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Preface

We all know how to solve two linear equations in two unknowns like
2x− 3y = 5 and x+ 3y = −2.

Linear Algebra grew out of the need to solve simultaneously many such equations for perhaps
many unknowns. For instance, the frontispiece of these notes shows a number of data points
and an attempt to find the “best” straight line as an approximation. As we will see later
this leads to 37 equations for 2 unknowns. How do we even know there is a solution (let
alone “best” solution) and how do we find it?

From the practical point of view Linear Algebra is probably the most important subject
in Mathematics. It is, for instance, indispensable for the numerical solution of differential
equations and these, in turn, are ubiquitous in the natural sciences, engineering, the social
sciences, and economics.

As a specific example of another application of Linear Algebra let me mention graphs
and networks, themselves used in a wide variety of subjects; think World Wide Web, telecom-
munications, or gene regulatory networks to name just a few.

Linear Algebra may be described as the theory of finite-dimensional vector spaces.
Many results, though, hold also in infinite-dimensional vector spaces, often with the same
proofs. When this is the case we will formulate definitions and theorems in this more general
situation but otherwise we will concentrate on finite-dimensional spaces. Another issue is
the field underlying our vector spaces. Again many conclusions work for general fields and
we will then state them that way. We would stick to the real number field only, if it were
not the case that, particularly in the later chapters, the complex number field made many
issues quite a bit simpler. Therefore we will present results often for a general field K but
the reader is encouraged to think of K = R or K = C if that is helpful.

Due to its importance there are hundreds of textbooks on Linear Algebra. I first learned
the subject from Prof. H.-J. Kowalsky and am therefore familiar with his book [2]. Alas,
it is in German and, at any rate, other books have influenced me, too. In particular, I
recommend for further study Axler [1], Strang [3], and Trefethen and Bau [4].

If you come across a symbol or term about whose definition you are uncertain be sure
to consult the list of special symbols or the index which show the page where the definition
is (hopefully) to be found. There is also an appendix introducing some important notions
from Set Theory and Algebra which we assume to be known.

Hints and comments for the instructor are in blue.
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CHAPTER 1

Systems of linear equations

1.1. Introduction

1.1.1 The simplest case. The simplest case of a “system” of linear equations is when
there is only one equation and one unknown, i.e., Ax = b where A and b are given real
numbers and x is the unknown. Investigation of existence and uniqueness of solutions leads
to a trichotomy which will reappear in the general case.

Task. Determine the conditions on A and b for which one has existence or uniqueness
of solutions or both.

(1) If A 6= 0, then the equation has a unique solution x = b/A.
(2) If A = 0 and b = 0, then every number x is a solution.
(3) If A = 0 but b 6= 0, then there is no solution at all.

1.1.2 Two linear equations. There are several ways to find the solution of two linear
equations in two unknowns like

2x− 3y = 5 and x+ 3y = −2.

Exercise. Solve this system using your favorite method. x = 1 and y = −1.

One idea will be particularly useful in the general case as we will see later.
1.1.3 Systems of linear equations. Now suppose we have m linear equations in n

unknowns. It is time to define the term linear equation precisely. The unknowns, which we
will seek (for now) among the real numbers, are denoted by x1, ..., xn. An equation in these
n unknowns is called linear, if it is of (or may be put in) the form

a1x1 + ...+ anxn = b

where a1, ..., an and b, called coefficients, are themselves given real numbers. Note that there
occur neither products nor powers of the unknowns.

However, we are interested in a system of such equations, i.e., we ask that, say, m such
equations hold simultaneously. Specifically, a system of m linear equation in n unknowns is
of the form

A1,1x1 + ...+A1,nxn = b1

A2,1x1 + ...+A2,nxn = b2

...
Am,1x1 + ...+Am,nxn = bm

where the Aj,k and the bℓ are given numbers.
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2 1. SYSTEMS OF LINEAR EQUATIONS

Exercise. Determine which of the following equations is linear: (i) 2x1 + sin(x1x2) +
x3 = 3, (ii) 2x1 + x3 = 3x2, (iii) 2x1 + x1x2 + x3 = 3, (iv) x2

1 = 4x1, and (v) 0 = 3.

Exercise. Find the system of linear equations determining all cubic polynomials pass-
ing through the points (−2, 3), (1, 2), (2, 3), and (4,−2).

1.1.4 Solutions. While we used the words “solve” and “solution” already, let us give a
formal definition. Given a system of linear equations as in 1.1.3 we call a list (s1, ..., sn) of
numbers a solution if replacing the unknowns x1, ..., xn respectively with the numbers s1,
..., sn renders all equations true.

The question is then to find out whether a system of equations has any solutions at all
and, if so, how to find the solutions, i.e., how to solve the system.
1.1.5 Homogeneous equations. If b1 = ... = bm = 0 the system in 1.1.3 is called

homogeneous.

Task. Show that a homogeneous system always has the trivial solution, i.e., the solution
x1 = ... = xn = 0.

Note, however, that a homogeneous system may also have non-trivial solutions, i.e.,
solution which are not trivial.

Task. Find a homogeneous system with two unknowns which has a non-trivial solution.

1.2. Solving systems of linear equations

1.2.1 The idea of elimination. Suppose we have the equations

A1x1 + ...+Anxn = b (1)
A′

1x1 + ...+A′
nxn = b′. (2)

If x = (x1, ..., xn) is a solution for both equations and if α is a number, then x is also a
solution for

(A′
1 + αA1)x1 + ...+ (A′

n + αAn)xn = b′ + αb. (3)
Conversely, if x is a solution of equations (1) and (3), then it is also a solution of equation (2).

Task. Prove both of these claims.

In other words the system consisting of equations (1) and (2) has precisely the same
solutions as the system consisting of equations (1) and (3). If A1 6= 0, we may choose
α = −A′

1/A1 and thereby eliminate the occurrence of x1 from equation (3). If A1 = 0 we
have, of course, already an equation in which x1 does not occur.
1.2.2 Equivalent systems of equations. Two systems of m linear equations in n un-

knowns are called equivalent if they have precisely the same solutions.

Task. Consider the following two operations on systems of linear equations:
(1) Exchange any two of the equations.
(2) Add a multiple of one equation to another one.

Explain why applying, possibly repeatedly, any of these operations does not change the set
of solutions of our system.Didn’t work so well.

Also, claim is in the
task.
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1.2.3 Repeated elimination. We may use elimination to remove x1 from all equations
but one.1 After this we might eliminate x2 from all equations but one of those which are
already free of x1 so that in all but at most two equations neither x1 nor x2 occurs. In the
end of this recursive process xn but only xn might appear in all equations (there may also
be equations where no unknown appears).
1.2.4 Upper triangular systems of equations. Using the operations introduced in 1.2.2

we will, successively, obtain a system where the only equation containing x1 is listed first,
then the only remaining equation containing x2 (if any) second and so on. We shall say that
such a system is in upper triangular form.

Exercise. Put the the following system in upper triangular form:
−x2 + x3 = 2

4x1 + 3x2 + 3x3 = 6

2x1 + x2 + x3 = 0.

1.2.5 Back-substitution. Suppose we have a linear system which is in upper triangular
form. It is then easy to determine whether a solution exists and, if so, relatively easy to
find it.

Exercise. Do so, if possible, for the example in Exercise 1.2.4. (−3, 2, 4) What happens
if the coefficient of x2 in the second equation is replaced by 1?

1.3. Matrices and vectors

1.3.1 Linear equations in matrix form. Instead of all the equations listed in 1.1.3 one
writes simply Ax = b where A represents all the numbers Aj,k, respecting their rectangular
arrangement, and x and b represent the numbers x1, ..., xn and b1, ..., bm, again respecting
their order. More precisely, a (horizontal) row of A collects the coefficients of the unknowns
coming from one of the equations. A (vertical) column, on the other hand, collects all the
coefficients of one of the unknowns.

A is called a matrix and b and x are called vectors.

Exercise. Identify the matrix A and the vector b such that the system
x1 − 2x2 + 4x3 = −3

2x1 + 2x3 = 3

−2x1 + 5x2 − 3x3 = 0

is represented by the equation Ax = b.

1.3.2 Augmented matrices. When we are trying to solve the system Ax = b by elimina-
tion (and back-substitution) we leave the unknowns unaffected. Indeed, instead of adding
a multiple of one equation to another, we can perform the corresponding operation on the
matrix A and the vector b only. To do so in one swoop, we define the augmented matrix
(A, b) whose first n columns are those of A (in the given order) and whose last column is b.

Exercise. For the system given in Exercise 1.3.1 find the corresponding augmented
matrix.

