and data 22: CDS FPKM differential 12, data 10, and data 22: CDS overloading diffential expression testing 12, data 10, and data 22: promoters differential expression testing splicing differential expression testing

Transcript differential expression testing output

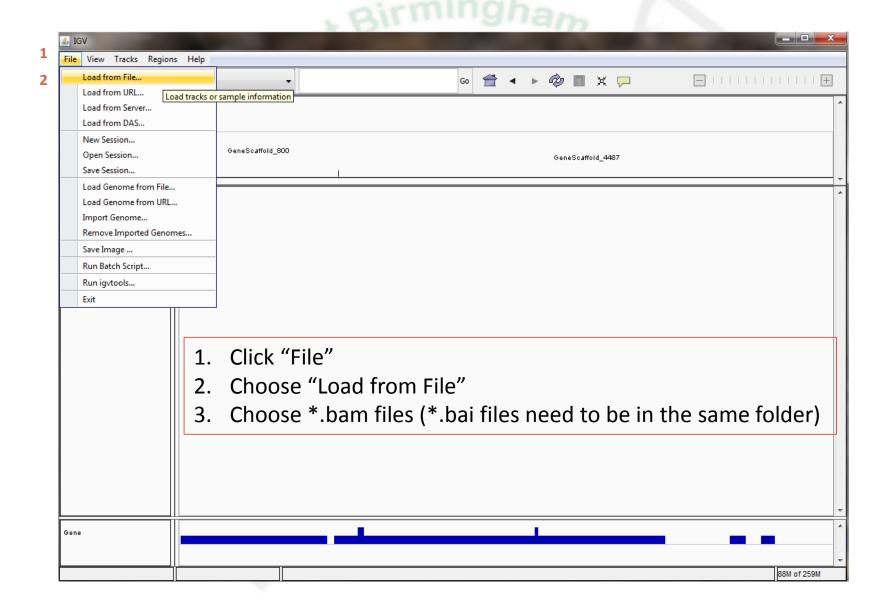
test_id

TCONS_00000001	XLOC_000001	OR4F5	chr1:69090-70008	Control	Treated	NOTEST	0	7.91888	1.79769e+308	1.79769e+308	0.369441	1	no	
TCONS_00000002	XLOC_000002	LOC100132062	chr1:323891-328581	Control	Treated	OK	6512.86	50.1428	-7.0211	4.36714	1.25886e-05	0.000667762	yes	
TCONS_00000003	XLOC_000002	LOC100133331	chr1:323891-328581	Control	Treated	OK	40727.9	1208.59	-5.07462	3.12382	0.00178519	0.0157435	yes	Į.
TCONS_00000004	XLOC_000003	OR4F29	chr1:367658-368597	Control	Treated	NOTEST	120.192	11.5757	-3.37617	0.827381	0.408021	1	по	
TCONS_00000005	XLOC_000004	LOC643837	chr1:763015-791316	Control	Treated	OK	0	1136.01	1.79769e+308	1.79769e+308	0.0959697	0.130354	по	
TCONS_00000006	XLOC_000004	LOC643837	chr1:763015-791316	Control	Treated	LOWDATA	0	0	-1.79769e+308	0	1	1	по	
TCONS_00000007	XLOC_000005	SAMD11	chr1:861120-894687	Control	Treated	NOTEST	0	165.375	1.79769e+308	1.79769e+308	0.0784572	1	по	
TCONS_00000008	XLOC_000006	KLHL17	chr1:895863-901099	Control	Treated	OK	0	935.161	1.79769e+308	1.79769e+308	0.0958257	0.130354	по	
TCONS_00000009	XLOC_000006	KLHL17	chr1:895863-901099	Control	Treated	OK	0	1552.38	1.79769e+308	1.79769e+308	0.098175	0.130354	по	
TCONS_00000010	XLOC_000006	KLHL17	chr1:895863-901099	Control	Treated	OK	0	653.036	1.79769e+308	1.79769e+308	0.0842346	0.130354	по	
TCONS_00000011	XLOC_000007	PLEKHN1	chr1:901876-917473	Control	Treated	OK	.0	259.895	1.79769e+308	1.79769e+308	0.0782193	0.130354	по	
TCONS_00000012	XLOC_000007	PLEKHN1	chr1:901876-917473	Control	Treated	NOTEST	0	0	0	0	1	1	по	
TCONS_00000013	XLOC_000007	PLEKHN1	chr1:901876-917473	Control	Treated	OK	.0	366.221	1.79769e+308	1.79769e+308	0.077757	0.130354	по	
TCONS_00000014	XLOC_000007	PLEKHN1	chr1:901876-917473	Control	Treated	NOTEST	0	0	0	0	1	1	по	
TCONS_00000015	XLOC_000008	ISG15	chr1:948846-949919	Control	Treated	OK	.0	6611.59	1.79769e+308	1.79769e+308	0.0677355	0.130354	по	
TCONS_00000016	XLOC_000009	AGRN	chr1:955502-991492	Control	Treated	OK	0	27000.8	1.79769e+308	1.79769e+308	0.215057	0.219233	по	
TCONS_00000017	XLOC_000010	LOC254099	chr1:1072396-1079434	Control	Treated	NOTEST	0	0	0	0	1	1	no	
TCONS_00000018	XLOC_000011	MIR.200B	chr1:1102483-1102578	Control	Treated	NOTEST	0	0	0	0	1	1	no	
TCONS_00000019	XLOC_000012	MIR200A	chr1:1103242-1103332	Control	Treated	NOTEST	0	0	0	0	1	1	по	
TCONS_00000020	XLOC_000013	MIR429	chr1:1104384-1104467	Control	Treated	NOTEST	0	0	0	0	1	1	по	
TCONS_00000021	XLOC_000014	TTLL10	chr1:1109285-1133313	Control	Treated	NOTEST	0	0	0	0	1	1	по	
TCONS_00000022	XLOC_000014	TTLL10	chr1:1109285-1133313	Control	Treated	NOTEST	0	0	0	0	1	1	по	

