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Preface

This is a (hopefully gentle) introduction to the beautiful field of Complex Analysis also
called the Theory of Functions.

Students will work on the material (Exercises and Theorems) and present their findings
in class. Exceptions are Theorems marked with a ✓ or a ♯. The former (✓) are considered
known from Calculus or their proofs are very similar to those of analogous theorems in
Calculus. The latter (♯) will be accepted without proof, their proofs are provided in graduate
courses.
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CHAPTER 1

The complex numbers

1.1. The algebra of complex numbers

Definition 1. The field of complex numbers, denoted by C, is obtained when two
operations, an addition and a multiplication, are introduced in R2, the set of all ordered
pairs of real numbers. The addition is

(a, b) + (c, d) = (a+ c, b+ d)

and the multiplication is
(a, b)(c, d) = (ac− bd, ad+ bc)

where a, b, c, d are arbitrary real numbers.
The real numbers a and b, which make up the complex number (a, b), are called its real

part and imaginary part , respectively. We use the notation Re z and Im z to denote the
real and imaginary parts of the complex number z. Note that even the imaginary part of a
complex number is a real number.

Exercise 1. Choose two complex numbers of your liking. Then add them and multiply
them. Identify real and imaginary parts of sum and product.

Theorem 1. Addition is associative, i.e., if a, b, c, d, f and g are real numbers so that
r = (a, b), s = (c, d), and t = (f, g) are complex numbers, then

(r + s) + t = r + (s+ t).

Consequently, we may write unambiguously r + s+ t.

Theorem 2. Addition is commutative, i.e., if a, b, c and d are real numbers so that
r = (a, b) and s = (c, d) are complex numbers, then

r + s = s+ r.

Theorem 3. The complex number (0, 0) is a neutral element of addition, i.e., for all
(a, b) ∈ C we have

(a, b) + (0, 0) = (a, b).

No other complex number is a neutral element of addition.

Theorem 4. If (a, b) is a complex number then the complex number, (−a,−b) is a
negative of (a, b), i.e.,

(a, b) + (−a,−b) = (0, 0).

No other complex number can serve as a negative of (a, b).

Theorem 5. Multiplication is associative, i.e., if a, b, c, d, f and g are real numbers so
that r = (a, b), s = (c, d), and t = (f, g) are complex numbers, then

(rs)t = r(st).

Consequently, we may write unambiguously rst.
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2 1. THE COMPLEX NUMBERS

Theorem 6. Multiplication is commutative, i.e., if a, b, c and d are real numbers so
that r = (a, b) and s = (c, d) are complex numbers, then

rs = sr.

Theorem 7. The complex number (1, 0) is a neutral element of multiplication, i.e., for
all (a, b) ∈ C we have

(a, b)(1, 0) = (a, b).

No other complex number is a neutral element of multiplication.

Exercise 2. Is there a complex number s such that rs = (1, 0) when r = (3, π)?

Theorem 8. Every complex number r ̸= (0, 0) has a unique reciprocal , i.e., there is one
and only one complex number s such that rs = (1, 0).

Theorem 9. Multiplication is distributive over addition, i.e., if a, b, c, d, f and g are
real numbers and r = (a, b), s = (c, d), and t = (f, g) are complex numbers, then

r(s+ t) = rs+ rt.

Notation 1. Let z and w be complex numbers and assume w ̸= (0, 0). We write −z
for the negative of z and w−1 = 1/w for the reciprocal of w. Instead of z(1/w) we write
z/w.

Definition 2. The complex number (0, 1) is called the imaginary unit and is denote
by i.

Theorem 10. Let a and b be real numbers. Then

(a, 0) + i(b, 0) = (a, b).

Theorem 11. We have (a, 0) + (b, 0) = (a+ b, 0) and (a, 0)(b, 0) = (ab, 0).

Notation 2. Theorem 11 shows that complex numbers whose imaginary part is 0
behave just like real numbers under addition and multiplication. Therefore we will, from
now on, simply write a in place of (a, 0). Thus we consider the set of real numbers to be a
subset of the set of complex numbers.

Using Theorem 10 we can (and will) write a + ib in place of (a, b). The numbers ib,
when b is a real number, are called purely imaginary numbers.

Theorem 12. Suppose z and w are complex numbers. We have zw = 0, if and only if
z = 0 or w = 0 (or both).

Theorem 13. i2 = −1.

Exercise 3. Find the real and imaginary parts of the following numbers: (i)
√
3− 2i+

i(4 + i3
√
2) and (ii) (−3 + i)(2i + 5).

Definition 3. If a, b ∈ R and z = a+ib, then z = a− ib is called the complex conjugate
of z.

Theorem 14. Let z and w be complex numbers. Then the following statements are
true:

(1) Re z = (z + z)/2.
(2) Im z = (z − z)/(2i).
(3) z = z.
(4) z + w = z + w.
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(5) zw = z w.

Theorem 15. zz = (Re z)2 + (Im z)2 > 0 unless z = 0.

Definition 4. The non-negative real number |z| =
√
zz is called the absolute value or

modulus of z.

Theorem 16. Let z and w be complex numbers. Then the following statements are
true:

(1) |z| = 0 if and only if z = 0.
(2) |z| = |z|.
(3) |zw| = |z||w|.
(4) |Re z| ≤ |z|.
(5) | Im z| ≤ |z|.

Theorem 17. For any two complex numbers z and w the triangle inequality

|z + w| ≤ |z|+ |w|
holds.

Hint: Note that zw + zw = 2Re(zw) ≤ 2|z||w|.
The next result follows immediately from the triangle inequality and is sometimes also

referred to by that name.

Theorem 18. The following inequalities hold for any two complex numbers u and v.

|u| − |v| ≤ |u+ v| as well as |v| − |u| ≤ |u+ v|.
Both inequalities can be combined as∣∣|u| − |v|

∣∣ ≤ |u+ v|.

1.2. The geometry and topology of complex numbers

Definition 5. The non-negative number |z − w| is called the distance between the
complex numbers z and w.

Theorem 19. Like any distance function the distance between complex numbers has
the following properties.

(1) |z − w| = 0 if and only if z = w.
(2) |z − w| = |w − z|.
(3) |z − w| ≤ |z − u|+ |u− w| (triangle inequality).

Here z, w, u are arbitrary complex numbers.

You may want to convince yourself that the distance between the complex numbers
a+ ib and c+ id is the same as the distance between the points (a, b) and (c, d) in R2 which
is defined as the magnitude of the vector (c− a, d− b). Hence, as metric spaces, R2 and C
are the same. The set C is therefore often called the complex plane.

Definition 6. The unit circle is the set of all those complex numbers whose distance
from 0 is equal to one, i.e., those complex numbers z satisfying |z| = 1.

Theorem 20. If z is a point on the unit circle, then there is a unique number θ ∈ (−π, π]
such that z = cos θ + i sin θand any such point is on the unit circle. If z is any non-zero
complex number, then z/|z| is on the unit circle. Hence, if z ̸= 0, then there is a unique
positive number r and a unique number θ ∈ (−π, π] such that z = r(cos θ + i sin θ).
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Definition 7. The numbers r and θ defined in Theorem 20 are called the polar coor-
dinates of z.

Exercise 4. Find the polar coordinates of the complex numbers 1 + i, −3 − 3i, and√
3− 3i.

Definition 8. Let z0 ∈ C and r ≥ 0. The set D(z0, r) = {z : |z − z0| < r} is called
the open disk of radius r centered at z0. The set D(z0, r) = {z : |z − z0| ≤ r} is called the
closed disk of radius r centered at z0.