1We are assuming here that x1 was present to begin with. While it might appear pointless to consider
a case where x1 is listed among the unknowns without occurring in any of the equations, we do not want to
rule this out.
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1.3.3 Row-echelon matrices. A row of a matrix is called a zero row, if all its entries are
0. Otherwise it is called a non-zero row. A matrix is said to be a row-echelon matrix if it
satisfies the following two conditions:

(1) All zero rows occur below any other.
(2) The first non-zero entry of each non-zero row occurs to the right of the first non-

zero entry of any previous row.
The first non-zero entry of a non-zero row in a row-echelon matrix is called a pivot. The
number of pivots of a row-echelon matrix R is called the pivot rank2 of R.

Exercise. Which of the following matrices are not row-echelon matrices? Explain.
Identify the pivots in those matrices which are row-echelon matrices. What is the pivot
rank of those matrices?1 1 1

2 2 2
0 0 0

 0 1 2
0 0 2
0 0 0

 0 0 0
1 1 1
0 2 2

 1 2 3
0 4 5
0 0 6

 0 1 2
0 0 3
1 0 0

 1 1 2
0 0 2
0 0 0


1.3.4 Gaussian elimination. To the operations among equations listed in 1.2.2 corre-

spond operations on the rows of the corresponding augmented matrix. Hence, for given a
matrix M , we define the elementary row operations:

(1) Exchange any two rows of M .
(2) Add a multiple of one row to another one.

Two matrices are called row-equivalent, if it is possible to transform one into the other
by a finite sequence of elementary row operations.

Since the elementary row operations for a matrix mirror the operations for a system of
linear equations as given in 1.2.2, it follows that the systems Ax = b and A′x = b′ have
precisely the same solutions when the matrices (A, b) and (A′, b′) are row-equivalent.

Exercise. Use elementary row operations to turn the matrices in Exercise 1.3.3 into
row-echelon form. Identify the pivots in those matrices which are row-echelon matrices.
What is the pivot rank of those matrices?
1.3.5 Gaussian elimination is always successful.

Theorem. Every matrix M is row-equivalent to a row-echelon matrix R.

Sketch of proof. The proof is simply an induction on the number of rows. �
1.3.6 Free unknowns. If the augmented matrix (A, b) is in row-echelon form so is A itself.

There may be columns of A which do not contain a pivot. If column j does not contain a
pivot, then the unknown xj is called free.

1.3.7 Solving systems of linear equations. We can now describe an algorithm to
solve Ax = b, a linear system of m equations in n unknowns. First, using elementary row
operations, transform the augmented matrix (A, b) into a row-equivalent one which is in
row-echelon form, say (A′, b′). If A′ has a zero row where the entry of b′ in the same row
is not 0, i.e., b′ contains a pivot, then there is no solution of the system. Otherwise one
may choose the free unknowns freely and determine the others by back substitution. In
particular, if there are no free unknowns, then there is a unique solution of the system.

In summary we have the following trichotomy (compare with 1.1.1):

2Later, in 2.4.4, we will define the notions of column rank and row rank of a matrix. We will also show
that all of these are actually the same and are simply called rank of a matrix.
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(1) If b′ contains a pivot, then there is no solution at all.
(2) if b′ contains no pivot and A′ contains n pivots, then there is a unique solution.
(3) if b′ contains no pivot and A′ contains less than n pivots, then there are infinitely

many solutions.
The situation just described can also be expressed by the following table.

Ax = b = 0 Ax = b 6= 0
rank(A′, b′) > rankA′ does not happen system is unsolvable
rank(A′, b′) = rankA′ = n x = 0 is the unique solution system is uniquely solvable
rank(A′, b′) = rankA′ < n non-trivial solutions exist many solutions exist

Note that the only operations on the matrix entries are addition, multiplication, and
division (by the pivots). These operations are possible in any field and therefore our con-
clusions hold for linear systems where the coefficients are taken from an arbitrary field.

Exercise. Solve the following linear systems or show that no solution exists:

x1 − x2 + 2x3 = 1

x1 − 3x2 + x3 = 0

2x1 − 4x2 + 3x3 = 1

−x1 + 2x2 − 4x3 = 3

2x1 + 2x3 = 3

−2x1 + 5x2 − 3x3 = 0

x1 − x2 + x3 = 2

x1 + x2 − 3x3 = 1

3x1 − x2 − x3 = 6

Exercise. Find all cubic polynomials passing through the points (−2, 3), (1, 2), (2, 3),
and (4,−2). What happens if we are trying to fit only three points?





CHAPTER 2

Euclidean vector spaces

2.1. Spaces and subspaces

2.1.1 Vectors. An n-dimensional (real) vector1 is an ordered list of n (real) numbers.
Since the list is ordered we have, for instance, that (2, 4,−3) is different from (4, 2,−3).
There are two ways to represent vectors which we will have to distinguish. We can, as we
did above, arrange the entries of the list horizontally (row vectors) or vertically (column
vectors) as in

(
7
−3

)
. The row vector (7,−3) and the column vector

(
7
−3

)
are two different

things! We will mostly think of vectors as columns but typesetting would of course favor
the horizontal representation. We will therefore introduce the concept of a transpose which
turns a row into a column (and vice versa). We indicate transposition by the symbol > as
a superscript. For instance

(4, 2,−3)⊤ =
( 4

2
−3

)
.

2.1.2 Euclidean vector spaces. The set of all real n-dimensional column vectors is
denoted by Rn. Of course, R = R1 is represented by the well-known real line and we
are also familiar with R2 and R3. The former is represented by a plane and the latter
by ordinary 3-space in which coordinate axes have been chosen. The spaces Rn are called
euclidean vector spaces.
2.1.3 Vector addition. Two vectors of the same euclidean space Rn are added entrywise,

i.e.,
(a1, ...., an)

⊤ + (b1, ..., bn)
⊤ = (a1 + b1, ..., an + bn)

⊤.

This operation is associative and commutative. The vector (0, ..., 0)⊤ ∈ Rn, the number
0 repeated n times, is especially important. It is called the zero vector and denoted by 0.
Adding the zero vector to any element of Rn does not cause a change, i.e., for all a in Rn

we have
a+ 0 = 0 + a = a.

No other vector has this property.
For every vector a ∈ Rn there is one and only one vector b ∈ Rn such that

a+ b = b+ a = 0.

The vector b is called the negative of a. We will denote b by −a and we also use the notation
a − b as shorthand for a + (−b). We mention in passing that a set for which an operation
with these properties is defined is called a commutative group.

Task. Prove the following statements
(1) Vector addition is associative and commutative.
(2) If a+ e = e+ a = a for all a ∈ Rn, then e = 0.

1Later we will give a more general definition of the term vector.

7



8 2. EUCLIDEAN VECTOR SPACES

(3) Any vector in Rn has one and only one negative.

2.1.4 Scalar multiplication. The scalar multiplication is an operation combining real
numbers (these are called scalars) with vectors. If α is a real number and a ∈ Rn, then αa
is the vector obtained by multiplying each entry of a with α, i.e,

α(a1, ...., an)
⊤ = (αa1, ..., αan)

⊤.

We have the following properties: if α and β are scalars (real numbers) and a and b are
vectors in Rn, then the following statements hold:

(1) (α+ β)a = αa+ βa,
(2) α(a+ b) = αa+ αb,
(3) (αβ)a = α(βa), and
(4) 1a = a.

Task. Prove these claims.

2.1.5 Subspaces. A non-empty subset S of Rn is called a subspace of Rn, if x+ y ∈ S and
αx ∈ S whenever x, y ∈ S and α ∈ R.

The set {0} ⊂ Rn is a subspace of Rn, called the trivial subspace. Rn is also a subspace
of itself.

Exercise. Show that the set {(x1, x2)
⊤ ∈ R2 : x1 = 2x2} is a subspace of R2.

Task. Show that any subspace of Rn contains the zero vector. Also show that, if A
and B are subspaces of Rn, then A ∩B is also a subspace of Rn.

2.2. Linear independence and spans

2.2.1 Linear combinations. Given vectors a1, ..., ak ∈ Rn and scalars α1, ..., αk we may
form the expression

α1a1 + ...+ αkak

which is again a vector in Rn. It is called a linear combination of the vectors a1, ..., ak.
For instance, if we denote the columns of a matrix A by a1, ..., an and if x = (x1, ..., xn)

⊤,
then Ax is the linear combination x1a1 + ...+ xnan. Solving the system Ax = b is therefore
equivalent to finding scalars x1, ..., xn such that the linear combination x1a1 + ... + xnan
equals the vector b.

Exercise. Let a1 = (0, 4, 2)⊤, a2 = (−1, 3, 1)⊤, and a3 = (1, 3, 1)⊤. Is there a linear
combination of these vectors which will give the vector (−3, 3, 0)⊤?

2.2.2 Linearly independent vectors. The vectors a1, ..., ak ∈ Rn are called linearly
independent if the linear combination α1a1 + ... + αkak vanishes only if all the scalars α1,
..., αk are zero. Otherwise they are called linearly dependent.

A single vector is linearly independent if and only if it is not the zero vector.

