
RESEARCH PLAN 
 

1. Specific Aims. Stroke mortality is increased by as much as 40% in the southeastern United 
States relative to the rest of the country, and this "Stroke Belt" has been recognized for more 
than 60 years. There is no consensus concerning the cause(s) of the Stroke Belt. 
Hypertension is the risk factor with the largest population attributable risk for stroke and shows 
potential clustering in the southeastern US based upon state-wide maps. Conclusive evidence 
for clustering of hypertension in this region has been unavailable, because the lack of directly 
measured blood pressure assessments in a nationwide cohort with substantial geographic 
heterogeneity has prevented the use of spatial statistics to properly address such a question. 
 
The REasons for Geographic and Racial Differences in Stroke (REGARDS) study recruited 
over 30,000 participants with directly measured hypertension data, which has often been 
limited to self-report in other nation-wide studies. The lack of directly measured hypertension 
data has limited the use of spatial methods to: (1) formally test for clustering of hypertension 
using individual-level data; or (2) create a statistically robust high-resolution map of 
hypertension risk. By leveraging the geographic heterogeneity of REGARDS participants' 
residential addresses and their coordinates, we can achieve both of these goals. We are 
hindered because REGARDS oversampled the Stroke Belt, which has plausibly higher rates of 
hypertension (called ‘preferential sampling’). Preferential sampling can bias estimates of 
disease rates for the whole population because of the disproportionately large number of 
cases in the sample compared to using simple random sampling. The overall goal of this 
project is to overcome this complication and formally evaluate and map hypertension risk for 
the continental US. We will pursue this overall goal with the following specific aims: 
 
Aim 1. Develop novel extensions for tests of disease clustering that perform well in the 
presence of preferential sampling. Hypothesis: Preferential sampling will cause tests for 
disease clustering to have incorrect power levels, and thus the tests will need modification. 
Aim 2. Create a high-resolution map of hypertension risk for the continental US. Hypothesis: A 
Bayesian hierarchical model will be effective for creating the map while handling the large 
dataset, the large area over which we are mapping hypertension risk, the heterogeneous data 
density, and the preferential sampling. 
 
The expected outcomes from this project are: (1) improved methods for testing for disease 
clustering in the presence of preferential sampling; and (2) a statistically robust map of 
hypertension risk for the continental US. New understanding of the nationwide patterns of 
hypertension risk could result in more efficient allocation of public health efforts in the fight 
against hypertension, potentially leading to the prevention of future strokes. 
 
2. Background and Significance 
 
2.1. Current knowledge about the Stroke Belt/Buckle. Stroke mortality is increased by as 
much as 40% in the Southeastern United States (Howard et al. 1995; Lanska 1993), and this 
"Stroke Belt" has been recognized for more than 60 years. (Borhani 1965). The Stroke Belt 
traditionally consists of North Carolina, South Carolina, Georgia, Tennessee, Alabama, 
Mississippi, Louisiana, and Arkansas. More recently a “Stroke Buckle” has also been identified, 
which appears to have higher rates of stroke mortality than even the rest of the Stroke Belt 
(Howard et al. 1997). The Stroke Buckle contains the coastal plains of North Carolina, South 
Carolina, and Georgia. There is no consensus concerning the cause(s) of the Stroke Belt or 



Buckle, although several hypotheses have been proposed and evaluated (Howard 1999). 
Traditional risk factors have explained only a minimal amount of the elevated stroke mortality 
in the Stroke Buckle and Belt, compared with the rest of the US (Howard 1999).  

 
One aim of the REGARDS study is to find the reasons for this 
geographic disparity in stroke mortality. To accomplish this goal, 
the study recruited participants from all over the continental US, 
but oversampled the Stroke Belt and Stroke Buckle regions in 
order to avoid having unstable stroke rate estimates in these 
areas of generally low population density [see Figure 1, which is 
reproduced from (Howard et al. 2011)]. Specifically, REGARDS 
recruited 35% of the participants from the Stroke Belt, 21% from 
the Stroke Buckle, and 44% from the rest of the continental US.  
 

An initial thought was that stroke incidence might be higher in the Stroke Belt and Buckle, thus 
creating higher rates of stroke mortality. Recently, people living in the Stroke Belt and Buckle 
have been found to have more strokes compared to people living in the rest of the US, but this 
increased stroke incidence is less pronounced than the increased stroke mortality (Howard et 
al. 2011). The reason(s) for people dying of strokes more often in southeastern US is still 
largely unknown. 
 