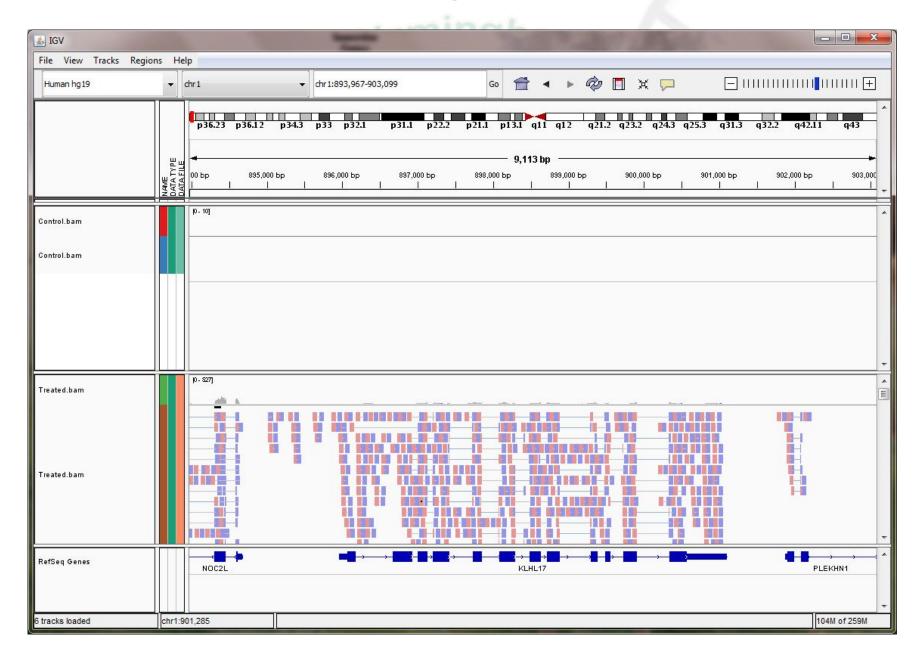
value_1

value_2 log2(fold_change)