Exercise. Show that the vectors (3, 5)⊤ and (0,−2)⊤ are linearly independent but
that the vectors (3, 5)⊤, (0,−2)⊤, and (1, 1)⊤ are linearly dependent. Also show that the
vector (3, 5)⊤ is a linear combination of (0,−2)⊤ and (1, 1)⊤.

Task. Show that the vectors a1, ..., ak are linearly dependent if and only if one of them
can be expressed as a linear combination of the others.

Theorem. If k > n, then any k vectors in Rn are linearly dependent.
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2.2.3 Spans. Let A be a non-empty subset of Rn. The set of all linear combinations of
(finitely many) elements of A is called the span of A and is denoted by spanA. We also say
that W is spanned by A or that A spans (or that the elements of A span) W if W = spanA.

Task. Show that spanA is a subspace of Rn.
In particular, the columns of an m × n-matrix M are vectors in Rm and their span is

called the column space of M . Similarly, the rows of M are transposes of vectors in Rn and
their span is called the row space of M .
2.2.4 Bases. Suppose W is a non-trivial subspace of Rn. A set A = {a1, ..., ak} of linearly

independent vectors in Rn is called a basis of W if W = spanA. We also consider the empty
set as a basis of the trivial subspace {0}.

Exercise. Let a1 = (1,−2, 1)⊤ and a2 = (0, 2,−2)⊤ and show that A = {a1, a2} is a
basis of spanA ⊂ R3. Then show that b = (2,−2, 0)⊤ is also in spanA and that {b, a2} is
another basis of spanA.

Task. Suppose A = {a1, ..., ak} is a basis of W and b =
∑k

j=1 cjaj . Show that {b} ∪
(A \ {aℓ}) is also a basis of W , if cℓ 6= 0 for some ℓ ∈ {1, ..., k}.

Theorem. If A = {a1, ..., ak} and B = {b1, ..., bm} are bases of W , then m = k.
Sketch of proof. This may be proved by induction making use of what was shown

in the previous task. To this end, show first that b1 may replace one of the vectors a1, ...,
ak. Then assume that b1, ..., bℓ have replaced ℓ of the vectors a1, ..., ak and show that bℓ+1

may replace another one.
Another proof proceeds as follows: Assume by way of contradiction that k < m. Note

that bj =
∑k

ℓ=1 cℓ,jaℓ, j = 1, ...,m. The coefficients cℓ,j form a matrix C with k rows and
m columns. The system Cx = 0 has non-trivial solutions but

∑m
j=1 xjbj = 0. �

At this point it is unclear whether every subspace of Rn must have a basis.
However, Rn itself does have a basis.
Task. Prove this claim by finding a basis.

2.2.5 Extending linearly independent sets. Let us begin with an exercise.
Exercise. Show that the vectors a1 = (1, 2, 3)⊤ and a2 = (1, 0, 1)⊤ are linearly inde-

pendent vectors in the column space of the matrix M =
( 1 2 4 0
1 3 5 1
2 0 4 1

)
but that they do not span

that space. Then find a vector a3 in the column space of M such that a1, a2, and a3 are
linearly independent.

Let V be a non-trivial subspace of Rn. If the vectors a1, ..., ak−1 in V are linearly
independent but do not span V , then there is a vector ak ∈ V such that a1, ..., ak are still
linearly independent.

Task. Prove this claim.
2.2.6 Reducing spanning sets. While linearly independent vectors may be too few to

span a certain space, a set of spanning vectors may have too many elements.
Exercise. Denoting the columns of the matrix M in Exercise 2.2.5 by a1, ..., a4 we

know, by definition, that {a1, a2, a3, a4} spans the column space of M . Show that a1, ...,
a4 are not linearly independent. Then remove one of them to obtain smaller set which still
spans the column space of M .
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Suppose V is a non-trivial subspace of Rn and S ⊂ V is a finite set spanning V . If S is
not linearly dependent, it contains an element a such that S \ {a} still spans V .

Task. Repeating such removals, will the process come to an end? When?

2.2.7 Every subspace of Rn has a basis. Let V be a subspace of Rn. If V = {0} we
have agreed to call the empty set its basis. If V is not trivial we can use 2.2.5 to construct
a basis recursively. That process must come to an end because of Theorem 2.2.2.
2.2.8 Dimension. The number of elements in a basis of the subspace W of Rn is called the

dimension of W and is denoted by dimW . If dimW = k, we say that W is k-dimensional.
We also assign dimension 0 to the trivial subspace {0}.

Note that Rn has dimension n.
Suppose W is a k-dimensional subspace of Rn and A is a set with precisely k elements.

Then we have the following statement: A spans W if and only if its elements are linearly
independent.

Task. Prove this claim.

2.3. Linear transformations in Rn

2.3.1 Matrices. Recall from 1.3.1 the concept of a matrix. If the matrix A has m rows
and n columns it is called an m× n-matrix.2 The set of all real m× n-matrices is denoted
by Rm×n. Note that column vectors in Rm are special matrices, namely those where n = 1.
Similar row vectors in Rn are matrices in R1×n. We denote the rows and columns of A by
Ak,· for k = 1, ...,m and A·,ℓ for ℓ = 1, ..., n, respectively.
2.3.2 Matrices as linear transformations. If A ∈ Rm×n and x ∈ Rn we define the

product Ax (again refer back to 1.3.1) to be the linear combination x1A·,1 + ... + xnA·,n,
i.e., the vector  A1,1x1 + ...+A1,nxn

...
Am,1x1 + ...+Am,nxn

 ∈ Rm.

Note that A transforms any vector x ∈ Rn into a vector in Rm, i.e., A is a function with
domain Rn and codomain Rm.

In fact, the function defined by A is linear, i.e., it has the following two properties:
(1) A(x+ y) = Ax+Ay for all x, y ∈ Rn.
(2) A(αx) = αAx for all α ∈ R and x ∈ Rn.

One commonly calls linear functions between vector spaces linear transformations.

Task. Show the linearity of A.

2.3.3 Kernel and range. Let A be a matrix in Rm×n, i.e., a linear transformation with
domain Rn and codomain Rm. The kernel of a A is the set {x ∈ Rn : Ax = 0}, i.e., the set
of all elements of the domain which have image 0.

The range of A is the set {Ax : x ∈ Rn} of all images of A. The former is denoted by
kerA and the latter by ranA or by A(Rn).

Task. Show that kernel and range of A are subspaces of Rn and Rm, respectively.

2In this course the entries of a matrix are real or complex numbers. In general, they could also be other
entities, e.g., elements of other fields but R or C, functions, or even matrices.
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The dimension of kerA is called the nullity of A while the dimension of ranA is called
the rank of A.

Exercise. Find kernel and range as well as their dimensions of the matrix
( 2 −2 1

3 −3 1
−1 1 0

)
.

kerA = span{(1, 1, 0)⊤ and ranA = {(a, b, c)⊤ : a = b+ c}.

2.3.4 The fundamental theorem of linear algebra. The dimensions of the kernel and
the range of a matrix are not independent as the following theorem shows. This theorem is
sometimes called the fundamental theorem of linear algebra or the rank-nullity theorem3.

Theorem. Let A : Rn → Rm be a linear transformation. Then dim ranA+dimkerA =
n.

Sketch of proof. Since kerA is a subset of Rn we have dimkerA ≤ dimRn = n.
Assume that dimkerA = k and that B = {b1, ..., bk} is a basis of kerA. By 2.2.5 we can
find vectors c1, ..., cn−k in Rn so that {b1, ..., bk, c1, ..., cn−k} is a basis of Rn. We allow here
for the cases where k = 0 or k = n.

Set vj = Acj for j = 1, ..., n− k. The vectors v1, ..., vn−k are elements of ranA ⊂ Rm.
We want to show that the vectors v1, ..., vn−k are a basis of ranA.

Note that the equation
0 = α1v1 + ...+ αn−kvn−k = A(α1c1 + ...+ αn−kcn−k)

implies that the vector α1c1 + ...+ αn−kcn−k is in kerA, i.e.,
α1c1 + ...+ αn−kcn−k = β1b1 + ...+ βkbk

for appropriate numbers β1, ..., βk. Therefore α1 = ... = αn−k = 0 (and also β1 = ... =
βk = 0) which means that v1, ..., vn−k are linearly independent and that dim ranA ≥ n−k.

Let v = Ac be an arbitrary vector in ranA. Since c = x + y where x ∈ kerA and
y = γ1c1 + ... + γn−kcn−k, we get v = Ac = Ax + Ay = γ1v1 + ... + γn−kvn−k. Thus
v ∈ span{v1, ..., vn−k} which shows that dim ranA ≤ n− k. This completes the proof. �

2.4. Matrix algebra

2.4.1 Vector spaces of matrices. Let α be a scalar and M and N matrices in Rm×n.
We define a matrix addition by adding corresponding entries of the matrices and a scalar
multiplication by multiplication of each matrix entry by α. More precisely, if

M =

M1,1 · · · M1,n

...
...