2.1.1. Current understanding of the geographic distribution of hypertension. 
Hypertension is the risk factor with the largest population attributable risk for stroke (Ohira et 
al. 2006), and it shows potential clustering in the Southeastern US, based upon maps using 

data aggregated at the state level, as shown in Figure 
2, called a chloropleth map (CDC 2011; Hall et al. 1997; 
Jones et al. 1999). Whether there is true geographic 
variation in hypertension risk over the entire US has not 
been formally investigated using the information 
available in point-level spatially referenced data. The 
REGARDS study has obtained point-level data on 
participants’ residential locations (i.e., latitude and 
longitude), creating an opportunity to analyze the 
geographic distribution of hypertension at a higher 
resolution than any previous study. By using the 
sampled locations of residential addresses, we can 
create a smoothed map that shows the geographic 
variation in hypertension at a fine scale, similar to the 
temperature map shown in Figure 3. 
 
2.1.2. Hypertension data in the REGARDS cohort. 
REGARDS recruited 30,239 participants from 2003 to 
2007, and continue to be followed every 6 months for 
suspected stroke events. During the baseline in-home 
visit, a trained health professional measured both 
systolic and diastolic blood pressure (each an average 
of two measurements). If systolic blood pressure was 
greater than or equal to 140 mmHg, diastolic blood 

Figure 3. High-resolution map of 
temperature (NOAA) 

Figure 2. State chloropleth map of 
hypertension awareness (CDC 2011) 

Figure 1. Map of REGARDS 
participant locations. 



pressure was greater than or equal to 90 mmHg, or the participant reported current use of 
blood pressure medication, the participant was labeled “hypertensive.” 
 
2.2. Objectives of spatial analyses. When studying the geographic distribution of diseases, 
there are two main goals: (1) testing whether risk for the disease varies across the region of 
interest; and (2) mapping the disease risk over the region by predicting risk at locations that 
were not sampled. The first goal is referred to as testing for disease clustering. In our case, 
tests for clustering would indicate whether risk for hypertension changes over geographic 
space. Formal statistical tests for clustering are useful because without them a simple map 
could be misleading. For example, readers of a map may not know whether displayed 
differences in risk in different regions were statistically different. Tests for disease clustering, 
using cases and controls, have been developed and are commonly implemented in public 
health research. These methods often assume random sampling of participant locations, and 
have both parametric and nonparametric implementations (Cuzick and Edwards 1990; Diggle 
and Chetwynd 1991; Moore and Carpenter 1999; Waller and Gotway 2004). 
 
Mapping disease risk by predicting risk at locations that were not sampled is also a well-
established procedure. It can be done by constructing a hierarchical model and using robust 
prediction methods in a framework called ‘model-based geostatistics’ (Diggle et al. 1998). 
These methods assume that no preferential sampling has occurred. 
 
2.3. The research problem. The problem of interest here is two-fold: (1) developing tests for 
disease clustering that perform well in the presence of preferential sampling; and (2) producing 
a high-resolution map of hypertension risk for the continental US. 
 
2.4. Gaps project will fill. A high-resolution map of hypertension risk for the continental US is 
currently unavailable to the stroke research community. We are also unsure whether 
preferential sampling of subregions in an epidemiologic study affects tests of disease 
clustering. This project will fill these two gaps. 
 
2.5. Importance and relevance of this project to stroke. The statistically robust map of 
hypertension risk will provide evidence for or against hypertension as a contributor to the 
presence of the Stroke Belt, as well as a mechanism for creating future maps for comparison. 
If hypertension does not appear to be significantly elevated in the Stroke Belt, it can be 
excluded as a potential cause of the Stroke Belt. If hypertension does appear to be elevated in 
the Stroke Belt, then mapping its risk will be the first step in providing evidence for 
hypertension as a cause of the Stroke Belt and/or Buckle. Our approach will also reveal 
geographic patterns in hypertension risk at a level of detail that is undetectable in state 
chloropleth maps. Such information could change how efficiently public health efforts are 
allocated in the fight against hypertension. Additionally, future studies investigating the 
geographic distribution of stroke or its risk factors might have to oversample certain areas to 
obtain stable estimates. The novel methodology developed in this research project could lead 
to more robust inference in these cases of oversampling compared to traditional methods, 
meaning policy-makers can make funding decisions that more reliably lead to the prevention of 
future strokes or treatment of its risk factors.  
 
3. Preliminary Study. To explore the feasibility of the proposed research, we conducted a 
pilot simulation study on the performance of the difference in K functions test of clustering. The 



methodology for the simulation reflects the overall methodology outlined in the analysis plan of 
section 4.1.1. 
 
