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ABSTRACT

The occurrence of phenotypic dependencies involving combinations of functionally variant loci
and/or external perturbation is called genetic interaction, which influences human disease in
largely unknown ways. Evolutionarily, genetic interaction contributes population phenotypic
variance that is subject to natural selection and underlies differential phenotypic robustness and
variable buffering of disease between individuals. Genomic mutant collections are a powerful
resource to quantify gene interaction globally for better predicting complex phenotypes across
different species and cell types. Cell proliferation is the fundamental fithess phenotype of single-
cell eukaryotes like S. cerevisiae, and it is resolved with highest precision by growth curves. To
promote growth curve analysis for the genomic library of ~ 6000 mutant S. cerevisiae strains, we
developed a time-lapse imaging instrument to monitor cell proliferation for over 60,000 cultures
per experiment. Data, fit (R? > 0.995) to a logistic growth curve model, yield cell proliferation
parameters (CPPs) to quantify genetic interactions rigorously and precisely. Custom software
automates generation and fitting of growth curves from cell array images, measurement of gene
interaction from CPPs, clustering of gene interaction profiles, and gene ontology enrichment to
compare differential buffering of perturbations. The approach is called quantitative high
throughput cell array phenotyping (Q-HTCP) with phenomic modeling. Growth curves are
obtained from serial imaging of dilute cultures spotted onto agar, via a custom robotic cell array
scanner integrated with a commercial robotic incubator and custom program logic control (PLC)
for experiment management and data organization. Cell array imaging enables visualization of raw
data to assess quality and directly examine selected spot cultures in a traditional way. The system
capacity is 189 arrays x 384-cultures/ array. Fine resolution of genetic interaction aids
identification of protein complexes and molecular pathways, and detection of relatively small or
subtle phenotypic effects that may be otherwise elusive in a disease-modeling context. Disease-
relevant perturbations explored thus far with Q-HTCP include response to chemotherapeutic
agents, quiescence maintenance in stationary phase (chronological survival), and modeling of
cystic fibrosis (CFTR) disease mutations in the yeast homolog, Yor1. The presentation shares
recent efforts to make Q-HTCP user friendly, requiring only limited technical skill, including a
standardized experimental structure to streamline analysis, assure quality control, and integrate
results from independent studies. The new Q-HTCP tools are illustrated here using a recent
publication that can be referenced for much greater biological depth and detail (see ref. 1).
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Figure 1. Overview of phenomic modeling and quantitative high throughput cell array phenotyping (Q-HTCP). The flow chart summarizes the
experimental pipeline that is described in greater technical detail and illustrated with example results throughout.

Robotic Imaging for Q-HTCP

» From PLC GUI terminal, create New Imaging Job
for YourExperiment

» Specify the imaging interval time for the
JobSchedule

» Set Activelob before adding new CellArrays to it
» Place CellArray on the EntryTransferStation

» The Phenomiclmager will transfer to
ImagingStation and then to
CytomatTransferStation

» Take care that cell arrays are entered into the
system in the expected order (See Fig. 1)

» Stop imaging when all cultures reach carrying
capacity; remove cell arrays from incubator and
control software

» Transfer ImageFolders to a new sub-directory
within the ExpJobs folder of the Q-HTCP analysis
software.

Figure 2. APhenomic Imager prototype is integrated with a Cytomat 6001 robotic incubator (ThermoFisher) for Q-HTCP data collection. (A) Acommercial robotic
incubator (Cytomat 6001, ThermoFisher) is (B) interfaced via custom program logic control (PLC) software with (C) a prototype imaging instrument, called the Phenomic
Imager for automated Q-HTCP image collection. The Phenomic Imager consists of an Entry Transfer Station (not pictured), where new cell arrays are manually placed to
enter the system. (D) An Epson robotic arm transfers cell arrays between the Entry Transfer Station and the (E) Imaging Stage, which is moved across a (F) Line Scanner
by a (G) a servomoter. (H) LED backlighting is used for illumination during imaging. When imaging is complete, the cell array is moved to the (I) Cytomat transfer station,
from where it is is shuttled to and from storage positions within the incubator by the Cytomat shovel and transfer system. The PLC creates an image folder for each new
cell array within the active Experiment Job. The cell arrays are imaged in intervals established at the time of the Job creation, and serial images are stored in each

designated folder until the Job is terminated by the user. Multiple Jobs can run concurrently. The max cell array capacity (for the 6001 model) is 189, but other models
have higher or lower capacity.