Mm,1 · · · Mm,n

 and N =

N1,1 · · · N1,n

...
...

Nm,1 · · · Nm,n

 ,

then

M +N =

 M1,1 +N1,1 · · · M1,n +N1,n

...
...

Mm,1 +Nm,1 · · · Mm,n +Nm,n

 and αM =

αM1,1 · · · αM1,n

...
...

αMm,1 · · · αMm,n

 .

We also define the zero matrix, denoted by 0, all of whose entries are 0.
Suppose L, M , and N are m× n-matrices and α and β are scalars. Then we have the

following properties of addition and scalar multiplication:
(a) M +N and αM are again m× n-matrices.

3The name is explained in 2.4.4.
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(b) (L+M) +N = L+ (M +N) (the associative law).
(c) M +N = N +M (the commutative law).
(d) The zero matrix satisfies M + 0 = M .
(e) The matrix N = (−1)M satisfies M +N = 0.
(f) (α+ β)M = αM + βM .
(g) α(M +N) = αM + αN .
(h) (αβ)M = α(βM).
(i) 1M = M .

Task. Compare these properties with those of vectors in Rn as given in 2.1.3 and 2.1.4.
Then show that these properties do hold.
2.4.2 Matrix multiplication. Let N be an n ×m-matrix and M an m × ℓ-matrix. We

define the matrix product NM by

(NM)j,k =

m∑
s=1

Nj,sMs,k, j = 1, ...n, k = 1, ..., ℓ.

NM is an n× ℓ-matrix.
Note that it is necessary that the number of columns of N equals the number of rows

of M in order to form the product NM . Also if n = 1, i.e., if M is a vector in Km, this
definition of the product is in agreement with the one made in 2.3.1.

Matrix multiplication is associative but not commutative. In fact MN might not even
be defined even if NM is.

Task. Show associativity and find example of two 2× 2-matrices M and N such that
MN 6= NM .
2.4.3 Distributive laws in matrix algebra. We have the following distributive laws

for matrices A,B,C whenever it makes sense to form the sums and products in question:
(A+B)C = AC +BC, A(B + C) = AB +AC, and α(AB) = (αA)B = A(αB).

Task. Prove these laws.
2.4.4 Rank of a matrix. The dimension of the range of a matrix M as a linear transfor-

mation is called its rank. Thus the rank of a matrix M is the dimension of its column space
and is equal to the number of linearly independent columns of M . It is therefore sometimes
called column rank of the matrix.

We may of course also consider the span of the rows of M . Its dimension is called the
row rank of M . However, we have been too careful here as the following theorem shows.

Theorem. Let M be a matrix and R a row-echelon matrix which is row-equivalent to
M . The row rank and the column rank of M , the row rank and the column rank of R and
the number of pivots of R are all identical.

Sketch of proof. The elementary row operations leave the number of linearly inde-
pendent rows of a matrix invariant as they do not change the space spanned by these rows.
Hence the row ranks of M and R coincide. Since the systems Mx = 0 and Rx = 0 are
equivalent, we have kerM = kerR so that by the fundamental theorem of linear algebra
we find that the column ranks of M and R also coincide. The proof is completed by the
observation that column rank and row rank of R are equal to the number of pivots of R. �
2.4.5 Square matrices. A matrix is called a square matrix if it has as many columns as

it has rows. The elements M1,1, ..., Mn,n of an n × n-matrix are called diagonal elements
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and together they form the main diagonal of the matrix. A matrix is called a diagonal
matrix, if its only non-zero entries are on the main diagonal. Such a matrix is denoted by
diag(a1, ..., an), when a1, ..., an are its entries along the diagonal (in that order).

The (n× n-)identity matrix 1 is an n× n-matrix all of whose entries are 0 save for the
ones on the main diagonal which are 1.
2.4.6 Inverse of a square matrix. Suppose A is an m × n matrix. If m < n the

fundamental theorem of linear algebra 2.3.4 shows that kerA cannot be trivial and hence A
cannot be injective. If m > n then dim ranA ≤ n < m and hence A cannot be surjective.
If m = n, we have the following theorem.

Theorem. If A is an n× n-matrix such that kerA = {0}, then it has a unique inverse
denoted by A−1. A−1 is a n× n-matrix such that AA−1 = A−1A = 1.

Sketch of proof. By 2.3.4 the linear transformation A : Rn → Rn is not only in-
jective but also surjective. Hence an inverse transformation exists. The question is if it
can be represented as a matrix. Let δk be the k-th column of 1. Therefore, the equation
Ax = δk has a unique solution xk. Now let B be the matrix with columns x1, ..., xn (in that
order). Then we have, by construction, AB = 1. Since the vectors x1,..., xn are linearly
independent the transformation B : Rn → Rn is also bijective so that there is a matrix C
with BC = 1. These imply C = (AB)C = A(BC) = A. �

Note that, even though multiplication is, in general, not commutative, left and right
inverse of an invertible matrix are the same.
2.4.7 Structure of the set of solutions of a system of linear equations. In 1.3.7

we described how to find solutions of Ax = b, a linear system of equations where A is
an m × n-matrix and b a vector of length m. In particular, 1.3.7 showed when to expect
existence and uniqueness. We will now investigate the solution set in a little more detail.

First assume that the system is homogeneous, i.e., that b = 0. In this case the set of
solutions is a subspace of Rn, namely Ax = 0 if and only if x ∈ kerA. The fundamental
theorem of linear algebra shows that dimkerA = n − dim ranA. Hence, if dim ranA, the
rank of A, is equal to n, then kerA is trivial and we have a unique solution, namely the
trivial solution. In particular, m < n implies (not surprisingly), that there are non-trivial
solutions.

If b 6= 0, the system is called non-homogeneous. Note that Ax is a linear combination
of the columns of A. Hence there will be a solution of Ax = b only if b is in the span of
the columns of A. Now suppose xp is a (known) solution of Ax = b, i.e., we have Axp = b.
Another solution x, if any, has to satisfy Ax = b = Axp and hence A(x− xp) = 0. Thus the
set of solutions of Ax = b is given by {xh + xp : xh ∈ kerA}. In particular, if the rank of A
is n or, equivalently, the kernel of A is trivial, then there is only one solution, namely xp.





CHAPTER 3

Vector spaces

3.1. Spaces and subspaces

3.1.1 Polynomials. A function p : R → R is called a polynomial if it has the form

p(x) =

n∑
k=0

akx
k = a0 + a1x+ ...+ anx

n

where n ∈ N0 and the coefficients ak are in R (or C) for k = 0, ..., n. If an 6= 0 we say that p
has degree n. If all coefficients of p are 0 we have the zero polynomial to which no degree is
assigned. We denote the zero polynomial by 0; it is the function which assigns to any x ∈ R
the number 0.

We may add two polynomials p and q by defining (p+ q)(x) = p(x) + q(x) and we may
multiply p by a scalar α by setting (αp)(x) = αp(x).

Theorem. If p, q, and r are polynomials and α and β are scalars we have the following
statements:
(a) p+ q and αp are again polynomials.
(b) (p+ q) + r = p+ (q + r) (the associative law).
(c) p+ q = q + p (the commutative law).
(d) The zero polynomial 0 satisfies p+ 0 = p.
(e) The polynomial s = (−1)p satisfies p+ s = 0.
(f) (α+ β)p = αp+ βp.
(g) α(p+ q) = αp+ αq.
(h) (αβ)p = α(βp).
(i) 1p = p.

Task. Compare these properties with those of vectors in Rn as given in 2.1.3 and 2.1.4
and those of matrices as given in 2.4.1. Then prove the theorem.
3.1.2 Vector spaces. Let V be a set and let K be a field1. Suppose there is a binary

operation on V (denoted by +) and a function σ from K×V to V (denoted by juxtaposition)
such that the following properties are satisfied:
(a) x+ y ∈ V and rx ∈ V for all r ∈ K and all x, y ∈ V .
(b) (x+ y) + z = x+ (y + z) for all x, y, z ∈ V (the associative law).
(c) x+ y = y + x for all x, y ∈ V (the commutative law).
(d) There is a vector 0 such that x+ 0 = x for all x ∈ V (existence of the zero vector).
(e) For each x ∈ V there is a vector y such that x+ y = 0 (existence of the negative).
(f) (r + s)x = rx+ sx for all r, s ∈ K and all x ∈ V .
(g) r(x+ y) = rx+ ry for all r ∈ K and all x, y ∈ V .
(h) (rs)x = r(sx) for all r, s ∈ K and all x ∈ V .

1We will use only R or C for K but the definition works for any field.

15
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(i) 1x = x for all x ∈ V .
Then (V,K,+, σ) (or just V to save space) is called a vector space over K. If K = R we
call V a real vector space and if K = C we call V a complex vector space. The elements
of V are called vectors and the elements of K are called scalars. The binary operation +
is called (vector) addition. The map (r, x) 7→ rx is called scalar multiplication. We use the
same symbol for the vector 0 and the scalar 0. It is always clear from the context which one
is meant.