3.1. Background of K function and statement of research problem. One measure of the 
variability in how many disease cases appear per unit area is the K function (Ripley 1976). The 
general form of the K function is the expected number of points within a given distance h of a 
randomly chosen point, divided by the overall expected density of points in the entire region of 
interest (also called the “intensity”). The K function was later used to develop a test for overall 
disease clustering, by comparing the difference in estimated K functions between a set of 
cases and a set of appropriate controls, at some specific distance h (hereafter referred to as 
the K test) (Diggle and Chetwynd 1991). One advantage of this type of test is that spikes in the 
number of cases in a region that are due solely to spikes in population density do not register 
as disease clustering. Only increases in the number of cases above and beyond increases in 
the number of controls will register as disease clustering, which makes sense given that areas 
with more people at risk will generally result in more cases, regardless of whether there is 
disease clustering at work. The K test will also indicate whether there is an unexpectedly small 
number of cases in some areas. A key assumption for the K test is that a stationary process 
generated the intensity of the number of points in the study region (Waller and Gotway 2004). 
If there is preferential sampling (oversampling of areas with expected higher numbers of 
disease cases), then this assumption is violated. It is unknown how the K test performs under 
preferential sampling. 
 
3.2. Simulation methodology. To perform a preliminary investigation of the performance of 
the K test under preferential sampling, and to demonstrate the feasibility of Aim 1, we used 
Monte Carlo methods to compare the rejection rate of the K test in four different conditions: (1) 
constant risk across the study region (null hypothesis), with random sampling; (2) constant risk 
across the study region (null hypothesis), with preferential sampling (or simply oversampling); 
(3) varying risk across the study region (alternative hypothesis), with random sampling; and (4) 
varying risk across the study region (alternative hypothesis), with preferential sampling. 
Evaluation of the K test under constant risk provided the empirical type 1 error rate, and 
evaluating it in the presence of varying risk provided the empirical power of the test. The 
assigned nominal type 1 error rate was 0.05, and the distance at which clustering was tested 
was half the length of one side of the square region of interest. Five hundred Monte Carlo 
simulations were performed, with simulated datasets of about 1,000 cases and about 1,000 
controls for each iteration of the 500 Monte Carlo simulations. Preferential sampling was done 
by sampling locations from a multinomial distribution with probabilities of being in three equally 
sized subregions of 20%, 30%, and 50%, respectively. When varying the risk of being a case 
across the region, the same subregions were used and probabilities of being a case were 
10%, 30%, and 60%, respectively. Therefore, in the preferential sampling case (condition 4), 

approximately 50% of the data points were sampled 
from the subregion with the highest risk of being a case 

(60%).  
 
3.3. Results. Table 1 shows the empirical rejection 
rates of the K test in all four situations. 
As seen in the table, preferential sampling did not 
appear to affect the type 1 error rate of the K test, as 
the empirical rejection rates were near the nominal 

type 1 error rate of 0.05. Differences between preferential sampling and random sampling are 

 No 
clustering 
(Null) 

Clustering 
(Alternative) 

Random 
Sampling 

0.054 0.566 

Preferential 
Sampling 

0.04 0.83 

Table 1. Results of preliminary simulation 



evident in the power for the rejecting the null hypothesis. Preferential sampling appears to 
provide much greater power to detect overall clustering when it exists compared to designs 
with random sampling. 
 
3.4. Discussion. The preliminary simulation study indicates: (1) preferential sampling affects 
the performance of the K test; and (2) we have the ability to complete the proposed research 
described in Aim 1. While in this specific case preferential sampling provided greater empirical 
power to the test, we do not know whether this increase correctly represented an increase in 
true power. There is still much to explore regarding the distance at which clustering should be 
tested and the intensity of the clustering. The low power of the test under random sampling 
was not worrisome because the test might not have been conducted at the scale at which the 
clustering truly existed. The main purposes of this preliminary simulation were to show 
plausibility of the hypothesis that preferential sampling can affect tests of disease clustering 
and that we can feasibly carry out the proposed work. 
 
We have no preliminary results addressing Aim 2 due to the increased computational burden 
involved. (The proposed models are fit using computationally intensive Markov Chain Monte 
Carlo algorithms and will require considerable computing time to complete.) I have completed 
didactic coursework in Bayesian methods and Bayesian disease mapping, which will assist in 
completion of Aim 2. Additionally, the consultant for this project, Dr. Lance Waller, has 
extensive experience in Bayesian hierarchical modeling of spatial data, which, in conjunction 
with the experience of other committee members, will provide me with the necessary 
assistance to successfully complete Aim 2. 
 