Phenomic Analysis Software
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RESULTS

EZview software: reviewing cell array image quality and inspecting individual spot cultures
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Figure 4. EZview software for visualizing cell array quality and spot culture data. Instructions for launching EZview are
provided at right. When the GUI is launched, the same experiment will appear in all three zones. Other experiments are loaded
by clicking (A) the ‘Exp’ button in a zone and navigating to ExpJobs/YourNewExperiment/Results/matResults/...v.mat. For the
experiment (See Fig. 1 for experiment definition) loaded in a given zone one can: (B) enter the time point (as an integer in the time
series of images for that array) for viewing; the timestamp for the image will also update in the display (T= # hrs). The scroll bar or
arrows below the entry can be used to change the time stamp for the zone; (C) enter the desired perturbation for viewing
(numbered according to order of ‘DrugMedia_’ file), and the media type will be displayed; (D) enter the parent cell array
(according to listing in ‘MasterPlate_’ file). Each image in an experiment has a unique combination of possible inputs from the
entries given in A-D, which appears in the (E) Image Area. (F) A heatmap of the CPPs (K or L) from the growth curve and fit of the
corresponding spot cultures is produced for each image displayed, and one can toggle between the “K/L” button above the
Heatmap Area to view either set of CPPs for the chosen cell array. Clicking the “P” button above the heatmap area will pop a new
window with an enlarged image, including a numerical heat scale, which can be saved as a pdf. Clicking on a spot culture or its
heatmap will generate a corresponding plot of all its data and the fitted growth curve in the (G) Growth Curve Area. Clicking on a
new spot will update the data in the growth curve area, and the curve will overlay on curves in the adjacent (H) Overlay Area. The
‘P’ button in the overlay area will pop up an enlarged image including a legend for all curves, which can be saved as a pdf. All
overlain curves can be removed from a zone by clicking on its (I) ‘Clear’ button. (J) The CPP area plots the CPP values (K, L, and r;
hollow circle markers) at all perturbation conditions for the current spot culture plotted in the growth curve area. The average
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Setup
Must complete EASY analysis first

Analyze

>MATLAB Editor>’Open’> navigate to
“QHTCP/EZview/EZviewGui.m”

>Click ”Run/PlayButton”

>Click ‘Change Folder”

>From the Directory Popup, navigate to
“QHTCP/ExpJobs/YourExperiment/Resul
ts/matResults/.... .mat” (see screenshot
below)

>Click ‘open’ and EZview GUI will launch

> [ StudiesQHTCP
> [ EZview
v [ ExpJobs
v 7 JH_24_0116_DoxoHLEG_ghtcp.demo
v [ Results2024-01-16v1
> I PTmats
> [ PrintResults

CPPs for the parental reference strain (blue line) are also plotted. (K) The active zone is indicated by red highlighting and can be Sl R

changed by clicking on a different zone. The ”RF Tab” pops up a table of all Reference Data for the experiment in the zone. (L) The
Gene Directory lists all genes in the experiment zone that is active. Click on a gene will update all other areas in the active zone.
Clicking the “Info” button at the top of the Gene Directory pops up information about the current gene. The “Gene/Orf” button

toggles the listing between genes and ORFs.
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StudiesQHTCP software: characterizing phenomic profiles and differential genetic buffering

Setup

v I QHTCP.demo
v 77 StudiesQHTCP
StudiesDataArchive.txt

» Create a new subdirectory in the StudiesQHTCP folder by copying and renaming the template > B TEMPLATE_2copy_rename_devery_new_

» Provide Experiment Names for Labeling by entering them in the StudiesQHTCP/YourStudy/Code/Studylnfo.csv file
» Run the ExpFrontend.m script from within each Exp folder to create an entry in the DataArchive.

Analyze

» Runthe Z_InteractionTemplate.R script from the Code folder
» Run REMc/GOtermFinder, GTA-Pairwise Comparison(s), and generate TermSpecificHeatmaps
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Figure 5. ‘StudiesQHTCP’ is a software pipeline run from shell scripts to streamline and automate Q-HTCP workflows. EASY software produces a ‘!!ResultsStd_’ file,
with CPPs derived from the image analysis and fitting, labeled with the experiment design information about the strains (‘MasterPlate_’ file) and perturbations
(‘DrugMedia_’); this stage of the analysis occurs in the ‘ExpJobs’ directory. StudiesQHTCP software allows for comparison of phenomic profiles from 2 - 4 different
experiments. The setup for a study is to provide labels for the experiments to easily distinguish them in study outputs, and to import the ‘!!ResultsStd_’ files for the respective
experiments. After setup, running the ‘Z_InteractionTemplate.R script will produce Interaction Z-scores for all experiment folders containing a ‘!!ResultsStd_’ file, along with
additional files including and Interaction Plot for every gene, Rank Plots of interactions for all genes, and quality control results to assess CPP distributions across all cell
arrays (see Fig. 1). The resulting ‘Zscoreslnteraction.csV’ file for each experiment is called by additional scripts for clustering (Recursive Expectation-Maximization clustering;
REMc), Gene Ontology enrichment, and production of heatmaps for visualizing gene interaction patterns and genetic modules.