Task. Convince yourself that euclidean vector spaces Rn are real vector spaces in the
sense of Definition 3.1.2. In the same way one sees that Cn (whose elements are ordered lists
of n complex numbers) is a complex vector space for every natural number n. Finally note
that the set of all polynomials as well as the set of m× n-matrices are also vector spaces.

3.1.3 Spaces of functions. Suppose X is a set, K is a field, and consider the set of all
functions defined on X with values in K. To refer to this set we use the symbol KX . If f
and g are two functions in KX we add them as usual, i.e., f + g is defined by (f + g)(x) =
f(x)+ g(x) where x varies in the set X. We also define a scalar multiplication: if α ∈ K we
define the function αf by setting (αf)(x) = αf(x) for all x ∈ X. With these two operations
KX becomes a vector space.

Task. Show that KX is a vector space.

We could, for example, have X = (0, 1) and K = R. Then KX is the set of all real-valued
functions on the interval (0, 1).
3.1.4 The trivial vector space. The set {e} becomes a vector space, if we define e+e = e

and, for all r ∈ K, re = e. It is called the trivial vector space. Of course, e is zero element
of this vector space.
3.1.5 Some basic facts. There is only one 0 vector, i.e., only one vector has property

(d) in Definition 3.1.2. Also, every vector has precisely one negative. For all x ∈ V and all
r ∈ K we have rx = 0 if and only if r = 0 or x = 0. The negative of x and is denoted by
−x and we have −x = (−1)x and −(−x) = x.

Task. Prove these claims. The following hints may be helpful. To show the uniqueness
of the zero vector assume there were at least two, say 0 and e. Then, using the vector space
axioms (and only those), show that e = 0. e = e+0 = 0+e = 0. The proof of uniqueness of
the negative of a given vector x follows a similar line of reasoning. y = y+0 = y+(x+y′) =
(y + x) + y′ = 0 + y′ = y′. To prove that rx = 0 if r = 0 or x = 0 one uses the fact
that 0 + 0 = 0 (which is true for the scalar 0 as well as the vector 0) and the existence of
negatives. Consider 0x = (0+ 0)x = 0x+ 0x and r0 = r(0 + 0) = r0 + r0. For the converse
assume rx = 0. If r 6= 0 use that r has a reciprocal.

3.1.6 Subspaces. As before a non-empty subset S of a vector space V is called a subspace
of V , if x+ y ∈ S and αx ∈ S whenever x, y ∈ S and α ∈ R.

Theorem. If S is a subspace of a vector space V , then it is itself a vector space (with
respect to the operations in V ).

Theorem. The intersection of a nonempty collection of subspaces of a vector space V
is again a subspace of V .

Exercise. Show the following claims:
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(1) The set of real-valued differentiable functions defined on an interval (a, b) is a
subspace of the set of all real-valued functions on (a, b).

(2) The set of real polynomial functions is a subspace of the set of all real-valued
functions on R.

(3) The set of polynomial functions on R (or C) of degree at most n is a subspace of
the set of all polynomial functions on R (or C).

3.2. Linear independence and spans

Many of the notions we introduce here for general vector spaces V are already familiar
from the case where V = Rn.
3.2.1 Linear combinations and linear independence. If x1, ..., xn are elements of a

vector space V and if α1, ..., αn are scalars, then the vector
α1x1 + ...+ αnxn

is called a linear combination of x1, ..., xn.
The vectors x1, ..., xn ∈ V are called linearly independent if α1x1+ ...+αnxn = 0 implies

that α1 = ... = αn = 0. Otherwise they are called linearly dependent. The empty set is
defined to be linearly independent.

A set M ⊂ V is called linearly independent if any finite number of pairwise distinct
elements of M are linearly independent. Otherwise M is called linearly dependent.

Task. Prove the following facts:
(1) A set consisting of precisely one element is linearly independent if and only if that

element is not the zero vector.
(2) Any set containing the zero vector is linearly dependent.
(3) If A ⊂ B and B is linearly independent then so is A.

Exercise. Show that four polynomials of degree less than or equal to 2 must be linearly
dependent.
3.2.2 Spans. Let A be a subset of a vector space V . If A = ∅ we define the span of A by
spanA = {0}. Otherwise, as before, spanA is the set of all linear combinations of (finitely
many) elements of a set A.

Theorem. spanA =
∩

S∈C S where C be the collection of all subspaces of V which
include A.

Sketch of proof. First note (using 3.1.6) that spanA is a subspace and that A ⊂
spanA. Therefore spanA ∈ C and

∩
S∈C S ⊂ spanA. Conversely, suppose x ∈ spanA and

S ∈ C. Then there are vectors a1, ..., an ∈ A ⊂ S such that x = α1a1 + ...+ αnan. Since S
is a subspace x ∈ S and also in

∩
S∈C S. �

3.2.3 Dimension of a vector space. To any vector space V we assign a dimension
denoted by dimV . To the trivial vector space {0} we assign dimension 0. If a vector
space has a finite subset which spans it, it is called finite-dimensional. In this case its
dimension is defined to be the number of elements of the smallest spanning set (ordering
spanning sets by the number of their elements). In all other cases the vector space is called
infinite-dimensional and we say it has dimension ∞.

Task. Compare with our previous definition when V is a subspace of Rn.
Exercise. Find the dimension of the space of m× n-matrices.
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3.2.4 Bases. A set B ⊂ V is called a basis of the non-trivial vector space V , if it is linearly
independent and spans V . This is equivalent to the statement that every x ∈ V can be
expressed uniquely as a linear combination of the elements of B. The empty set is a basis
of the trivial vector space.

Exercise. Find a basis of the space of all polynomials of degree at most 3. What is
the dimension of the space of all polynomials?

3.2.5 Ordered bases. Sometimes we might want to think of the elements of a basis to be
arranged in a certain order. Therefore we introduce the concept of an ordered basis: if V is
a finite-dimensional vector space we call (v1, ..., vn) ∈ V n an ordered basis, if v1, ..., vn are
pairwise distinct and form a basis of V .
3.2.6 The canonical basis of Kn. Let δk ∈ Kn be the vector whose entries are all 0 except
for a 1 in position k, e.g. δ1 = (1, 0, ..., 0)⊤, δ3 = (0, 0, 1, 0, ..., 0)⊤, and δn = (0, ..., 0, 1)⊤.
Then {δ1, ..., δn} is a linearly independent set spanning Kn and hence a basis of Kn. It is
called the canonical basis of Kn.
3.2.7 Extending linearly independent sets. Suppose the set S spans the vector space
V . If L ⊂ S is a linearly independent set which does not span V , then there is a vector
x ∈ S such that L ∪ {x} is still linearly independent.

Sketch of proof. Since L does not span V there is a vector v ∈ V which is not in
spanL. The vector v is a linear combination (with non-zero coefficients) of finitely many
elements of S. At least one of these, which we call x, cannot be in the span of L. It follows
that L ∪ {x} is linearly independent. Pick any finite subset {x1, ..., xn} of L and consider
the equation α1x1 + ...+ αnxn + αx = 0. Since x 6∈ spanL we must have α = 0. Then the
linear independence of L shows that α1 = ... = αn = 0. �

3.2.8 Creating a basis from a spanning set. Suppose V is a vector space of dimension
n and S is a finite spanning subset of V . Then #S ≥ n and there is a basis B of V such
that B ⊂ S.

Sketch of proof. If n = 0 (and hence V = {0}) we choose B = ∅ which finishes the
proof in this case. Otherwise we now prove by induction that, for every k ∈ {1, ..., n}, the
set S contains a linearly independent set Sk of k elements: Since S must contain a non-zero
element x1 we may choose S1 = {x1}. Now suppose we have already a linearly independent
set Sk ⊂ S such that #Sk = k. If Sk does not span V we use 3.2.7 to join another element
of S to create Sk+1. Then Sk+1 = Sk ∪ {xk+1} is again a linearly independent set and we
proceed to the next number. Since S is a finite set the process must come to an end, i.e.,
for some ℓ the set Sℓ spans V . Thus #S ≥ #Sℓ ≥ n. Choosing B = Sℓ we have a basis of
V . �

Corollary. Every finite-dimensional vector space has a basis.

3.2.9 Creating a basis from a linearly independent set. Let V be a vector space of
dimension n and L a linearly independent subset of V . Then #L ≤ n and there is a basis
B of V such that L ⊂ B.

Sketch of proof. If L spans V it is a basis. Otherwise let S be a finite spanning set
and note that L∪ S is also a spanning set. The proof may now be completed with the help
of 3.2.7. �
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3.2.10 The number of elements in a basis. Every basis of an n-dimensional vector
space has precisely n elements.