4. Research Design and Methods 
 
4.1. Develop novel extensions for tests of disease clustering that perform well in the 
presence of preferential sampling. This aim will have two components: (1) investigating the 
performance of three popular tests of disease clustering in the presence of preferential 
sampling; and (2) modifying the tests appropriately so that they achieve appropriate type 1 
error rates and power levels. 
 
4.1.1. Investigating the performance of three popular tests of disease clustering in the 
presence of preferential sampling. Testing for disease clustering is a key goal of any spatial 
analysis of disease. John Snow informally assessed clustering when investigating the 1854 
cholera epidemic in London (Snow 1855). In our study of hypertension, we are concerned with 
determining whether the risk for the disease varies over the region of interest, or clusters. 
While there are many different tests for disease clustering, we will concern ourselves with 
three popular ones: (1) a test which compares a summary statistic of the intensity function of 
the cases with a summary statistic of the intensity function of the controls (Wheeler 2007); (2) 
the K test (Diggle and Chetwynd 1991); and (3) the Cuzick-Edwards nearest neighbor test 
(Cuzick and Edwards 1990). These three tests have recently been compared in an empirical 
study of clustering of childhood leukemia rates in Ohio (Wheeler 2007). These three tests often 
assume random sampling of diseased and non-diseased participants, or at least that no 
preferential sampling occurred. Little is understood about how these three methods would 
perform when preferential sampling has occurred, such as in the REGARDS data set. 
Although the REGARDS study oversampled regions of specifically high stroke mortality, it is 
reasonable to expect from our knowledge of the relationship between hypertension and stroke 
that the Stroke Belt and Stroke Buckle have high rates of hypertension as well (Ohira et al. 



2006). The goal of this aim will be to evaluate the statistical performance of 3 tests of disease 
clustering in the presence of preferential sampling. 
 
Analysis plan. We will use Monte Carlo simulations to investigate the performances of the test 
of intensity functions, the K test, and the Cuzick-Edwards nearest neighbor test. The empirical 
rejection error rate will be calculated under the null hypothesis (constant risk or no clustering, 
which provides the empirical type 1 error rate) and the alternative hypothesis (nonconstant risk 
or clustering, which provides empirical power), in the presence of random sampling and 
preferential sampling. (Technically, preferential sampling under the null hypothesis would 
simply be oversampling.) Table 2 shows this analysis plan in tabular format. 
        Table 2. Conditions to simulate. 

Our simulated region will be roughly the size of the 
continental US, with the regions of preferential 
sampling to be located roughly at the Stroke Belt, 
Stroke Buckle, and the rest of the US, with sampling 
probabilities for the approximately 30,000 
observations that reflect the REGARDS dataset: 
20% in the Stroke Buckle, 35% in the Stroke Belt, 

and 45% from the rest of the US. This simulation will be implemented in the R programming 
language, with the added “sp” and “splancs” packages (Bivand et al. 2008; Pebesma and 
Bivand 2005; R Core Team 2013; Rowlingson and Diggle 1993). 
 
4.1.2. Modifying the tests appropriately so that they achieve appropriate type 1 error 
rates and power levels. Our goal will be to develop tractable and interpretable extensions of 
existing tests that are appropriate to use when preferential sampling has occurred. As was 
shown in the preliminary analysis (Section 3), preferential sampling can affect the estimated 
power of the K test. More exploration of how preferential sampling affects the theoretical 
underpinnings of these tests for disease clustering is needed to understand whether our 
estimated rejection rates reflected the true type 1 error or power. The general method of 
conducting all three of these tests is to randomly re-label all of the locations sampled as cases 
or controls, and then recalculate the test statistic (Waller and Gotway 2004). Under the null 
hypothesis of no disease clustering, the random labeling should not affect the value of the test 
statistic. We hypothesize that the random labeling process will have to be modified in order to 
accommodate the oversampling. Other options for modifications of the tests are weighting of 
the observations or introducing Bayesian methods into the test.  
 