Definition 9. A subset U of the complex plane is called open, if, for any point z ∈ U ,
there is an open disk D such that z ∈ D ⊂ U . A subset C of the complex plane is called
closed , if its complement is open.

Theorem 21. An open disk is open and a closed disk is closed.

Definition 10. Let S be subset of C. The complex number z is a limit point of S, if,
for all n ∈ N, the set (S \ {z}) ∩D(z, 1/n) is not empty.

Exercise 5. Is 0 a limit point of S = {z ∈ C : Re z > 0, Im z = 0}?

Definition 11. The set {tw+(1− t)z : t ∈ [0, 1]} is called the line segment joining the
complex numbers z and w. A subset S of the complex plane is called convex , if, together
with any two points z and w in S, the line segment joining z and w is also in S.

Exercise 6. Show the line segment joining 1 and i is in D(1 + i, 2).

Theorem 22. Any disk, open or closed, is convex.



CHAPTER 2

Differentiation

2.1. Limits and continuity

Definition 12. Let S be subset of C and f : S → C a function from S to C. Suppose
that z0 is a limit point of S. We say that f converges to the complex number L as z tends
to z0, if the following statement is true:

∀ε > 0 : ∃δ > 0 : ∀z ∈ S : 0 < |z − z0| < δ ⇒ |f(z)− L| < ε.

The number L is called a limit of f at z0. We write L = limz→z0 f(z) tacitly assuming that
z ∈ S.

Exercise 7. Consider the function f : C → C defined by f(z) = 2z − 3i.

(1) If the function f converges as z tends to z0 = 1+2i, guess what it would converge
to. Call that number L.

(2) Let ε = 1. Find δ such that |f(z)− L| < 1 whenever |z − (1 + 2i)| < δ.
(3) Do the same for ε = 1/100 and ε = 10−6.
(4) Find a friend and play the following game: A gives B a positive number called ε,

B finds a positive number δ which has the property defined earlier. B wins, if she
can always find δ, regardless which number ε A gives her. A wins if B cannot find
δ. If B wins the game we have that f converges to L as z tends to z0.

Theorem 23. If it exists, the limit of f at z0 is unique.

Hint: |L1 − L2| = |L1 − f(z) + f(z)− L2| ≤ |f(z)− L1|+ |f(z)− L2|.

Theorem 24. Let S be subset of C and z0 a limit point of S. The function f : S → C
has a limit at z0 if and only if both Re f and Im f have limits at z0.

Definition 13. Let S be subset of C and f : S → C a function from S to C. Suppose
z0 ∈ S is a limit point of S. We say that f is continuous at z0, if f converges to f(z0) as z
tends to z0. We also call f continuous at z0 if z0 ∈ S is not a limit point of S. We say that
f is continuous, if f is continuous at every point in S.

Theorem 25 (✓). Let S be subset of C and f : S → C a function from S to C. The
function f is continuous at z0 ∈ S, if and only if the following statement holds:

∀ε > 0 : ∃δ > 0 : ∀z ∈ S : |z − z0| < δ ⇒ |f(z)− f(z0)| < ε.

Theorem 26 (✓). Let S be subset of C, α a complex number, and f, g functions from
S to C which are continuous at the point z0 ∈ S. Then αf , f+g, and fg are also continuous
at z0.

Theorem 27 (✓). Suppose S1 and S2 are subsets of C, that f is a function from S1 to
S2, and that g is a function from S2 to C. If f is continuous at z0 ∈ S1 and if g is continuous
at f(z0) ∈ S2, then f ◦ g is continuous at z0.
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6 2. DIFFERENTIATION

Exercise 8. Show that the function z 7→ 3z2−5z+2, defined on all of C, is continuous
using Theorem 26.

Exercise 9. Show that the reciprocal function z 7→ 1/z, defined on C \ {0}, is contin-
uous.

Exercise 10. Show that the function z 7→ 1/(3z+5), defined on C\{−5/3} is continuous
using Theorem 27.

2.2. Holomorphic functions

Definition 14. Let S be a subset of C, f : S → C a function, and z0 ∈ S a limit point
of S. We say that f is differentiable at z0 if

lim
z→z0

f(z)− f(z0)

z − z0

exists. The limit is called the derivative of f at z0 and is commonly denoted by f ′(z0). If
f : S → C is differentiable at every point z0 ∈ S, we say that f is differentiable on S.

This definition is completely analogous to that of a derivative of a function of a real
variable. In fact, when S is a real interval (one of the cases we are interested in) things
are hardly different from Real Analysis; the fact that f assumes complex values is not very
important. However, if S is an open set and z may approach z0 from many directions, the
existence of the limit has far-reaching consequences.

Exercise 11. Show that the power function z 7→ z2 is everywhere differentiable and
find the derivative.

Theorem 28 (✓). Suppose S, S1 and S2 are subsets of C. Then the following state-
ments hold true:

(1) A function f : S → C is differentiable at a point z0 ∈ S if and only if there is a
number F and a function h : S → C which is continuous at z0, vanishes there, and
satisfies f(z) = f(z0) +D(z − z0) + h(z)(z − z0). In this case D = f ′(z0).

(2) If f : S → C is differentiable at z0 ∈ S, then it is continuous at z0.
(3) Sums and products of differentiable functions with common domains are again

differentiable.
(4) The chain rule holds, i.e., if f : S1 → S2 is differentiable at z0 and g : S2 → C

is differentiable at f(z0), then g ◦ f is differentiable at z0, and (g ◦ f)′(z0) =
g′(f(z0))f

′(z0).

Exercise 12. If f(z) = 1/(z + 1) and z0 = 1 find a number D and a function h as in
item (1) of the previous theorem.

Theorem 29. Suppose S is a real interval. Then the function f : S → C is differentiable
at a ∈ S if and only if Re f and Im f are differentiable there. In this case,

f ′(a) = (Re f)′(a) + i(Im f)′(a).

Hint: Use item (1) of Theorem 28.
The situation is completely different if S is an open set in C.

Exercise 13. Show that z 7→ Re(z2) is not differentiable at z0 if z0 ̸= 0 (the same is
true for z 7→ Im(z2)). Hint: Approach the point z0 along different straight lines.
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Definition 15. Let Ω be a non-empty open set. A function f : Ω → C is called
holomorphic on Ω if it is differentiable at every point of Ω. A function which is defined and
holomorphic on all of C is called entire.

It is easy to think that the notions of differentiability and holomorphicity are the same.
To avoid this mistake note that differentiability is a pointwise concept while holomorphicity
is defined on open sets. Nevertheless, we may say that a function is holomorphic at a point,
if it is holomorphic on some disk centered at that point.

Theorem 30 (✓). Holomorphic functions are continuous on their domain. Sums, dif-
ferences, and products of holomorphic functions (on common domains) are holomorphic.
The composition of holomorphic functions is also holomorphic. The usual formulas hold,
including the chain rule.

Exercise 14. Show that the functions z 7→ 3z2 − z + 5 and z 7→ (z + 3i)/(z − i) are
holomorphic on their domains (identify the domains).





CHAPTER 3

Integration

3.1. Integrals

Definition 16. Let [a, b] be a closed interval in R and f a complex-valued function on
[a, b]. Then Re f and Im f are real-valued functions on [a, b]. We say that f is (Riemann)
integrable over [a, b] if both Re f and Im f are. The integral is defined to be∫ b

a

f =

∫ b

a

Re f + i

∫ b

a

Im f.

Exercise 15. Let f : [0, π] → C be defined by f(x) = cos(x)+ i sin(x). Compute
∫ π

0
f .