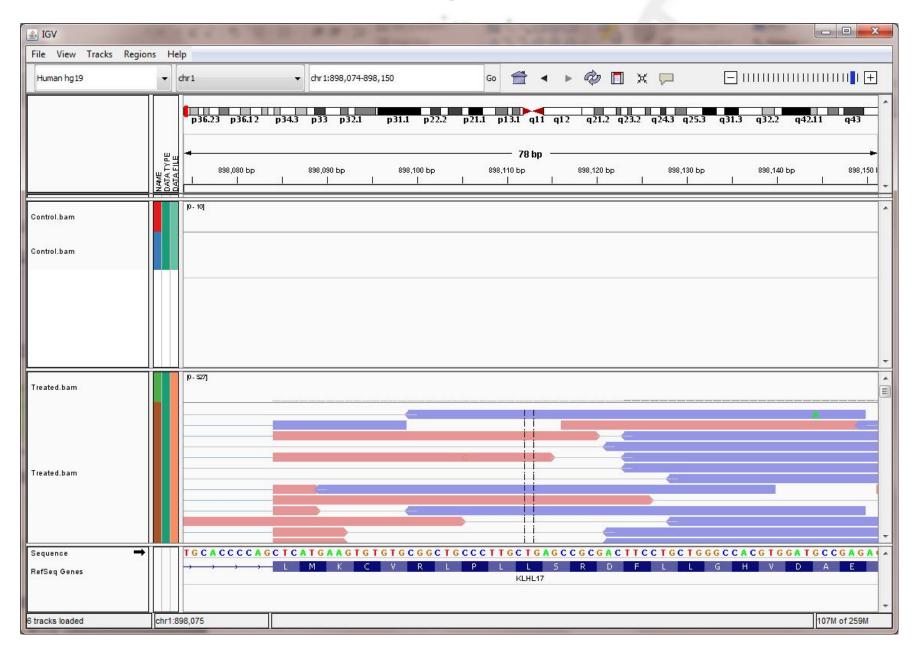
q_value significant


Gene differential expression testing output													
test_id	gene_id	gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat	p_value	q_value	significant
XLOC_000001	XLOC_000001	OR4F5	chr1:69090-70008	Control	Treated	NOTEST	0	7.91888	1.79769e+308	1.79769e+308	0.369441	1	no
XLOC_000002	XLOC_000002	LOC100132062,LOC100133331	chr1:323891-328581	Control	Treated	OK.	47240.8	1258.73	-5.22999	3.58623	0.00033549	0.00357856	yes
XLOC_000003	XLOC_000003	OR4F29	chr1:367658-368597	Control	Treated	NOTEST	120.192	11.5757	-3.37617	0.827381	0.408021	1	no
XLOC_000004	XLOC_000004	LOC643837	chr1:763015-791316	Control	Treated	OK	0	1968.53	1.79769e+308	1.79769e+308	0.0161068	0.0355459	yes
XLOC_000005	XLOC_000005	SAMD11	chr1:861120-894687	Control	Treated	NOTEST	0	165.375	1.79769e+308	1.79769e+308	0.0784572	1	no
XLOC_000006	XLOC_000006	KLHL17	chr1:895863-901099	Control	Treated	OK	0	3140.58	1.79769e+308	1.79769e+308	0.00733214	0.0213299	yes
XLOC_000007	XLOC_000007	PLEKHN1	chr1:901876-917473	Control	Treated	OK	0	626.115	1.79769e+308	1.79769e+308	0.0132232	0.0313439	yes
XLOC_000008	XLOC_000008	ISG15	chr1:948846-949919	Control	Treated	OK	0	6611.59	1.79769e+308	1.79769e+308	0.0677355	0.0852164	no
XLOC_000009	XLOC_000009	AGRN	chr1:955502-991492	Control	Treated	OK	0	27000.8	1.79769e+308	1.79769e+308	0.215057	0.218471	no
XLOC_000010	XLOC_000010	LOC254099	chr1:1072396-1079434	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000011	XLOC_000011	MIR200B	chr1:1102483-1102578	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000012	XLOC_000012	MIR2DDA	chr1:1103242-1103332	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000013	XLOC_000013	MIR429	chr1:1104384-1104467	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000014	XLOC_000014	TTLL10	chr1:1109285-1133313	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000015	XLOC_000015	B3GALT6	chr1:1167628-1170420	Control	Treated	OK:	0	1211.76	1.79769e+308	1.79769e+308	0.0668946	0.0852164	no
XLOC_000016	XLOC_000016	SCNN1D	chr1:1215815-1227409	Control	Treated	NOTEST	0	74.5236	1.79769e+308	1.79769e+308	0.0721728	1	no
XLOC_000017	XLOC_000017	PUSL1	chr1:1243993-1260046	Control	Treated	OK:	0	2317.82	1.79769e+308	1.79769e+308	0.0649866	0.0852164	no
XLOC_000018	XLOC_000018	GLTPD1	chr1:1260142-1264276	Control	Treated	OK	0	1597.74	1.79769e+308	1.79769e+308	0.0669804	0.0852164	no
XLOC_000019	XLOC_000019	TAS1R3	chr1:1266725-1269844	Control	Treated	NOTEST	0	31.2299	1.79769e+308	1.79769e+308	0.0912112	1	no
XLOC_000020	XLOC_000020	LOC148413	chr1:1334909-1342693	Control	Treated	OK	0	2591.73	1.79769e+308	1.79769e+308	0.101067	0.109708	no
XLOC_000021	XLOC_000021	TMEM888	chr1:1361507-1363167	Control	Treated	NOTEST	0	0	0	0	1	1	no
XLOC_000022	XLOC_000022	VWA1	chr1:1370902-1378262	Control	Treated	NOTEST	0	4.59925	1.79769e+308	1.79769e+308	0.230105	1	no
XLOC_000023	XLOC_000023	ATAD3C	chr1:1385068-1405538	Control	Treated	OK	0	270.979	1.79769e+308	1.79769e+308	0.0615518	0.0852164	no
XLOC_000024	XLOC_000024	ATAD3B	chr1:1407163-1431582	Control	Treated	OK	0	9725.9	1.79769e+308	1.79769e+308	0.0932631	0.106586	no
XLOC_000025	XLOC_000025	ATAD3A	chr1:1447522-1470067	Control	Treated	OK	0	15128.3	1.79769e+308	1.79769e+308	0.125562	0.131737	no
XLOC_000026	XLOC_000026	MIB2	chr1:1550794-1565990	Control	Treated	OK	0	1139.11	1.79769e+308	1.79769e+308	0.00159396	0.00822516	yes