4.2. Create a high-resolution map of hypertension risk for the continental US. There are 
many ways to create maps of a variable when that variable is continuous and is observed at 
point-level locations. An example of this situation is shown in Figure 3, where temperature is 
observed at each latitude and longitude location of the weather stations within the US. When 
the variable of interest is binary, such as in the case of disease status, then mapping becomes 
more complicated. The complication is that the surface we are interested in is not a surface of 
1’s and 0’s indicating disease status, but a surface of the probability of having hypertension at 
each location. In other words, the variable we are interested in is not the variable we directly 
observe. In these situations, the surface in which we are actually interested, but do not directly 
observe, is called a latent process (Diggle et al. 1998). Hierarchical models are often natural 
tools to use when investigating a latent process, which in our case is risk of hypertension. We 
will treat the individual observations (hypertensive or not) as independent of one another, but 
will accommodate a spatial correlation structure for the risk of hypertension (i.e., at the latent 
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process level). After the model is constructed, prediction of hypertension risk at new locations 
that were not observed is relatively straightforward. The goal will be to produce an overall map 
of hypertension risk (and associated prediction errors), as well as maps specifically for men, 
women, blacks, and whites. This aim will also have two steps: (1) construction of the 
hierarchical statistical model; and (2) prediction of hypertension risk for all locations on a pre-
specified fine grid that covers the continental US. 
 
4.2.2. Construction of the hierarchical model. The underlying hypothesis is that risk of 
hypertension, after accounting for systematic factors such as age, weight, sex, obesity, and 
race, varies smoothly with respect to geographical location. Such smoothness reflects effects 
of unobserved factors that vary from location to location (e.g., lifestyle). This type of smooth 
process can be modeled using spatial covariance functions that assume, a priori, that the risk 
of hypertension between two individuals decreases monotonically as geographic distance 
increases. We will model the risk of hypertension, ( )ip s , for the i-th individual at location is  

(here  si  is a vector of latitude and longitude coordinates), where   i = 1,...,n , with the following 
generalized linear mixed model: 
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 where iX  is a vector of relevant covariates (likely to be gender and race) for the i-th 
observation, β  is a vector of fixed effect parameters, ( )if s  is a function of the i-th location 
coordinates, µ  is a vector of fixed effect parameters for the function ( )if s , and   S(s

i
)  is a 

random effect of the spatial process at the i-th location. We usually assume that: (1)   S(⋅) is a 
Gaussian process with mean 0 and variance-covariance matrix  Σ(θ) , where Σ  is an n x n 
positive definite covariance matrix formed by evaluating a valid spatial covariance function 
(e.g., Matérn) at pairs of points in space, and θ  is a set of parameters indexing the covariance 
function; and (2) that the process that generated the locations ( si ) is stochastically 
independent of ⋅()S  [i.e., no preferential sampling (Diggle et al. 1998)].  
 
We have decided that a Bayesian framework will be appropriate for fitting the above model. 
We will determine appropriate prior distributions for all parameters in the model, which will then 
be used to fit the model using Markov Chain Monte Carlo methods. The final fitted model will 
provide posterior distributions of the model parameters. 
     
Challenges. The large number of observations in this dataset can create a computational 
burden. Solving for the likelihood of this model requires n3 computations, where n is the 
number of observations (approximately 30,000 in the REGARDS study) (Cressie and 
Johannesson 2008; Eidsvik et al. 2010; Fuentes 2007). Therefore, we will use specialized 
Markov Chain Monte Carlo (MCMC) methods. Another challenge is the mean risk for 
hypertension probably changes over the region, given the large size of the region of interest 
(the continental US). A spatial process with a constant mean, often called a stationary process, 
is a conventional assumption in model-based geostatistics. Inclusion of the   f (si

)  term will help 
to remove the mean effects at different locations and help satisfy the stationarity assumption. 
Third, the heterogeneous data density of REGARDS across the US can create prediction 
intervals for hypertension risk that are much wider in regions with fewer observations (e.g., the 
western part of the US compared to the eastern part of the US). Therefore, we shall use 



Bayesian methodology to “borrow” information from neighboring areas to improve local 
estimation. While it may seem strange to borrow information from a densely sampled region 
like North Carolina to inform estimates in a sparsely sampled region like Montana, the small 
sample size in Montana could lead to unreasonably variable/unstable risks. Bayesian methods 
are one way to alleviate the impact of the small sample sizes in these regions in a statistically 
robust manner. Finally, the preferential sampling will require joint modeling of the process that 
produced the sampled locations and the risk of hypertension, following previous suggestions 
for using model-based geostatistics in the presence of preferential sampling (Diggle et al. 
2010). 
 
