Multidisciplinary Molecular Interaction Core (MMIC) Facility

Shelby Biomedical Research Building (SHEL) 420

MMIC Information

Director: Randall S. Davis, MD Manager: Edlue. M. Tabengwa, PhD

Contact: 975-0963; tabengwa@uab.edu Web: http://www.uab.edu/medicine/mmic/

Introduction

- The MMIC facility provides use of a GE Biacore T200 instrument (http://www.biacore.com) which employs surface plasmon resonance (SPR) technology for monitoring biomolecular binding interactions.
- The instrument has the capacity to provide comprehensive real-time information without the use of labels

Biacore T200 technology

Key Features

Capable of analyzing a wide range of molecular interactions

- Proteins
- · Lipid & membrane associated molecules
- Low MW compounds (100-1000 Da)
- Whole cell cells
- Viruses/bacteria

Can be applied to understand biological functions

Specificity analysis

Is the molecule of interest specific to its target?

· Concentration analysis

How much of the product of interest is in a sample?

How strong is the binding between molecules of interest?

Kinetic analysis

How fast does binding association or dissociation occur?

· Thermodynamic analysis

Is the interaction of molecules temperature dependent?

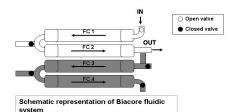
Advantages of the Biacore T200

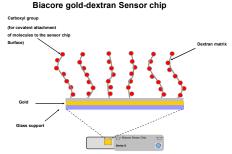
Label–free

Measures/defines binding of unlabeled molecules

Real-time

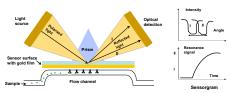
Binding characteristics (on- and off-rates) observed in real-time


Weak and fast interactions can be studied


Directly measures opaque samples without compromise of sensitivity or accuracy

Biacore T200 Components

Integrated fluidic cartridge (IFC)


- · The Biacore T200 IFC is optimized for the highest quality kinetics
- . The system has 4 flow cells connected in pairs (FC1-FC2, FC3-FC4)
- · However, flow cells can be run single, pair-wise or serially
- · Pair-wise runs give good reference subtraction
- · The system requires low volume reagents

How the SPR System Works

- · Measures changes in refractive index
- Measurements depend on concentration and temperature
- . 1 Resonance unit (RU) is equivalent to a change in surface concentration of approximately 1 pg/mm2 (proteins on a sensor ship)

Schematic representation of SPF

Biacore Assay Steps

Surface preparation mmobilization of the ligand to the Sensor Chip)

Sample (analyte) injection

Regeneration

Data evaluation

Terminology

Ligand: molecule to be immobilized on the sensor chip

Analyte: sample to be injected over the chip surface for analysis

Surface preparation-ligand immobilization

· Direct ligand immobilization Covalent chemistry Heterogeneous orientation Requires high binding capacity

Examples: -Thiol coupling Maleimide coupling Aldehyde coupling

Selectively capture from crude samples

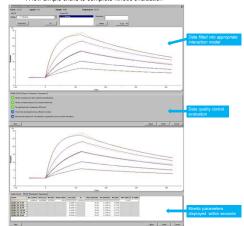
Examples -Streptavidin-Biotin Anti-mouse IgG-MAb Anti-GST-GST NTA-6HIS Anti-FAG-FLAG

Sample injection

Low binding capacity required

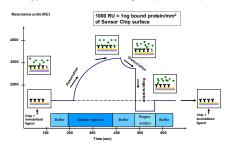
Capture approach

Orientation specific


- The sample is injected over the chip surface with immobilized ligand at a constant
- The analyte from the sample binds to the immobilized ligand resulting in a change
- · Continued buffer flow allows monitoring of the analyte dissociation from the ligand

Regeneration

- The bound analyte is completely removed from the ligand
- Can be achieved by use of buffers with changes in pH, salt, or detergents
- · After regeneration the immobilized ligand is maintained on the chip surface, with
- · To achieve high quality data effective regeneration is essential


Data evaluation

- · Flexible evaluation software for data analysis
- Software has quality control tools for guidance on data quality and validity A few simple clicks to complete kinetic evaluation

Biacore Assay Steps (cont)

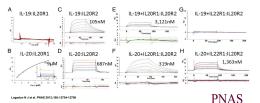
Typical Interaction Sensorgram (RU vs. time)

Conclusions

Use of the Biacore T200 can provide comprehensive information from one system

Analyzes molecular interactions in real time and obtain a wide range of critical binding-related data

Biacore data is included in over 20,000 publications


Publications include basic and applied research in the following fields:

- Neurobiology
- Immunology
- Infectious diseases Functional proteomics
- Cell signaling
- Vaccines
- Drug discovery
- Selection and characterization of binding reagents

Selected MMIC-related Publications(out of 23)

- Shea LK, Honjo K, Redden DT, Tabengwa E, Li R, Li FJ, Shakhmatov M, Chiorazzi N, Davis RS. Fc recepto
- Iske 2 (F-KH2.) is a nowel marker of low-risk CLL and refines prognostication based on ISHV mutation stat. Blood Cancer J. 2019 May 15(5)(6)(7-RMID: PMD: 3002813_RMCID: PMC6502098 Harris BD, Schreiter J, Chewier M, Jordan JL, Walker MR, Human interferon-a and interferon-a children or continuous potency and low affinity for cell-surface IFNAR and the poxirus antagonist BISR. J Biol Chem. 2018 Oct 12:293(41):10657-10698. PMID: PMID: 30171073_RMCID: PMC6197621
- Pillai VG, Bao J, Zander CB, McDaniel JK, Chetty PS, Seeholzer SH, Bdeir K, Cines DB, Zheng XL, Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of in TTP, Blood, 2016 July7:128(1):110-9, PMID: 27207796; PMCID: PMC4937355
- Sun J, Siroy A, Lokareddy RK, Speer A, Doornbos KS, Cingolani G, **Niederweis M**. The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD. Nat Struct Mol Biol. 2015 Sep;22(9):672-8. PMID:
- Sharifov OF, Xu X, Gaggar A, Tabengwa EM, White CR, Palgunachari MN, Anantharamaiah GM, Gupta H. L-4F inhibits lipopolysaccharide-mediated activation of primary human neutrophils. Inflammation. 2014
- 7. Logsdon NJ, Deshpande A, Harris BD, Rajashankar KR, Walter MR. Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12704-9. PMID: 22802649; PMCID: PMC3412030
- 8. Logsdon NJ, Eberhardt MK, Allen CE, Barry PA, Walter MR, Design and analysis of rhesus cytomegalovirus IL 10 mutants as a model for novel vaccines against human cyto 2011;6(11):e28127. PMID: 22132227; PMCID: PMC3221699

Figure from a MMIC-related publication IL19/IL-20 receptor interactions and complex stability