Sketch of proof. Suppose V is a vector space, dimV = n, and B is a basis of V .
Since B spans V we get from 3.2.8 that #B ≥ n. Since B is linearly independent we get
from 3.2.9 that #B ≤ n. �

Moreover, if V is an n-dimensional vector space and A ⊂ V has n elements, the following
statements hold.

(1) If A spans V , it is linearly independent and hence a basis of V . Use 3.2.8 and
3.2.10.

(2) If A is a linearly independent, then it spans V and hence is a basis of V . Use 3.2.9
and 3.2.10.

3.3. Direct sums

3.3.1 External direct sums of vector spaces. Let V and W be two vector spaces over
the field K and consider the cartesian product V ×W , i.e., the set {(v, w) : v ∈ V,w ∈ W}.
For V ×W we define an addition and a scalar multiplication by setting (v1, w1)+(v2, w2) =
(v1+v2, w1+w2) and, for r ∈ K, r(v, w) = (rv, rw). With these operations V ×W becomes
a vector space. It is called the (external) direct sum of V and W and denoted by V ]W .

Theorem. The dimension of a direct sum of two vector spaces V and W satisfies
dim(V ]W ) = dimV + dimW .

Sketch of proof. Let B1 be a linearly independent subset of V and B2 a a linearly
independent subset of W . Define A1 = {(v, 0) : v ∈ B1}, A2 = {(0, w) : w ∈ B2} and
B = A1 ∪ A2. Then B is a linearly independent subset of V ] W . This proves the claim
when one of V and W is infinite-dimensional. Otherwise, choose B1 and B2 as bases to
obtain a basis B of V ]W . �

3.3.2 Internal sums of subspaces. Let X and Y be two subspaces of a vector space
V . The union of X and Y is not necessarily a subspace of V . We define the (internal)
sum of X and Y , denoted by X + Y , to be the subspace generated by their union, i.e.,
X+Y = span(X ∪Y ). Note that X+Y = {x+y : x ∈ X, y ∈ Y } and X+Y = Y +X. The
dimension of X + Y is infinite if at least one of X and Y has infinite dimension. Otherwise
it is given by

dim(X + Y ) = dimX + dimY − dim(X ∩ Y ).

3.3.3 Internal direct sums od subspaces. Let X and Y be two subspaces of a vector
space V . The internal sum X + Y is called direct, if X ∩ Y = {0}. To emphasize this we
write X ] Y instead of X + Y .2

Theorem. Let X be a subspace of a finite-dimensional vector space V . Then there
exists a subspace Y such that X ∩ Y = {0} and X ] Y = V .

Sketch of proof. Let A be a basis of X. By Theorem 3.2.9 there is a basis C of V
such that A ⊂ C. Define B = C \ A and Y = spanB. Then Y is a subspace of V and
X∩Y = {0}. Assume x ∈ X∩Y . Then x can be written as a linear combination of elements
of A and as a linear combination of elements of B. Subtracting these two expressions gives

2The internal direct sum of X and Y is isomorphic (see 4.1.1) to their (external) direct sum. This
justifies using the same notation.
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that a linear combination of elements of C equals 0. Hence all coefficients are 0 and x is
equal to 0. Also, since C = A ∪B spans V we get that X ] Y = V . �



CHAPTER 4

Linear transformations

4.1. Basics

4.1.1 Linear transformations. Let V and W be two vector spaces over the same field
K. The function F : V → W is called a linear transformation, if

F (αx+ βy) = αF (x) + βF (y)

for all α, β ∈ K and all x, y ∈ V . In particular, F (0) = 0 and F (−x) = −F (x).
Since F distributes over sums like multiplication, it is customary to write Fx in place

of F (x). We will also do so frequently.
4.1.2 Examples. We have the following simple examples:

(1) The multiplication of a matrix A ∈ Rm×n by a column vector x ∈ Rn as defined in
2.3.1 gives rise to a linear transformation from Rn to Rm. Here we may, of course,
replace R by any field K.

(2) Multiplication with a fixed polynomial q is a linear transformation from the space of
polynomial functions of degree at most n, to the space of all polynomial functions.

(3) The derivative is a linear transformation from the vector space of continuously
differentiable functions on the real interval (a, b) to the vector space of continuous
functions on (a, b).

(4) The definite integral f 7→
∫ 1

−1
f(x)dx is a linear transformation from the vector

space of continuous real-valued functions defined on [−1, 1] to R.
4.1.3 Kernel and range. The kernel of a linear transformation F : V → W is the set
{x ∈ V : F (x) = 0}, i.e., the set of all elements of the domain which are mapped to 0.

The range of a linear transformation F : V → W is the set {F (x) : x ∈ V } of all images
of F .

Kernel and range of F are subspaces of V and W , respectively. The former is denoted
by kerF and the latter by ranF or by F (V ). The dimension of kerF is called the nullity
of F while the dimension of ranF is called the rank of F .

Exercise. Find kernel and range of examples (2) – (4) in 4.1.2.

4.1.4 Inverse transformations. A linear transformation F is injective if and only if
kerF = {0}.

If F : V → W is a bijective linear transformation, then it has a unique inverse F−1 :
W → V . F−1 is again a linear transformation.

Sketch of proof. Denote the inverse function of F by G. Suppose a, b ∈ W and
α, β ∈ K. Let x = G(a) and y = G(b). Then we have

G(αa+ βb) = G(αF (x) + βF (y)) = G(F (αx+ βy)) = αx+ βy = αG(a) + βG(b)

since a = F (x) and b = F (y). �
21
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4.1.5 Projections. A linear transformation P : V → V is called idempotent or a projection,
if P 2 = P . P is a projection if and only if 1− P is one.Perhaps too soon.

Note that x ∈ ranP if and only if Px = x and that ranP ∩ kerP = {0}.
4.1.6 Isomorphisms. A bijective linear transformation from V to W is called a (vector

space) isomorphism. Two vector spaces V and W are called isomorphic if there exists an
isomorphism from V to W .

Exercise 1. Show that the spaces RX for X = {1, 2} and X = {5, 7} (recall 3.1.3) are
isomorphic.

Exercise 2. Let X and Y be two subspaces of a finite-dimensional vector space V such
that X ∩ Y = {0}. Show that their internal direct sum and their external direct sum are
isomorphic.

4.2. The fundamental theorem of linear algebra

4.2.1 Linear transformations and bases. Suppose V and W are vector spaces and B is
a basis of V . Then any function from B to W extends uniquely to a linear transformation
from V to W . In particular, any linear transformation is uniquely determined by the images
of a basis of the domain of the transformation.

Sketch of proof. Denote the given function from B to W by f . Define g on V by
g(α1x1 + ... + αnxn) = α1f(x1) + ... + αnf(xn) where {x1, ..., xn} ⊂ B. Then g is a linear
transformation from V to W . It is the only linear transformation whose restriction to B is
equal to f . �
4.2.2 The fundamental theorem of linear algebra. The dimensions of the kernel and

the image of a linear transformation are not independent as the following theorem shows.
This theorem is sometimes called the fundamental theorem of linear algebra or the rank-
nullity theorem.

Theorem. Suppose V is a finite-dimensional vector space. Let F : V → W be a linear
transformation. Then dim ranF + dimkerF = dimV .

Sketch of proof. Since kerF ⊂ V we have dimkerF ≤ dimV = n < ∞. Assume
that dimkerF = k and that B = {b1, ..., bk} is a basis of kerF . By Theorem 3.3.3 there
exists a subspace Y of V such that kerF ] Y = V . Let C be a basis of Y . We show below
that F (C) is a basis of F (V ) and that it has n − k elements. Hence dimF (V ) = n − k
proving the theorem, provided F (C) is, as claimed, a basis of F (V ).

If C = {c1, ..., cn−k} let wk = F (ck). Consider the equation α1w1+ ...+αn−kwn−k = 0.
Then x = α1c1 + ... + αn−kcn−k ∈ kerF , i.e., x ∈ Y ∩ kerF and hence x = 0. This shows
that all coefficients αj are 0 and hence that {w1, ..., wn−k} is a linearly independent set.

Let w ∈ F (V ). Then w = F (v) for some v ∈ V . Hence v = x + y where x ∈ kerF
and y ∈ Y . But this shows that F (v) = F (y) since F (x) = 0. Hence F (C) spans F (Y ) =
F (V ). �
4.2.3 Consequences. Let F be a linear transformation between finite-dimensional vector

spaces V and W and suppose B is a basis of V . Then the following statements are true.
(1) dimF (V ) ≤ dimV and dimF (V ) ≤ dimW .
(2) F is injective if and only if F |B is injective and F (B) is linearly independent.
(3) F is surjective if and only if F (B) spans W .
(4) F is injective if and only if dimF (V ) = dimV .
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(5) F is surjective if and only if dimF (V ) = dimW .
(6) If V is finite-dimensional and P is a projection, then ranP ] kerP = V .