4.2.3. Prediction of hypertension risk for all locations on a pre-specified fine grid that 
covers the continental US. Prediction of hypertension risk will be done by sampling from the 
posterior distribution of hypertension risk at locations on a pre-specified fine grid that covers 
the continental US, in order to provide a high-resolution map. The scale of the prediction grid 
will be no smaller than the shortest distance between two observed locations in the REGARDS 
data set.  
 
4.3. Limitations. No research is without limitations, and the proposed research has some that 
are worth noting. The proposed model requires several assumptions, including the choice of 
the functional form for fixed effects as well as the choice of co-variance function for the random 
effect.  Incorrect specification of any of these elements can lead to model misspecification. We 
will address this challenge by evaluating alternative specifications for the model and choosing 
a particular one using an appropriate model comparison criteria (e.g., AIC, BIC). A minor 
limitation of the proposed research is computational complexity, which requires extra time and 
resources to overcome. However, we believe that the benefits of using the methods we have 
proposed (e.g., Bayesian methods) outweigh the additional computational complexity they 
contribute to the project. 
 
4.4. Restriction of the study sample to blacks and whites. The REGARDS study was 
begun with two specific purposes: (1) to investigate potential causes of the geographic 
disparity in stroke mortality between the Stroke Belt, the Stroke Buckle, and the rest of the US; 
and (2) to investigate potential causes of the racial disparity in stroke mortality between blacks 
and whites (Howard et al. 2005; Tassone et al. 2009). We acknowledge that there are 
potentially other racial/ethnic disparities regarding stroke mortality, but they were not the 
subject of the research proposed by REGARDS. Thus, our study sample for this project is 
limited to blacks and whites of both genders. 
 
5. Ethical Aspects of the Proposed Research. As with any scientific research on human 
subjects, there are concerns about ethics. All of the Institutional Review Boards of the 
participating institutions in the REGARDS study approved the original research. Access to the 
REGARDS data is restricted to those with IRB approval to use the data. I have achieved and 
maintained both HIPAA and IRB training through the University of Alabama at Birmingham, 
and have obtained approval from the REGARDS executive committee to conduct this project. 
The scope of this project is within the realm of the consent form for the REGARDS study. This 
project also has specific ethical concerns. Location of participant residential addresses is 
potentially identifiable health data, and thus must be treated with care. When displaying the 
locations of participants in the REGARDS dataset, all locations will be randomly “perturbed” in 
order to conceal the real locations of the participants (Armstrong et al. 1999). 



TRAINING/CAREER GOALS 
 

Having lived in the Stroke Belt my whole life, I am committed to finding the source of our 
geographic disparity in stroke mortality. My overall goal for the fellowship period is to 
become an expert in the spatial distribution of hypertension in the continental US.  
 
This fellowship award will provide me with opportunities that would be unavailable otherwise, 
such as collaboration with an expert in spatial statistics (Dr. Lance Waller), training in the use 
of GIS, monetary support to present work at conferences devoted specifically to spatial 
statistics and conferences devoted specifically to cardiovascular disease, and support for time 
spent teaching workshops and/or courses on spatial statistics to biostatistics students and 
clinical/public health professionals. 
 
The award will help me gain the following skills: 

• learn the pathophysiology and deleterious effects of stroke; 
• identify, use, and evaluate appropriate analysis tools for spatially referenced datasets 

that are large (on the order of tens of thousands), have heterogeneous observation 
density across the region of interest, and violate traditional assumptions of geostatistical 
methods (e.g., constant mean across the region of interest); 

• develop tractable and interpretable statistical methodology in the context of stroke; and 
• manage and display spatially referenced data using geographical information systems 

(GIS). 
 
These skills describe a pipeline for conducting and disseminating independent research, and 
they will prepare me to continue on to my overall goals. 
 
My overall career goals are: (1) to understand the causes of stroke by collaborating with 
stroke experts to apply spatial statistics; and (2) to develop new spatial statistics methodology 
that helps answer complex research questions about cardiovascular diseases. Use of spatial 
statistics is not limited to the geographic scale, but can also be applied to a wide array of 
spatial scales, such as imaging. Moreover, the analytical skills gained during this fellowship 
have immediate applications to other areas of biomedical research where risk of disease 
differs according to geography. 
 
After graduation, I will pursue a postdoctoral fellowship with an expert in spatial statistics. 
While my first overall career goal is to perform applied research, a strong background in the 
theory of spatial statistics will prepare me to adapt to new, exciting, and complex spatial health 
problems. This postdoctoral position will eventually lead to an academic appointment, where I 
will continue to investigate causes of cardiovascular diseases in general, and stroke in 
particular. 