Theorem 31. Suppose f and g are functions which are integrable over [a, b] and α is a
complex number. Then∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g and

∫ b

a

αf = α

∫ b

a

f.

We say that the integral is linear.

Theorem 32. If f is integrable over [a, b], then∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f |.

Hint: To prove this inequality let z =
∫ b

a
f and, when this is different from 0, set

α = |z|/z. Then consider
∫ b

a
αf which is non-negative.

3.2. Paths

Definition 17. Let S ⊂ C be non-empty and [a, b] a non-trivial bounded interval in
R. A continuous function γ : [a, b] → S is then called a path in S. If the derivative γ′ exists
and is continuous on [a, b], γ is called a smooth path.

The set {γ(t) : t ∈ [a, b]}, called the image of γ, is denoted by γ∗.
The points γ(a) and γ(b) in Ω are called initial point and end point of γ, respectively.

A path is called closed if its initial and end points coincide.

Definition 18. The number
∫ b

a
|γ′(t)|dt is called the length of the smooth path γ.

Exercise 16. Compute the lengths of the paths γ1 : [0, 2π] → C : t 7→ cos(t) + i sin(t)
and γ2 : [0, 1] → C : t 7→ 3 + 4t− i(2− 3t).

Definition 19. Suppose γ : [a, b] → C is a smooth path in C and f : γ∗ → C is
continuous. Then the number ∫ b

a

(f ◦ γ)γ′

is well-defined. It is called the integral of f along γ and denoted by
∫
γ
f .

9



10 3. INTEGRATION

Exercise 17. Compute the integral of f along the smooth path γ in the following
situations:

(1) γ : [0, 1] → C : t 7→ t2 − it and f : C → C : z 7→ z2.
(2) γ : [0, 1] → C : t 7→ et + it2 and f : C → C : z 7→ 2Re(z) + 2 Im(z).

Theorem 33. Suppose z0 is a fixed point in C and r > 0 is a fixed number. Let the
closed smooth path γ be defined by γ : [0, 2π] → C : t 7→ z0 + r(cos(t) + i sin(t)) and let
f : C \ {z0} → C : z 7→ 1/(z − z0). Then∫

γ

f = 2πi.

Theorem 34. Suppose γ : [a, b] → C is a smooth path and f is a continuous function
on Ω∗. Then we have the estimate∣∣∣∣∫

γ

f

∣∣∣∣ ≤ max
(
|f(γ(t))| : t ∈ [a, b]

)
L(γ)

where L(γ) is the length of γ.

3.3. Contours

Theorem 35. Suppose γ : [a, b] → C is a smooth path. Then η : [0, 1] → C : t 7→
η(t) = γ((1− t)a+ tb) is also a smooth path with the same range and the same initial and
end points as γ. Moreover,

∫
η
f =

∫
γ
f .

Theorem 36. Suppose γ : [a, b] → C is a smooth path. Then η : [a, b] → C : t 7→ η(t) =
γ(a + b − t) is also a smooth path with the same range as γ. However, the initial and end
points of γ and η are switched. Moreover,

∫
η
f = −

∫
γ
f .

Definition 20. Let γ and η be as in Theorem 36. Then η is called the opposite of γ.
We use the notation η = ⊖γ.

Notation 3. Suppose we have two smooths paths γ1 and γ2. Then we denote the
(ordered) pair (γ1, γ2) by γ1 ⊕ γ2. Instead of γ1 ⊕ (⊖γ2) we will simply write γ1 ⊖ γ2. Of
course, we can extend this notation to any finite number of smooths paths, e.g., γ1⊕...⊕γn =⊕n

k=1 γk.

Definition 21. Suppose γ1, ..., γn are smooth paths in Ω. Then Γ =
⊕n

k=1 γk is called
a contour in Ω. The image Γ∗ of the contour Γ is the set

⋃n
k=1 γ

∗
k .

Definition 22. If Γ =
⊕n

k=1 γk is a contour in S and f a continuous function on Γ∗,
we define the integral of f along Γ by∫

Γ

f =

n∑
k=1

∫
γk

f.

Exercise 18. Let γk, k = 1, ..., 5 be the paths respectively defined on [0, 1] by γ1(t) =
cos(2πt) + i sin(2πt), γ2(t) = t, γ3(t) = 1 + i − t, γ4(t) = 1 + it, and γ5(t) = i − it. Let
Γ = γ1 ⊕ ...⊕ γ5. If f(z) = z2 find

∫
Γ
f .

Definition 23. A contour γ1 ⊕ ... ⊕ γn is called closed when there is a permutation
π of {1, ..., n} such that the end point of γk coincides with the initial point of γπ(k) for
k = 1, ..., n.

Exercise 19. Determine whether the contour Γ from Exercise 18 is closed.
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Definition 24. A particularly important instance of a contour Γ = γ1⊕ ...⊕γn is when
for k = 1, ..., n−1, the end point of γk coincides with the initial point of γk+1 (perhaps after
reordering the indices). A contour of this type is called a connected contour . The initial
point of γ1 is called the initial point of Γ while the end point of γn is called the end point
of Γ. We say a contour connects x to y, if it is a connected contour with initial point x and
end point y.

Exercise 20. Let γ2, ..., γ4 be as in Exercise 18 and define Γ = γ2 ⊕ ... ⊕ γ4. Is Γ a
connected contour?

Notation 4. Let z1, ..., zn+1 ∈ C. We define γk(t) = (1− t)zk + tzk+1 for t ∈ [0, 1] and
k = 1, ..., n, and Γ = γ1 ⊕ ...⊕ γn. We use the notation Γ = ⟨z1, ..., zn+1⟩.

Theorem 37. The γk defined in Notation 4 are smooth paths with initial point zk and
end point zk+1. γ

∗
k is the line segment joining zk and zk+1. The length of the line segment

equals the length of γk.

Definition 25. A subset S of C is called connected, if, for any two points in S there
is a connected contour with image in S joining the points.

Theorem 38. Convex sets are connected.

Definition 26. Let S be a subset of C. A component of S is the set of all points in S
which are connected to a given point by a connected contour with image in S.

Theorem 39. Suppose S be a subset of C. Let C(z) be the set of all points in S which
are connected to z. Then w ∈ C(z) if and only if z ∈ C(w).

Exercise 21. How many connected components does C \ {0} have? Is it connected?

Exercise 22. How many connected components does C \ {z : |z| = 1} have? Is it
connected?

Theorem 40. If S is open then so are its connected components.

Hint: If C(z) is one of the components of S and w ∈ C(z), show that D(w, r) ⊂ C(z)
for some r > 0.

3.4. Primitives

Definition 27. Suppose Ω is a non-empty open set and F ′ = f on Ω. Then F is called
a primitive of f .

Theorem 41. If F is a primitive of f and c is a complex number, then F + c is also a
primitive of f .

Theorem 42. If γ : [a, b] → Ω is a smooth path and the continuous function f has a
primitive F in Ω, then

∫
γ
f = F (γ(b))− F (γ(a)).

Hint: Use the chain rule.

Theorem 43. The primitives of the zero function in a non-empty connected open set
are precisely the constant functions.

Hint: If F is a primitive of the zero function, consider F (y)−F (x) =
∫
Γ
F ′ whenever Γ

is a contour connecting x to y.





CHAPTER 4

Analytic functions

4.1. Analytic functions

Definition 28. Let an, n ∈ N0, be a sequence of complex numbers and z0 a fixed
complex number. Then the series

∑∞
n=0 an(z − z0)

n, z ∈ C, is called a power series. The

series is called convergent for z, if limN→∞
∑N

n=0 an(z−z0)n exists and it is called absolutely

convergent for z, if limN→∞
∑N

n=0 |an||z − z0|n exists.