4.3. The algebra of linear transformation

4.3.1 The vector space of linear transformations. Suppose V and W are two vector
spaces over K. We denote the set of all linear transformations from V to W by L(V,W ).
On L(V,W ) we define an addition and a scalar multiplication as follows. If F,G ∈ L(V,W )
and α ∈ K let (F +G)(x) = F (x) +G(x) and (αF )(x) = αF (x) for all x ∈ V . Then F +G
and αF are again in L(V,W ). In fact, L(V,W ) becomes a vector space when doing so.

Task. Prove these claims.

4.3.2 Compositions of linear transformations. Suppose U , V , and W are vector spaces
over K. If F : U → V and G : V → W are linear transformations we define

(G ◦ F )(x) = G(F (x))

for all x ∈ U . Then G ◦ F , the composition of G and F , is a linear transformation from U
to W . Note that it makes no sense to define F ◦G unless W ⊂ U .

Task. Show that G ◦ F is linear

For simplicity one often writes GF in place of G◦F and F 2 in place of F ◦F . Analogous
conventions are used, of course, for other powers.

4.4. Linear transformations and matrices

4.4.1 Coordinates. Let V be a vector space over K of dimension n and a = (a1, ..., an)
an ordered basis of V . If x is an element of V , the (uniquely determined) coefficients α1, ...,
αn in the representation x = α1a1 + ...+ αnan are called the coordinates of x with respect
to the ordered basis a. The vector (α1, ..., αn)

⊤ ∈ Kn of coordinates is denoted by xa.
If V = Kn we have to distinguish between an element x of V which is denoted by

(x1, ..., xn)
⊤ and the list xa of coordinates of x with respect to some ordered basis a of Kn.

However, if a is the canonical basis, then x = xa.

Exercise. Show that the vectors (1, 2, 1)⊤, (1, 2, 2)⊤, and (0, 2, 2)⊤ form a basis of R3.
Then find the list of coordinates of the vector (2, 0, 2)⊤ with respect to that basis.

4.4.2 Matrices and linear transformations between euclidean spaces. Let M be
a matrix in Km×n. As mentioned in 4.1.2 (and, indeed, in 2.3.1) the multiplication of M
by a column vector x ∈ Kn gives rise to a linear transformation T from Kn to Km. Note
that T (δk) is the k-th column of M . Conversely, assume that T : Kn → Km is a linear
transformation. Collect the vectors T (δ1), ..., T (δn) in a matrix M ∈ Km×n and note that
T (x) = Mx for all x ∈ Kn. This shows that matrices in Km×n and linear transformations
from Kn to Km are in one-to-one correspondence and one frequently identifies matrices
with their corresponding linear transformations.
4.4.3 Matrices and general linear transformations. Let V and W be finite-dimension-
al vector spaces of dimensions n and m, respectively, and F a linear transformation from V
to W . Choose an ordered basis a = (a1, ..., an) for V and an ordered basis b = (b1, ..., bm) for
W and define bijections S : Kn → V and T : Km → W by setting Sδk = ak for k = 1, ..., n
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and Tδj = bj for j = 1, ...,m.1 Then M = T−1FS is a linear transformation from Kn to
Km which we identify, according to our discussion in 4.4.2, with a matrix in Km×n also
denoted by M . Thus every linear transformation between finite-dimensional vector spaces
can be represented by a matrix after specifying bases in domain and range.

Exercise 1. Suppose T : R2 → R2 maps the vectors (1, 2)⊤ and (2, 3)⊤ to the vectors
(−1, 1)⊤ and (−1, 2)⊤, respectively. Find the matrix representing T with respect to the
canonical basis in R2.

(
1 −1
1 0

)
.

Exercise 2. Identify a basis in the space V of all polynomials of degree at most 3 and
determine the matrix which represents taking a derivative viewed as a transformation from
V to V .

4.4.4 Representations with respect to different bases. Let V , W , and F be as
in 4.4.3. As we saw, ordered bases (a1, ..., an) and (b1, ..., bm) chosen in V and W allow
the representation of F by a matrix M = T−1FS. Using different bases (ã1, ..., ãn) and
(b̃1, ..., b̃m) instead yields a different matrix M̃ = T̃−1FS̃. The connection between M and
M̃ is therefore given by

M̃ = R−1MQ

where R = T−1T̃ and Q = S−1S̃. Note that Q and R are linear transformations from
Kn → Kn and Km → Km, respectively.

The entries of Q describe the change of bases in V since ãk =
∑n

ℓ=1 Qℓ,kaℓ. Similarly,
the entries of R describe the change of bases in W .

It might be mentioned here that, when V = W one typically chooses the same basis in
domain and range and, when changing bases, one uses the same transformation in domain
and range. Hence, in this case, one has R = Q and M̃ = Q−1MQ. In Chapter 6 we will
be concerned with the question of how to choose a basis so that the matrix representing a
linear transformation T : V → V is particularly simple.

1The vectors in the domains of S and T have different lengths if m ̸= n, i.e., the symbol δℓ may denote
different vectors. Instead of introducing more cumbersome notation we emphasize that the context makes
the precise meaning of δℓ clear.



CHAPTER 5

Inner product spaces

5.1. Inner products

5.1.1 Inner products. Let V be a vector space over either the real or the complex
numbers. A function 〈·, ·〉 : V × V → K is called an inner product or a scalar product if it
has the following properties:

(1) 〈x, x〉 ≥ 0 for all x ∈ V .
(2) 〈x, x〉 = 0 if and only if x = 0.
(3) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V .
(4) 〈z, αx+ βy〉 = α〈z, x〉+ β〈z, y〉 for all α, β ∈ K and all x, y, z ∈ V .

If there exists an inner product 〈·, ·〉 on V then (V, 〈·, ·〉) is called an inner product space.
If K = R the inner product is bilinear (linear in both of its arguments). If K = C the

inner product is linear in its second argument but anti-linear in its first: 〈αx + βy, z〉 =
α〈x, z〉+ β〈y, z〉.

Task. Show that y = 0 if and only if 〈x, y〉 = 0 for all x ∈ V .

5.1.2 Examples. One may define inner products for Rn and Cn by setting 〈x, y〉 =∑n
k=1 xkyk. This is the standard inner product (dot product) in R2 and R3.

Also C0([a, b]), the vector space of continuous functions defined on the closed interval
[a, b] can be turned into an inner product space: For f, g ∈ C0([a, b]) define 〈f, g〉 =

∫ b

a
fgdx.

5.1.3 The Cauchy-Schwarz inequality. The most important property of an inner prod-
uct is the Cauchy-Schwarz inequality

|〈x, y〉| ≤ 〈x, x〉1/2〈y, y〉1/2,

which holds for any two vectors x and y in the space.

Sketch of proof. We may assume that 〈x, y〉 6= 0 and then define α = 1/〈x, y〉. For
any real r we have 0 ≤ 〈x − rαy, x − rαy〉. This is a quadratic polynomial in r with real
coefficients and its lowest value gives the inequality. �

5.1.4 Inner products and norms. Let V be an inner product space and define the
function x 7→ ‖x‖ = 〈x, x〉1/2. This assigns to every vector in V a non-negative number
called its norm. The norm has the following properties:

(1) ‖x‖ ≥ 0 for all x ∈ V ,
(2) ‖x‖ = 0 if and only if x = 0,
(3) ‖αx‖ = |α|‖x‖ for all α ∈ K and all x ∈ V , and
(4) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V (the triangle inequality).

25



26 5. INNER PRODUCT SPACES

5.2. Orthogonality

5.2.1 Orthogonality. Suppose 〈·, ·〉 is an inner product on a vector space V . If 〈x, y〉 = 0
we say that x and y are orthogonal or perpendicular and denote this by x ⊥ y.

With the standard scalar product in R2 and R3 this is the usual notion of orthogonality.
Let M be a subset of V and define M⊥ = {x ∈ V : 〈y, x〉 = 0 for all y ∈ M}. If

x1, x2 ∈ M⊥ then so is αx1 + βx2, i.e., M⊥ is a subspace of V .
5.2.2 Orthogonality and linear independence. Let X be a subset of an inner product

space. If the elements of X are non-zero and pairwise orthogonal then X is linearly inde-
pendent. To see this take the inner product of a linear combination of the vectors with each
of the vectors themselves.
5.2.3 Orthonormal subsets. A set X whose elements have norm one and are pairwise

orthogonal is called orthonormal.
5.2.4 The Gram-Schmidt procedure. Suppose x1, ..., xn are linearly independent

vectors in an inner product space V . Then we can construct an orthonormal set Z such that
spanZ = span{x1, ..., xn} with the following algorithm, called the Gram-Schmidt procedure.

Define z1 = x1/‖x1‖. Then z1 has norm 1 and has the same span as x1. Next assume
that, for some k < n, the set {z1, ..., zk} is orthonormal and spans span{x1, ..., xk}. Define

yk+1 = xk+1 −
k∑

j=1

〈zj , xk+1〉zj .