Interaction Z-scores are calculated from CPP response to perturbation intensity
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Interaction Z-scores from a genomic library of yeast mutants provide a global view of genetic buffering
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Figure 6. Growth curves yield cell proliferation parameter/phenotypes
(CPPs), which are used to calculate genetic interactions and assess
genetic buffering networks. (A-D) Spot culture image density over time is
converted to CPP values by fitting to a logistic growth equation (see Fig. 1) for
768 replicate cultures of the parental reference strain. Example interaction
plots are inset below C. (E-F) Distributions of CPPs are shown for the entire
yeast knockout library, under (E) glycolytic or (F) respiratory metabolic
conditions. (G-H) Genetic interactions are calculated for each gene deletion
strain by comparing the CPP response of the deletion strain to that of the
reference strain medians across all doxorubicin concentrations, which can be
viewed as (G) rank plot distributions or (H) a scatterplot comparing genetic
interactions in a Warburg context (i.e., glycolytic vs. respiratory metabolism).
Exacerbating/enhancing interactions have a positive value for L, and negative
for K, and alleviating/suppressing interactions have a negative value for L and
positive for K. See the inset below panel C for interaction plots.
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Yeast phenomic model for the influence of Warburg metabolism on
doxorubicin-gene interaction. Shaded areas indicate influences that are
relatively Warburg-dependent, being red or green if their effects are
relatively specific to a respiratory or glycolytic context, respectively.
Processes that influence doxorubicin cytotoxicity in a more Warburg-
independent manner are unshaded. Arrowheads indicate processes for
which genes predominantly transduce doxorubicin toxicity, based on their
loss of function suppressing its growth inhibitory effects. Conversely, a
perpendicular bar at the line head indicates a process that buffers
doxorubicin toxicity, as genetic compromise of its function enhances the
growth inhibitory effects of doxorubicin.

GO annotations associated with deletion enhancement or suppression of doxorubicin cytotoxicity, with respect to Warburg-dependence. Representative GO terms
are listed, which were identified by REMc/GTF (orange), GTA (purple), or both methods, for HLD (left, red), HLEG (right, blue), or both media types (black), and for
enhancement (above dashed line) or suppression (below dashed line) of doxorubicin cytotoxicity. Distance above or below the horizontal dashed line indicates the GTA
value for terms identified by REMc or the GTA score if identified by GTA. See Additional files 5 and 6, respectively, for all REMc and GTA results.

Figure 7. Assessment of differential buffering of doxorubicin toxicity by comparing phenomic profiles in fermentable and non-fermentable media to model the
Warburg phenomenon of cancer metabolism. (A-D) Significant interaction Z-scores (see Fig. 6) were combined and clustered by recursive expectation-maximization
clustering (REMc). ‘Shift’ refers to the effect on fitness of the deletion, without perturbation (e.g., ‘sick’ or ‘slow-growing’ mutants). ‘Int_z’ is the genetic interaction z-score.
First round clustering showed (A) deletion enhancers (negative K-interactions and positive L-interactions) and (B) deletion suppressors (negative L interactions). Second
round clustering showed more specific, detailed patterns of interaction for (C) enhancers and (D) suppressors, including those specific to one media type or common to
both types. (E) GOTermFinder (GTF) analysis was applied to all REMc clusters, GoTermAveraging (GTA) was used to discover additional GO functions in the same 4
categories (not shown). Term Specific Heatmaps (TSH) were also useful to view interaction patterns for all genes assigned to a term (not shown, but see ref. 1). All are
automatically generated by the the StudiesQHTCP software. (F) GO functions were summarized and select findings (G) illustrated in model form.
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CONCLUSIONS 7/ FUTURE DIRECTIONS

Q-HTCP technology streamlines fitness profiling, via growth curves, to quantify genetic interaction globally and at
high resolution, thus enabling studies of genetic buffering of fitness perturbations using yeast mutant collections.

Q-HTCP has capacity to monitor growth curves for over 60,000 cultures per experiment.

The software system analyzes time series images of cell arrays and and fits spot culture data to a logistic growth
function to obtain cell proliferation parameter phenotypes (CPPs), which are in turn used for calculating genetic
interaction z-scores for all genes, i.e., a phenomic profile.

Phenomic profiles are compared using clustering, heatmap visualization, and Gene Ontology info.

In this way, high resolution phenomic profiles can be obtained for any drug perturbation, or for gene-gene interaction.

Select human diseases can be modeled in yeast by obtaining phenomic profiles for disease-relevant perturbations to
generate hypotheses about genetic buffering for subsequent testing in a targeted manner directly in a human cell or
animal model. Combinations of perturbations can be compared to model disease context and differential buffering.

Q-HTCP is designed for relative simplicity, e.g., for use by undergraduate-level students.

The Q-HTCP enhancements presented facilitate transparency by simplifying the sharing and analysis of raw image
data across labs. EZview is an additional visualization tool to explore cell array image quality and growth curve data.

Q-HTCP provides a high-quality standard for fitness data that is scalable and could enable aggregating high
resolution genetic interaction data across different laboratories, enhance data sharing and increase the rigor,
reproducibility, expansion and integration of phenomic models.
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