Recall the ratio test from Calculus whose proof also works for series with complex terms.

Theorem 44 (✓). Consider the series
∑∞

n=0 an and assume that L = limn→∞ |an+1/an|
exists. If L is strictly less than 1, then the series is (absolutely) convergent. If it is strictly
larger than 1, then the series is divergent.

Theorem 45 (✓). A series converges, if it converges absolutely.

Theorem 46 (✓). Given a power series
∑∞

n=0 an(z− z0)n there are the following three
possibilities:

(1) The series converges absolutely for every z ∈ C.
(2) The series converges only for z = z0.
(3) There is a positive number R such that the series converges absolutely whenever

|z − z0| < R and diverges whenever |z − z0| > R.

Definition 29. The number R in Theorem 46 is called the radius of convergence and
the disk D(z0, R) is called the disk of convergence. If the first case holds we say that the
radius of convergence is infinite and if the second case holds we say that the radius of
convergence is 0.

Exercise 23. Find the radius of convergence and the limit of the power series f(z) =∑∞
n=0 z

n. Hint: First find the value of the partial sums sN (z) =
∑N

n=0 z
n for N = 0, 1, 2, 3,

then multiply with 1 = (1− z)/(1− z) and simplify the numerator; do you see a pattern?

Definition 30. We say that a function f : D(z0, R) → C is represented by a power
series if f(z) =

∑∞
n=0 an(z − z0)

n for all z ∈ D(z0, R).

Definition 31. Let Ω be a non-empty open set. A function f : Ω → C is called analytic
in Ω, if Ω is a union of open disks in each of which f is represented by a power series.

Exercise 24. The function z 7→ 1/(1− z) is analytic in D(0, 1), the open unit disk.

Exercise 25. The function z 7→ 1/(1− z) is analytic in D(i,
√
2). You may use that

1

1− z
=

1

1− i

1

1− z−i
1−i

.

Exercise 26. The function z 7→ 1/(1− z) is analytic in C \ {1}.

13
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Theorem 47 (✓). The series
∑∞

n=0 n
kan(z − z0)

n, k ∈ N0, have the same radius of
convergence regardless of k.

If we differentiate the series z 7→
∑∞

n=0 anz
n term by term we get z 7→

∑∞
n=1 nanz

n−1

and, according to the previous theorem, these two series have the same radius of convergence.
As you might suspect, the latter is indeed the derivative of the former.

Theorem 48 (✓). If f(z) =
∑∞

n=0 an(z − z0)
n for |z − z0| < R, then f ′(z) =∑∞

n=1 nan(z − z0)
n−1 in the same disk, i.e., the power series may be differentiated term

by term. Consequently, f is holomorphic on D(z0, R).

Theorem 49. Every analytic function is holomorphic.

The central and most astonishing theorem of complex analysis is that the converse is also
true, i.e., every holomorphic function is analytic, but we will have to wait until Theorem 65
to see this.

Theorem 50 (Taylor series). Suppose f(z) =
∑∞

n=0 an(z − z0)
n for |z − z0| < R, i.e.,

f : D(z0, R) → C is analytic. Then f is infinitely often differentiable and an = f (n)(z0)/n!.
We call

∞∑
n=0

f (n)(z0)

n!
(z − z0)

n

the Taylor series of f about z0.

Theorem 51 (♯). Suppose ψ and ϕ are continuous complex-valued functions on [a, b].
Then the function f defined by

f(z) =

∫ b

a

ψ(t)

ϕ(t)− z
dt

is analytic in Ω = C \ ϕ([a, b]). In fact, if z0 ∈ Ω, if r = inf{|ϕ(t) − z0| : t ∈ [a, b]}, and if
z ∈ D(z0, r), then

f(z) =

∞∑
n=0

an(z − z0)
n

where

an =

∫ b

a

ψ(t)dt

(ϕ(t)− z0)n+1
.

4.2. The exponential function

Theorem 52. The series
∑∞

n=0 z
n/n! converges for every z ∈ C.

Definition 32. The function defined by the series in Theorem 52 is called the expo-
nential function and is denoted by exp. In other words,

exp(z) =

∞∑
n=0

zn

n!
.

Theorem 53. The exponential function has the following properties:

(1) If t ∈ R, then exp(it) = cos(t) + i sin(t), in particular, exp(0) = 1.
(2) exp′(z) = exp(z), in particular, exp is entire.
(3) exp(a)−1 = exp(−a).
(4) exp(a+ b) = exp(a) exp(b).
(5) The exponential function has no zeros.
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(6) The exponential function is periodic with period 2πi.
(7) Any period of the exponential function is an integer multiple of 2πi. In particular,

exp(z) = 1 if and only if z is an integer multiple of 2πi.

Hints: For (1) recall the power series for sin and cos, see, e.g., Stewart, Essential
Calculus, Section 8.7. For (3) find the derivative of the function f defined by f(z) =
exp(z) exp(−z). Similarly, for (4) use f(z) = exp(z + b) exp(−z).

4.3. The index of a point with respect to a closed contour

Theorem 54. If γ : [a, b] → C is a smooth path and z ∈ C \γ∗, define F : [a, b] → C by

F (s) = exp

(∫ s

a

γ′(t)

γ(t)− z
dt

)
.

Then s 7→ F (s)/(γ(s)− z) is constant. If γ is closed, then F (b) = F (a) = 1.

Hint: A function defined on a real interval is constant if and only if its derivative is 0.

Theorem 55. Let γ be a closed smooth path in C and Ω = C \ γ∗. The function

z 7→ Indγ(z) =
1

2πi

∫
γ

du

u− z

on Ω is an analytic function assuming only integer values. It is constant on each connected
component of Ω and, in particular, zero near infinity.

Hints: Use Theorem 51 to show analyticity. Define F as in 54. Then F (b) = 1 and,
using part (7) of Theorem 53, the values of Ind must be in Z. Why can they not change
when z changes only little? What happens when z becomes very large?

Theorem 56 (♯). Let Γ be a closed contour in C and Ω = C \ Γ∗. The function IndΓ
defined by

IndΓ(z) =
1

2πi

∫
Γ

du

u− z
on Ω is an analytic function assuming only integer values. It is constant on each connected
component of Ω and, in particular, zero near infinity.

Exercise 27. Consider the smooth paths γ1(t) = exp(it), γ2(t) = exp(it)/2, and
γ3(t) = exp(−it)/2 all defined on [0, 2π] and the contours Γ1 = γ1, Γ2 = γ1 ⊕ γ2, and
Γ3 = γ1 ⊕ γ3. Show that the contours are closed and find IndΓk

(z) for k = 1, 2, and 3 and
for z = 0, z = 3i/4, and z = −2.

Theorem 57. Let m be an integer and suppose γ is defined by γ(t) = z0 + r exp(imt),
t ∈ [0, 2π]. Then Indγ(z) = m for all z ∈ D(z0, r).





CHAPTER 5

Cauchy’s theorem and some of its consequences

5.1. Cauchy’s theorem

Theorem 58 (Cauchy’s theorem for functions with primitives). Suppose Ω is a non-
empty open set and f a continuous function on Ω which has a primitive F . If Γ is a closed
contour in Ω, then

∫
Γ
f = 0.

Hint: As a warm-up you may want to assume first that n = 1 or n = 2.