Contents

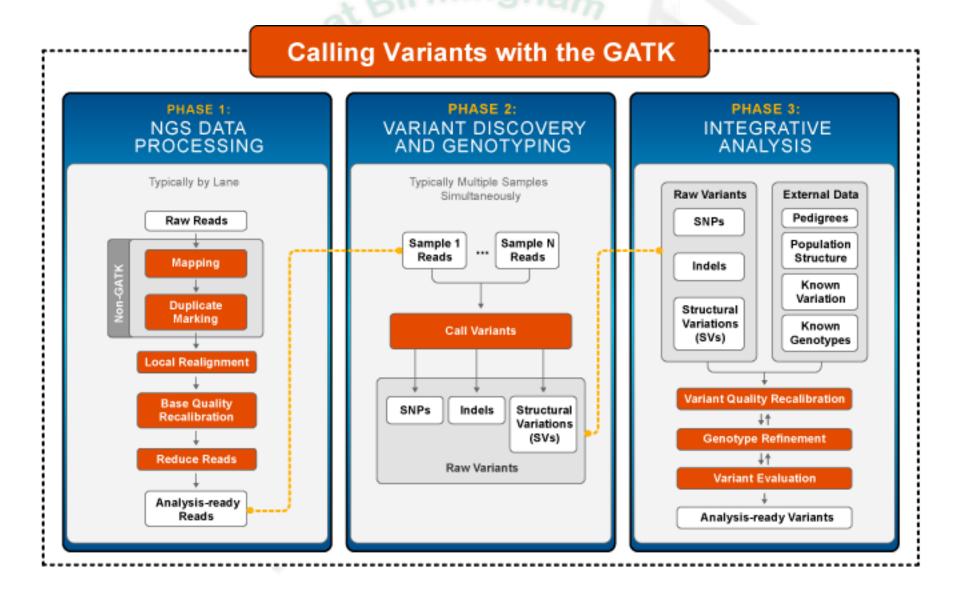

Heflin Center for

- FASTQ anatomy
- RNA-Seq demo
- Genomics Viewer (IGV) demo
- Whole Genome/Exome demo
- References and web links


Load aligned BAM files into IGV

IGV

IGV



Contents

Heflin Center for

- FASTQ anatomy
- RNA-Seq demo
- Genomics Viewer (IGV) demo
- Whole Genome/Exome demo
- References and web links

Whole Genome/Exome GATK pipeline

GATK Best Practices

(http://www.broadinstitute.org/gatk/)

Best Practice Variant Detection with the GATK v4, for release 2.0

3

There are 18 comments on this article. To see them or add your own, read this post on the forum >

Introduction

1. The basic workflow

Our current best practice for making SNP and indel calls is divided into four sequential steps: initial mapping, refinement of the initial reads, multi-sample indel and SNP calling, and finally variant quality score recalibration. These steps are the same for targeted resequencing, whole exomes, deep whole genomes, and low-pass whole genomes. Example commands for each tool are available on the individual tool's wiki entry. There is also a list of which resource files to use with which tool.

Note that due to the specific attributes of a project the specific values used in each of the commands may need to be selected/modified by the analyst. Care should be taken by the analyst running our tools to understand what each parameter does and to evaluate which value best fits the data and project design.