Theorem 59. Suppose n ∈ Z. Unless n = −1 the power function z 7→ zn has the
primitive z 7→ zn+1/(n + 1) with domain Ω = C \ {0} if n is negative and Ω = C if n is
non-negative.

Theorem 60 (Cauchy’s theorem for integer powers). Suppose n ∈ Z \ {−1}. If Γ is a
closed contour in Ω, then

∫
Γ
zndz = 0.

The exceptional case n = −1 gives rise to interesting complications which we will discuss
later. Recall, though, from Exercise 17 that

∫
γ
dz/z = 2πi ̸= 0 when γ(t) = cos t+ i sin t for

t ∈ [0, 2π].

Theorem 61 (♯ Cauchy’s theorem for triangles). Suppose Ω is a non-empty open set,
z0 a point in Ω, and f : Ω → C a continuous function which is holomorphic on Ω \ {z0}. If
∆ is a solid triangle in Ω with vertices a, b, and c, let Γ = ⟨a, b, c, a⟩. Then

∫
Γ
f = 0.

Theorem 62 (Cauchy’s theorem for convex sets). Suppose Ω is a non-empty open
convex set, z0 a point in Ω, and f : Ω → C a continuous function which is holomorphic on
Ω \ {z0}. Fix a ∈ Ω and define F : Ω → C by F (z) =

∫
⟨a,z⟩ f . Then F is a primitive of f

and
∫
Γ
f = 0 for every closed contour Γ in Ω.

Hint: Note that

F (z + h)− F (z) =

∫
⟨z,z+h⟩

f =

∫ 1

0

f(z + th)hdt = f(z)h+

∫ 1

0

(f(z + th)− f(z))hdt.

Recall that |f(z + th)− f(z)| is as small as we like as long as h is sufficiently small.

5.2. Consequences of Cauchy’s theorem

Theorem 63. Suppose Ω is a non-empty open convex set, f : Ω → C a holomorphic
function on Ω, z0 is a point in Ω, and Γ is a closed contour in Ω. Let

g(z) =

{
f(z)−f(z0)

z−z0
if z ̸= z0

f ′(z0) if z = z0
.

Then
∫
Γ
g = 0.

17
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Theorem 64 (Cauchy’s integral formula). Suppose Ω and f are as in Theorem 63. If
z0 ∈ Ω \ Γ∗, then

f(z0) IndΓ(z0) =
1

2πi

∫
Γ

f(z)

z − z0
dz.

Exercise 28. Let γ(t) = 2 exp(it), t ∈ [0, 2π]. Compute

(1)
∫
γ
exp(z)/(2z − π) dz.

(2)
∫
γ
z2/(z2 + 2z − 3) dz.

We can now prove the central theorem of Complex Analysis.

Theorem 65. A holomorphic function is analytic on its domain of definition.

Hint: Use Theorem 64 with a suitable contour Γ and Theorem 51.
From now on the words holomorphic and analytic may be considered synonymous (many

authors do not ever make a distinction between them). In particular, a holomorphic function
may be expanded into a Taylor series about any point in its domain.

Exercise 29. Show that z 7→ (z+3)/(z− i) is holomorphic in C\{i} and find its power
series about the point z0 = 2i− 1.

Theorem 66. Suppose Ω is a non-empty open convex set, f : Ω → C is a holomorphic
function on Ω, γ : [0, 1] → Ω is a closed smooth path in Ω, and z0 is a point in Ω \ γ∗. Then

f (n)(z0) Indγ(z0) =
n!

2πi

∫
Γ

f(u)

(u− z0)n+1
du

for all n ∈ N0

Hint: Choose r so that D(z0, r) does not intersect γ∗. In D(z0, r) define g(z) =
f(z) Indγ(z) and recall that Indγ(z) is constant there (Theorem 56). By Theorem 64

g(z) =
1

2πi

∫
γ

f(u)

u− z
du =

1

2πi

∫ 1

0

f(γ(t))γ′(t)

γ(t)− z
du.

Now use Theorem 51 to find the Taylor coefficients of g when expanded about z0. Finally,
use the relationship between the Taylor coefficients and the values of g(n)(z0) (Theorem 50).

Theorem 67 (♯ General integral formulas for convex sets). Suppose Ω is a non-empty
open convex set, f : Ω → C is a holomorphic function on Ω, Γ is a closed contour in Ω, and
z0 is a point in Ω \ Γ∗. Then

f (n)(z0) IndΓ(z0) =
n!

2πi

∫
Γ

f(u)

(u− z0)n+1
du

for all n ∈ N0

Exercise 30. Let γ(t) = 2 exp(it), t ∈ [0, 2π]. Compute

(1)
∫
γ
exp(2z)/(2z − π)3 dz.

(2)
∫
γ
z2/(z3 + z2 − 5z + 3) dz.

Theorem 68. Suppose
∑∞

n=0 an(z−z0)n is the Taylor series of the holomorphic function
f : D(z0, R) → C. Then its radius of convergence is at least equal to R.

Hint: Given z ∈ D(z0, R) there is an r such that |z − z0| < r < R. Then consider the
closed path γ(t) = z0 + r exp(it), t ∈ [0, 2π] and use Theorem 51.
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Theorem 69 (Cauchy’s estimate). Suppose f : D(z0, R) → C is a holomorphic function.
If |f(z)| ≤M whenever z ∈ D(z0, R), then

|an| =
|f (n)(z0)|

n!
≤ M

Rn

for all n ∈ N0.

Theorem 70 (Liouville’s theorem). Every bounded entire function is constant.

Hint: Show that the Taylor coefficients a1, a2, ... must all be 0.

Definition 33. If f is holomorphic and f(z0) = 0, then z0 is called a zero of f .

Definition 34. Suppose f is a holomorphic function inD(z0, r) and
∑∞

n=0 an(z−z0)n is
its Taylor series about z0. If, for somem ∈ N, we have am ̸= 0 but a0 = a1 = ... = am−1 = 0,
then z0 is called a zero of f of order or multiplicity m.

Theorem 71. Suppose g is continuous in D(z0, R) and g(z0) = 1. Then there is an
r ∈ (0, R) such that |g(z)| ≥ 1/2 for all z ∈ D(z0, r).

Theorem 72. If the holomorphic function f has a zero of finite order at z0, then there
is an r > 0 such that z0 is the only zero of f in D(z0, r).

Theorem 73. Suppose f is a holomorphic function on the open Ω and that Ω′ is an
open connected set which intersects Ω. Then there is at most one holomorphic function g
on Ω ∪ Ω′ which coincides with f on Ω.

Hint: Suppose g1 and g2 are two such functions. Then g1 − g2 = 0 on Ω ∩Ω′. By way
of contradiction assume that there is a point z1 such that (g1−g2)(z1) ̸= 0. For a connected
contour Γ (or, for simplicity, a smooth path) joining a point z0 in Ω ∩ Ω′ and z1 consider
the values of the continuous function g1 − g2 on Γ∗.

Definition 35. The function g : Ω ∪ Ω′ → C from Theorem 73 (if it exists) is called
the analytic continuation of f from Ω to Ω ∪ Ω′.

5.3. The global version of Cauchy’s theorem

Theorem 74 (♯ Cauchy’s integral formula, global version). Suppose Ω is an open subset
of the complex plane, f is a holomorphic function on Ω, and Γ is a closed contour in Ω such
that IndΓ(w) = 0 whenever w is not an element of Ω. Then

f(z) IndΓ(z) =
1

2πi

∫
Γ

f(u)

u− z
du

for every z ∈ Ω \ Γ∗.

Theorem 75 (Cauchy’s theorem, global version). Suppose Ω, f , and Γ satisfy the same
hypotheses as in Theorem 74. Then

∫
Γ
f = 0.

Definition 36. A connected open set Ω in the complex plane is called simply connected
if C \ Ω has no bounded component.

Exercise 31. Show that the set C \ {0} is not simply connected but that C \ (−∞, 0]
is.

Theorem 76. If Ω is a non-empty open simply connected subset of C and Γ a closed
contour in Ω, then IndΓ(w) = 0 whenever w is not an element of Ω.
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Theorem 77 (Cauchy’s theorem and integral formula for simply connected open sets).
If f is a holomorphic function on the simply connected open set Ω, then

f(z) IndΓ(z) =
1

2πi

∫
Γ

f(u)

u− z
du

for every z ∈ Ω \ Γ∗ and ∫
Γ

f = 0.

Theorem 78. Suppose 0 ≤ r1 < r2. Let γ1(t) = z0 + r1 exp(it) and γ2(t) = z0 +
r2 exp(it), t ∈ [0, 2π]. If Γ = γ1⊖γ2, then IndΓ(w) = 0 for all w satisfying either |w−z0| < r1
or |w − z0| > r2.

Theorem 79. Suppose 0 ≤ r1 < r2. Let A = {z ∈ C : r1 < |z − z0| < r2} and
γ(t) = z0 + r exp(it), t ∈ [0, 2π]. If g : A → C is holomorphic, show that the value of

∫
γ
g

does not depend on r as long as r1 < r < r2.

Hint: Use Cauchy’s global theorem 75.

Notation 5. A series of the form
∑∞

n=−∞ an is called convergent when both
∑∞

n=0 an
and

∑∞
n=1 a−n are convergent. In this case

∞∑
n=−∞

an =

∞∑
n=0

an +

∞∑
n=1

a−n.

Theorem 80 (Laurent series). Suppose 0 ≤ r1 < r2 and f is holomorphic in the annulus
Ω = {z ∈ C : r1 < |z − a| < r2}. Then, f can be expressed by a Laurent series, i.e.,

f(z) =

∞∑
n=−∞

an(z − a)n.

The coefficients an are given by the integrals

an =
1

2πi

∫
γ

f(u)

(u− a)n+1
du

where γ = a+ r′ exp(it), t ∈ [0, 2π] and r′ ∈ (r1, r2).

The Taylor series of an analytic function is, of course, a special case of a Laurent series.
Hint: Fix z ∈ Ω. For j = 1, 2 let γj(t) = a + r′j exp(it) for t ∈ [0, 2π] such that r1 <

r′1 < |z − z0| < r′2 < r2. Then consider
∫
γ2⊖γ1

f . To find an for n ≥ 0 employ Theorem 51;

for the others use a variant of its proof after noting that u−z = −(z−a)(1−(u−a)/(z−a)).
The values for an are independent of r′1 and r′2 by Theorem 79.

Exercise 32. Let f(z) = (z + 3)/(z − i) and γ(t) = i + exp(it), t ∈ [0, 2π]. Find
∫
γ
f .



CHAPTER 6

Isolated singularities and the calculus of residues

Throughout this chapter Ω denotes an open subset of the complex plane.

6.1. Classifying isolated singularities

Definition 37. Suppose z0 ∈ Ω and f : Ω\{z0} → C is holomorphic. Then z0 is called
an isolated singularity of f .

Exercise 33. Identify sets Ω and the point z0 to show that the following functions have
an isolated singularity: (i) z 7→ (z2 + 1)/(z − i), (ii) z 7→ 1/(z − 3), and (iii) z 7→ exp(1/z).

A punctured disk, i.e., a set of the form {z ∈ C : 0 < |z−z0| < r}, is a special case of an
annulus and thus a holomorphic function defined on it has a Laurent expansion. Therefore,
if z0 is an isolated singularity of f , then there is a punctured disk {z ∈ C : 0 < |z− z0| < r}
(possibly the punctured plane) on which

f(z) =

∞∑
n=−∞

an(z − z0)
n.

Definition 38. Let z0 be an isolated singularity of the holomorphic function f :
Ω \ {z0} → C and

∑∞
n=−∞ an(z − z0)

n the corresponding Laurent series. We call the
point z0 a removable singularity , if an = 0 for all n < 0. We call z0 a pole of order m (where
m > 0) or of multiplicity m, if a−m ̸= 0 but an = 0 for all n < −m. In any other case z0 is
called an essential singularity .

Exercise 34. Classify the isolated singularities from Exercise 33.

Theorem 81. The point z0 is a removable singularity of f if and only if f has a limit
at z0.

Hint: Use Theorem 62.

Exercise 35. Show that the function z 7→ f(z) = 1/(exp(z) + exp(−z))2 has a pole at
iπ/2. Determine the order m of the pole as well as a number a and a function g such that
g is holomorphic in D(iπ/2, π), g(0) = 0, and

f(z) = a(z − z0)
−m(1 + g(z)).

Theorem 82. Suppose f has the Laurent expansion
∑∞

n=m an(z − z0)
n in the disk

D(z0, R) for some R > 0 where m ∈ Z and am ̸= 0. Then

f(z) = am(z − z0)
m(1 + g(z))

for some function g which is holomorphic in D(z0, R) and vanishes at z0.

Theorem 83. The point z0 is a pole of order m of a function f if and only if 1/f has
an analytic continuation for which z0 is a zero of order m.

21
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Hint: Recall that, if g is holomorphic near z0 and g(z0) = 0, then z 7→ 1/(1 + g(z)) is
holomorphic near z0.

Theorem 84. If z0 is a pole of f and M is any positive real number, then there is a
positive δ such that |f(z)| ≥M for all z ∈ D(z0, δ) \ {z0}.

Hint: Note that, if g is continuous and g(z0) = 0 we have |1 + g(z)| ≥ 1/2 in any
sufficiently small disk about z0.

Theorem 85. If z0 is an isolated singularity of f and there is a natural number m such
that limz→z0(z − z0)

m+1f(z) = 0, then z0 is either a removable singularity of f or else a
pole of order at most m.

Definition 39. Let P be a set of isolated points in Ω without a limit point in Ω and
f a holomorphic function on Ω \ P . If no point of P is an essential singularity of f , then f
is called meromorphic on Ω.

Theorem 86 (♯ The Great Picard theorem). Suppose f is a holomorphic function
defined on the punctured disk D′ = D(z0, r) \ {z0}. If z0 is an essential singularity of f ,
then f assumes all complex values, with at most one exception, infinitely often.

Exercise 36. Show that 0 is an essential singularity of the function z 7→ exp(1/z) and
that the Great Picard theorem holds.

6.2. The calculus of residues

Definition 40. If the holomorphic function f has the isolated singularity z0 and the
Laurent expansion

∑∞
n=−∞ an(z − z0)

n, then the number

a−1 =
1

2πi

∫
γ

f,

where γ(t) = z0 + r exp(it), t ∈ [0, 2π] for sufficiently small r, is called the residue of f at
z0 and is denoted by Res(f, z0).

Theorem 87. If limz→ z0(z − z0)f(z) = a ̸= 0, then z0 is a simple pole, i.e., a pole of
order one, of f and a = Res(f, z0).

Theorem 88 (Cauchy’s residue theorem). Suppose Ω is an open subset of the complex
plane, f is a holomorphic function on Ω′ = Ω \ {z1, ..., zn}, and Γ is a closed contour in Ω′

such that IndΓ(w) = 0 whenever w is not an element of Ω (i.e., Γ does not wind around any
point outside Ω). Then ∫

Γ

f = 2πi

n∑
k=1

Res(f, zk) IndΓ(zk).