2. Lane, Library, Sample, Cohort

There are four major organizational units for next-generation DNA sequencing processes that used throughout this documentation:

- Lane: The basic machine unit for sequencing. The lane reflects the basic independent run of an NGS machine. For Illumina machines, this is the physical sequencing lane.
- Library: A unit of DNA preparation that at some point is physically pooled together. Multiple lanes can be run from aliquots from the same library. The DNA library and its preparation is the natural unit that is being sequenced. For example, if the library has limited complexity, then many sequences are duplicated and will result in a high duplication rate across lanes.
- Sample: A single individual, such as human CEPH NA12878. Multiple libraries with different properties can be constructed from the original sample DNA source. Here we treat samples as independent individuals whose genome sequence we are attempting to determine. From this perspective, tumor / normal samples are different despite coming from the same individual.
- Cohort: A collection of samples being analyzed together. This organizational unit is the most subjective and depends intimately on the
 design goals of the sequencing project. For population discovery projects like the 1000 Genomes, the analysis cohort is the ~100 individual
 in each population. For exome projects with many samples (e.g., ESP with 800 EOMI samples) deeply sequenced we divide up the
 complete set of samples into cohorts of ~50 individuals for multi-sample analyses.

This document describes how to call variation within a single analysis cohort, comprised for one or many samples, each of one or many libraries that were sequenced on at least one lane of an NGS machine.

Note that many GATK commands can be run at the lane level but will give better results seeing all of the data for a single sample or even all of

GATK (beta) on Galaxy

NGS: GATK Tools (beta)

ALIGNMENT UTILITIES

- Depth of Coverage on BAM files
- Print Reads from BAM files

REALIGNMENT

- Realigner Target Creator for use in local realignment
- Indel Realigner perform local realignment

BASE RECALIBRATION

- Count Covariates on BAM files
 - <u>Table Recalibration</u> on BAM files
- Analyze Covariates draw plots

GENOTYPING

 Unified Genotyper SNP and indel caller

ANNOTATION

Variant Annotator

FILTRATION

- Variant Filtration on VCF files
- 11 Select Variants from VCF files

 VARIANT QUALITY SCORE
 RECALIBRATION
- 8 Variant Recalibrator
- 9 Apply Variant Recalibration

VARIANT UTILITIES

- Validate Variants
- Eval Variants
- 10 Combine Variants

Basic Steps* (options are up to you):

- 1. BWA alignment
- 2. Mark duplicates (Picard)
- 3. Realigner Target Creator
- 4. Indel Realigner
- 5. Base Recalibrator (Count Covariates)
- 6. Print Reads
- 7. Unified Genotyper (new in Ver2 is Haplotype Caller) (SNPs and Indels done separately)
- 8. Variant Recalibrator (SNPs and Indels done separately)
- 9. Apply Recalibration (SNPs and Indels done separately)
- 10. Combine Variants
- 11. Select Variants
- 12. Compare/contrast variants
- 13. snpEFF

^{*} This follows the **basic** pipeline shown 2 slides ago. Each project is different and may need additional tools to answer the biological question(s). Also, options for each tool will vary as well.

Contents

Heflin Center for

- FASTQ anatomy
- RNA-Seq demo
- Genomics Viewer (IGV) demo
- Whole Genome/Exome demo
- References and web links

References and web links

TopHat

- Trapnell C, Pachter L, Salzberg SL. <u>TopHat: discovering splice junctions with RNA-Seq</u>. <u>Bioinformatics</u> doi:10.1093/bioinformatics/btp120
- http://tophat.cbcb.umd.edu/

Bowtie

- Langmead B, Trapnell C, Pop M, Salzberg SL. <u>Ultrafast and memory-efficient alignment of short DNA sequences to the human genome</u>. <u>Genome Biol</u> 10:R25.
- http://bowtie-bio.sourceforge.net/index.shtml

Cufflinks

- Trapnell C, Williams BA, Pertea G, Mortazavi AM, Kwan G, van Baren MJ, Salzberg SL, Wold B, Pachter L. <u>Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation</u> <u>Nature Biotechnology</u> doi:10.1038/nbt.1621
- Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. <u>Improving RNA-Seq expression estimates by correcting for fragment bias Genome Biology</u> doi:10.1186/gb-2011-12-3-r22
- Roberts A, Pimentel H, Trapnell C, Pachter L.<u>Identification of novel transcripts in annotated genomes using RNA-Seq Bioinformatics</u> doi:10.1093/bioinformatics/btr355
- http://cufflinks.cbcb.umd.edu/

TopHat and Cufflinks protocol

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L.
 <u>Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks Nature Protocols</u> 7, 562-578 (2012) doi:10.1038/nprot.2012.016

IGV

http://www.broadinstitute.org/igv/

Thanks! Questions?

Contact info:

David K. Crossman, Ph.D.

Bioinformatics Director

Heflin Center for Genomic Science

University of Alabama at Birmingham

http://www.heflingenetics.uab.edu

dkcrossm@uab.edu