Hint: Let mk = IndΓ(zk) and Γ′ =
⊕n

k=1 γk where γk(t) = zk + rk exp(imkt) for
t ∈ [0, 2π] for sufficiently small but positive rk. Recalling Theorem 57 we obtain

∫
Γ
f =

∫
Γ′ f .

Exercise 37. Compute
∫∞
−∞ 1/(1 + x2)dx with the tools of Calculus as well as the

residue theorem.

Hint: Consider a contour made up from the interval [−R,R] and a semi-circle of
radius R.

Exercise 38. Compute
∫∞
−∞ 1/(exp(x) + exp(−x))dx.

Hint: Consider a rectangle with vertices ±R and ±R+ πi.
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Exercise 39. Compute
∫ 2π

0
1/(2 + sinx)dx.

Hint: Let z = exp(it) and note that 2i sin(t) = z − 1/z.

Exercise 40. If m ∈ Z let f(z) = (z − z0)
m. Determine the poles of f ′/f . Find their

order and their residues.

Theorem 89. Suppose f is a meromorphic function on Ω. Show that f ′/f is also
meromorphic on Ω, that its poles are all simple, and that they occur precisely at the poles
and zeros of f . Moreover Res(f ′/f, z) = m if z is a zero of order m or a pole of order −m.

Notation 6. Suppose f is a meromorphic function on Ω. We denote the sets of its
zeros and poles by Zf and Pf , respectively. For z0 ∈ Ω define Mf (z0) to be the smallest
integer m such that coefficient am in the Laurent expansion

∑∞
n=−∞ an(z−z0)n is non-zero.

The number of points in a set S is denoted by #S, if it is finite.

Note that z0 is a pole of f of order −Mf (z0) if and only if Mf (z0) < 0. z0 is a zero of
f of order Mf (z0) if and only if Mf (z0) > 0.

Theorem 90 (Counting zeros and poles). Suppose f is a meromorphic function with
finitely many zeros and poles. Let Γ be a closed contour in Ω\(Z∪P ) such that IndΓ(w) = 0
whenever w ∈ C \ Ω. Then

1

2πi

∫
Γ

f ′

f
=

∑
z∈Z∪P

Mf (z) IndΓ(z).

In particular, if f is holomorphic and Γ(t) = z0 + r exp(it), t ∈ [0, 2π], then 1
2πi

∫
Γ

f ′

f is

the number of zeros (counted according to their multiplicities) in D(z0, r).

Theorem 91. Suppose a and b are complex numbers satisfying |a− b| < |a|+ |b|. Then
neither a nor b can be 0 and a/b cannot be negative.

Exercise 41. Suppose γ and h are defined by γ(t) = exp(it), t ∈ [0, 2π], and h(z) =
iz2 + z+4. Show that h ◦ γ is a closed smooth path in the half plane {z : Re(z) > 0}. Find
Indh◦γ(0).

Theorem 92. Suppose γ is a closed smooth path in Ω and h is meromorphic on Ω with
no poles on γ∗. Then h ◦ γ is a smooth path in C. Moreover, if h does not take any value
in (−∞, 0], then

∫
γ
h′/h = Indh◦γ(0) = 0.

Hint: Use Theorem 56.

Theorem 93 (Rouché’s theorem). Let f and g be meromorphic functions on Ω and

assume that D(a, r) ⊂ Ω. If no zero or pole lies on the circle C = {z : |z − a| = r} and if
|f(z)− g(z)| < |f(z)|+ |g(z)| for all z ∈ C, then #Zf −#Pf = #Zg −#Pg.

Hint: Let γ : [0, 2π] → Ω : t 7→ a + r exp(it), set h = f/g, and employ Theorems 91
and 92.

Exercise 42. Determine the number of zeros of z 7→ f(z) = z6 − 3z5 + z2 − 9z + 3 in
the disks D(0, 1) and D(0, 2). The key here is to choose g as one of the monomials occurring
in f and use the triangle inequality.





CHAPTER 7

A zoo of functions

In this chapter we investigate briefly the most elementary functions of analysis. The
exponential functions has been introduced earlier since it is too important to postpone its
use.

7.1. Polynomial and rational functions

Definition 41. If n is a non-negative integer and a0, a1, . . ., an are complex numbers,
then the function p : C → C defined by

p(z) =

n∑
k=0

akz
k

is called a polynomial function (or polynomial for short). The integer n is called the degree
of p if an is different from 0. The number an is then called the leading coefficient of p. The
zero function is also a polynomial but no degree is assigned to it.

Theorem 94. Any polynomial is an entire function.

Theorem 95. Let p be a polynomial of degree n and leading coefficient an. If k ∈ N
and k ≤ n, then p(k) is a polynomial of degree n− k. In particular, p(n) is identically equal
to n!an. If k > n, then p(k) is identically equal to 0.

Theorem 96. Let p be a polynomial of degree n and leading coefficient an. The Taylor
series of the polynomial p about any point z0 ∈ C is a finite sum, in fact,

p(z) =

n∑
k=0

bk(z − z0)
k

for appropriate coefficients bk. In particular, bn = an.

Theorem 97. Let p be a polynomial of degree n ≥ 1 and z0 a zero of p. Then there is
a polynomial q of degree n− 1 such that p(z) = (z − z0)q(z) for all z ∈ C.

Theorem 98 (The fundamental theorem of algebra). Suppose p is a polynomial of
degree n ≥ 1. Then there exist numbers a and z1, ..., zn (not necessarily distinct) such that

p(z) = a

n∏
k=1

(z − zk).

Hint: One proof uses the fact that 1/p would be entire if p had no zeros and study its
behavior near infinity. Another uses Rouché’s theorem.

Theorem 99. The coefficients ak of a polynomial with leading coefficient 1 vary con-
tinuously with the zeros.

25
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That the converse is also true can be proved with the aid of Rouché’s theorem. The
precise statement is as follows:

Theorem 100 (♯). Suppose f(z) =
∑n

k=0 akz
k and g(z) =

∑n
k=0 bkz

k are two polyno-

mials with an = bn = 1. If z0 is the only zero of f in D(z0, r) and if the multiplicity of z0 is
m then the following holds: For every ε ∈ (0, r) there is a δ > 0 such that, if |ak − bk| < δ
for k = 0, ..., n− 1, then g has precisely m zeros in D(z0, ε) (counting multiplicities).

Definition 42. Let p and q be polynomials and Q = {z ∈ C : q(z) = 0}. Assume
Q ̸= C, i.e., q is not the zero polynomial. Then, the function r : (C \Q) → C given by

r(z) =
p(z)

q(z)

is called a rational function.

Theorem 101 (Rational functions). A rational function is a meromorphic function on
C. Its poles are zeros of q. Conversely, a zero z0 of q is a pole if and only if Mp(z) < Mq(z).

Definition 43. A rational function of the type z 7→ (az+b)/(cz+d) where ad−bc ̸= 0
is called a Möbius transform.

Notation 7. The set C ∪ {∞}, called the extended complex plane, is denoted by C∞.
One may extend a Möbius transform as function from C∞ to itself in the following way: If
c ̸= 0 set

M(z) =


(az + b)/(cz + d) if z ∈ C \ {−d/c}
∞ if z = −d/c
a/c if z = ∞.

If c = 0 we must have d ̸= 0 and set

M(z) =

{
(az + b)/d if z ∈ C
∞ if z = ∞.

Theorem 102 (♯). A Möbius transform may be interpreted as a bijective function from
C∞ to itself. Conversely, an injective meromorphic function on C∞ is a Möbius transform.
The set of all Möbius transforms forms a group under composition.

Möbius transforms have many interesting properties to which an entire chapter might
be devoted.

7.2. Trigonometric and hyperbolic functions

Definition 44. The sine, cosine, and tangent function, denoted by sin, cos, and tan,
respectively, are defined by

sin(z) =
exp(iz)− exp(−iz)

2i
.

cos(z) =
exp(iz) + exp(−iz)

2
,

and

tan(z) =
sin(z)

cos(z)
= i

exp(iz) + exp(−iz)

exp(iz)− exp(−iz)
.

Theorem 103. cos and sin have the following properties:

(1) They are entire functions.
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(2) Their derivatives are sin′(z) = cos(z) and cos′(z) = − sin(z).
(3) The Pythagorean theorem holds: (sin z)2 + (cos z)2 = 1 for all z ∈ C.
(4) Addition theorems:

sin(z + w) = sin(z) cos(w) + cos(z) sin(w)

and

cos(z + w) = cos(z) cos(w)− sin(z) sin(w)

for all z, w ∈ C.
(5) Taylor series:

sin(z) =

∞∑
n=0

(−1)nz2n+1

(2n+ 1)!

and

cos(z) =

∞∑
n=0

(−1)nz2n

(2n)!
.

In particular, sin and cos are extensions of the functions defined in Real Analysis.
(6) cos(z) = sin(z + π/2).
(7) sin(z) = 0 if and only z is an integer multiple of π.
(8) The range of both, the sine and the cosine function, is C.

Hint: For (8) let w be an arbitrary element of C and consider sin(z) = w. Then
u = exp(iz) satisfies a quadratic equation. Why do we know it has a (non-zero) solution
even if we don’t know how to find it? Finally use Theorem 20.

Theorem 104. The tangent function is a meromorphic function on C. All its poles are
simple and occur precisely at the points (n+ 1/2)π, n ∈ Z.

Definition 45. The hyperbolic sine and hyperbolic cosine function, denoted by sinh
and cosh, respectively, are defined by

sinh(z) =
exp(z)− exp(−z)

2
and cosh(z) =

exp(z) + exp(−z)
2

.

The hyperbolic tangent function, denoted by tanh, is defined by tanh(z) = sinh(z)/ cosh(z).

Theorem 105. The following relationships hold: sinh(z) = −i sin(iz), cosh(z) = cos(iz),
tanh(z) = −i tan(iz).

7.3. The logarithmic function

Theorem 106 (✓). Since exp : R → (0,∞) is a bijective function, it has an inverse
ln : (0,∞) → R. We have that ln(1) = 0 and ln′(x) = 1/x so that, by the fundamental
theorem of calculus

ln(x) =

∫ x

1

dt

t

for all x > 0.

Definition 46. Suppose Ω is a simply connected non-empty open subset of C\{0} and
Γ is a contour in C \ {0} connecting 1 to z0 ∈ Ω. Then we define the function LΓ : Ω → C
by setting

LΓ(z) =

∫
Γ⊕β

du

u
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where β is a contour in Ω connecting z0 to z. As the notation suggests LΓ(z) does not
depend on β as long as β remains in Ω. The function LΓ is called a branch of the logarithm
on Ω.

Exercise 43. Let r > 0 and θ ∈ (−π, π] be the polar coordinates of the non-zero
complex number z = r exp(iθ). Let γ(t) = (1 − t) + rt and ηϕ(t) = r exp(iϕt) for t ∈ [0, 1].
Compute

∫
γ⊕ηθ

du/u and
∫
γ⊕ηθ+4π

du/u.

Theorem 107. Let Ω be a non-empty, open, simply connected subset of C. Suppose
that Γ and Γ′ are two contours in C\{0} connecting 1 to points z0 and z′0 in Ω, respectively.
If γ is a contour in Ω connecting z0 and z′0, then

LΓ(z)− LΓ′(z) = 2πi IndΓ⊕γ⊖Γ′(0).

Thus there are (at most) countably many different functions LΓ which are defined this
way, even though there are many more contours Γ connecting 1 to a point in Ω.

Theorem 108. Let Ω and Γ be as in Theorem 107. For each m ∈ Z there is a Γ′

connecting 1 to z0 such that LΓ(z)− LΓ′(z) = 2mπi.

This shows that defining the logarithm as an antiderivative comes with certain difficul-
ties similar to those of defining the inverse sine function in Calculus. At the same time this
behavior gives rise to a lot of interesting mathematics.

Theorem 109. LΓ is a holomorphic function on Ω with derivative 1/z.

Theorem 110. exp(LΓ(z)) = z for all z ∈ Ω but LΓ(exp(z)) may well differ from z by
an integer multiple of 2πi.

Hint: The function z 7→ z exp(−LΓ(z)) has zero derivative. To compute LΓ(z0) use
Exercise 43 and Theorem 107.

Definition 47. Let Ω = C \ (−∞, 0] and Γ : [0, 1] → C : t 7→ 1). We call the function
log = LΓ the principal branch of the logarithm.

Theorem 111. If z ∈ C \ (−∞, 0] has polar representation z = r exp(it) where t ∈
(−π, π) and r > 0, then

log(z) = ln(r) + it.

The range of log is the strip {z ∈ C : | Im(z)| < π}. In particular, log(exp(z)) = z if and
only if | Im(z)| < π.

Theorem 112. The Taylor series of z 7→ log(1+z) about z = 0 has radius of convergence
1 and is given by

log(1 + z) = −
∞∑

n=1

(−z)n

n
.

Theorem 113. If Re(a) and Re(b) are positive, then log(ab) = log(a) + log(b).

Exercise 44. Find two numbers a and b such that log(ab) ̸= log(a) + log(b).

7.4. Power functions

Theorem 114. If L is any branch of the logarithm, a is in the domain of L, and b ∈ Z,
then ab = exp(bL(a)).
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Definition 48. Suppose Ω is a simply connected non-empty open subset of C \ {0}
and L : Ω → C a branch of the logarithm. For a fixed complex number p the function
Ω → C : z 7→ zp = exp(pL(z)) is called a branch of the power p function.

In general, the value of zp depends on the branch of the logarithm chosen and is therefore
ambiguous when p ̸∈ Z. In most cases one chooses, of course, the principal branch of the
logarithm and defines ab = exp(b log(a)) (forsaking the definition of powers of negative
numbers). In particular, defining e = exp(1), we get ez = exp(z) for all z ∈ C.

Exercise 45. Compute all possible values of ii.

Exercise 46. Choose a branch of the logarithm which includes the negative real axis
and compute (−2)1/2. What other values can one obtain by choosing different branches?

Theorem 115. Each branch of the power p function is a holomorphic function which
never vanishes.

Theorem 116. Suppose a, b, p ∈ C. Then zazb = za+b, in particular, 1/zp = z−p.

Exercise 47. Pick a point z in the second quadrant of C and show that (z2)1/2 ̸= z
using the principal branch of the power 1/2-function.

Theorem 117. The following statements hold.

(1) If p ∈ N0 all branches of the power p function may be analytically extended to the
entire complex plane and any branch gives then rise to one and the same function.

(2) The same is true if p ∈ Z is negative, except that the function may not be extended
to 0 since 0 is then a pole of the function.

(3) If p ∈ Q there are only finitely many different branches of z 7→ zp in any simply
connected open set not containing 0. In fact, if m/n is a representation of p in
lowest terms, there will be n branches of z 7→ zp.
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