Then yk+1 is different from 0 and orthogonal to each of the zj , j = 1, ..., k. Now define
zk+1 = yk+1/‖yk+1‖ to obtain an orthonormal set {z1, ..., zk, zk+1}, which has the same
span as {x1, ..., xk+1}. Induction completes the proof.

Exercise. Show that 〈p, q〉 =
∫ 1

−1
pqdx is an inner product on the vector space of all

polynomials. Then construct an orthonormal basis of the vector space of all polynomials of
degree at most 2. z1 = 1/

√
2, z2 =

√
3/2x, z3 =

√
45/8(x2 − 1/3).

5.2.5 Orthogonal direct sums. If M and N are orthogonal subspaces of a vector space
V we denote their internal direct sum by M ⊕N .
5.2.6 Orthogonal complements. Let M be a subspace of the finite-dimensional inner

product space V . Then M ∩ M⊥ = {0} and V = M ⊕ M⊥. In particular, dimM⊥ =
dimV − dimM and (M⊥)⊥ = M .

Sketch of proof. If x ∈ M ∩ M⊥, then 〈x, x〉 = 0 and hence x = 0. Let B =
(b1, ..., bk) be an ordered basis of M . Using 3.2.7 we may extend B to a basis (b1, ..., bn) of
V . Because of the Gram-Schmidt procedure we may assume that B is orthonormal. Hence
bk+1, ..., bn are all in M⊥. This implies that V = M ⊕ M⊥. The last claim follows since
M ⊕M⊥ = V = (M⊥)⊥ ⊕M⊥. �

When M is a subspace of V one calls M⊥ the orthogonal complement of M .
5.2.7 Orthogonal projections. Suppose V is an inner product space. A projectionfin dim

P : V → V is called an orthogonal projection, if kerP ⊥ ranP . Since ran(1 − P ) = kerP
and ker(1− P ) = ranP , P is an orthogonal projection if and only if 1− P is one.kerP ⊕ ranP

Suppose M is a subspace of V . Recall that each x ∈ V has a unique decomposition
x = m+ n where m ∈ M and n ∈ M⊥. If we define P : V → V by Px = m, it follows that
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P is an orthogonal projection with range M . Since there is only one orthogonal projection
with range M we say that P is the orthogonal projection onto M .
5.2.8 Pythagorean theorem. Let P and Q = 1 − P be orthogonal projections of a

finite-dimensional vector space V onto subspaces M and M⊥, respectively. Then
‖x‖2 = ‖Px‖2 + ‖Qx‖2.

5.3. Linear functionals and adjoints

Throughout this section U , V , and W are finite-dimensional inner product spaces.
5.3.1 Linear functionals. Let L : V → K be a linear transformation on the vector space
V . Then L is called a linear functional. The set L(V,K) of all such linear functionals is a
vector space as we saw in 4.3.1. This space of functionals is called the dual space of V and
is denoted by V ∗, i.e., V ∗ = L(V,K). Example in Rn

5.3.2 Riesz’s representation theorem. The following theorem determines the dual space
of any finite-dimensional inner product space.

Theorem. Let V be a finite-dimensional inner product space and L a linear functional
on V . Then there exists a unique y ∈ V such that Lx = 〈y, x〉 for all x ∈ V . Conversely, for
every y ∈ V the function x 7→ 〈y, x〉 is a linear functional on V . In particular, there exists a
bijection from V ∗ to V . This bijection is linear if the scalar field is R and anti-linear if the
scalar field is C.

Sketch of proof. If L = 0 we may choose y = 0. Hence assume now that L 6= 0, i.e.,
that there is an x0 ∈ (kerL)⊥ with ‖x0‖ = 1. Set y = (Lx0)x0. Any x ∈ V may be written
as x = αx0 + w with w ∈ kerL so that w ⊥ y. Hence,

Lx = L(αx0 + w) = L(αx0) = α〈y, x0〉+ 〈y, w〉 = 〈y, αx0 + w〉 = 〈y, x〉.
To prove uniqueness assume 〈y1, x〉 = Lx = 〈y2, x〉 for all x which implies that y1 − y2 ∈
V ⊥ = {0}. �
5.3.3 Example. A 1 × n matrix a, i.e., a row, with entries in K gives rise to a linear

functional on Kn. In fact these are all linear functionals on Kn. The space of all rows with
n entries in K is in a one-to-one correspondence with the space of all columns with n entries
in K.
5.3.4 Adjoints. Suppose T : V → W is a linear transformation. Fix z ∈ W . Then

x 7→ 〈z, Tx〉 is a linear functional. Riesz’ representation theorem 5.3.2 shows that there is
a unique vector in V , which we denote by T ∗z, such that 〈z, Tx〉 = 〈T ∗z, x〉 for all x ∈ V .
Since we may do this for any z ∈ W , we find that T ∗ is a function defined on W with values
in V .

T ∗ is a linear transformation, called the adjoint of T . To see linearity let α, β ∈ K and
z1, z2 ∈ W . Then

〈T ∗(αz1 + βz2), x〉 = 〈αz1 + βz2, Tx〉 = α〈z1, Tx〉+ β〈z2, Tx〉
= α〈T ∗z1, x〉+ β〈T ∗z2, x〉 = 〈αT ∗z1 + βT ∗z2, x〉.

Since this is true for all x ∈ V we get, as desired, the linearity of T ∗. Adjoint of p 7→ p′

5.3.5 Basic properties of adjoints. Suppose S and T are linear transformations from V
to W and R is a linear transformation from U to V . Furthermore, let α be a scalar. Then
the following are true:
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(1) (S + T )∗ = S∗ + T ∗.
(2) (αS)∗ = αS∗.
(3) (SR)∗ = R∗S∗.
(4) T ∗∗ = T since 〈z, Tx〉 = 〈T ∗z, x〉 = 〈x, T ∗z〉 = 〈T ∗∗x, z〉 = 〈z, T ∗∗x〉 for all z ∈ V .
(5) kerT = (ranT ∗)⊥ since 〈z, Tx〉 = 〈T ∗z, x〉.

5.3.6 The rank of the adjoint. Let T be a linear transformation from V to W . Then
dim ranT ∗ = dimV − dim(ranT ∗)⊥ = dimV − dimkerT = dim ranT .
5.3.7 Transpose and conjugate transpose of a matrix. Given an m×n-matrix A we

define its transpose A⊤ to be the n × m-matrix satisfying (A⊤)j,k = Ak,j . The conjugate
transpose A∗ of A is defined by (A∗)j,k = Ak,j . Of course, in real vector spaces these
concepts are the same.

The rank of a matrix equals the rank of both its transpose and its conjugate transpose.
A and A have the same rank.

The adjoint of the matrix A, considered as a transformation from Kn to Km, is given
by A∗ (otherwise using the symbol ∗ would have been a very bad idea). Aj,k = 〈δj , Aδk〉 =
〈δk, A∗δj〉 = A∗

k,j . Therefore, the properties listed in 5.3.5 hold also for matrices.Von vorne aufzäumen
A square matrix which equals its transpose is called symmetric while one which equals

its conjugate transpose is called hermitian.
5.3.8 Matrix representation of the adjoint. Let (x1, ..., xn) be an orthonormal basis

of V and (z1, ..., zm) an orthonormal basis of W . Suppose that, with respect to these
bases, T is represented by the matrix A while T ∗ is represented by the matrix B. Since
Txj =

∑m
ℓ=1 Aℓ,jzℓ and T ∗zk =

∑n
ℓ=1 Bℓ,kxℓ we find

Bj,k = 〈xj ,

n∑
ℓ=1

Bℓ,kxℓ〉 = 〈xj , T
∗zk〉 = 〈T ∗zk, xj〉 = 〈zk, Txj〉 = Ak,j .

Hence B = A∗, i.e., the matrix representing T ∗ is the conjugate transpose of the matrix
representing T . If K = R we have, of course, simply B = A⊤. Be warned though, that this
simple relationship may fail when one of the bases is not orthonormal.

5.4. Normal and self-adjoint transformations

Throughout this section V is a finite-dimensional inner product space.
5.4.1 Normal and self-adjoint linear transformations. A linear transformation T :
V → V is called normal, if it commutes with its adjoint, i.e., if TT ∗ = T ∗T . The trans-
formation T is called self-adjoint, if T = T ∗. Note that any self-adjoint transformation is
normal.

Exercise. Find a normal transformation which is not self-adjoint.

5.4.2 Basic properties of normal transformations. The transformation T is normal,
if and only if 〈Tx, Ty〉 = 〈T ∗x, T ∗y〉 holds for all x, y ∈ V .

It follows that kerT = kerT ∗ for any normal linear transformation. Moreover, if T is
normal and x ∈ kerT 2, then Tx ∈ kerT = kerT ∗. Therefore 0 = 〈T ∗Tx, x〉 = 〈Tx, Tx〉 and
hence kerT = kerT 2.
5.4.3 Orthogonal projections are self-adjoint. With the concept of self-adjointness

we have now the following characterization of orthogonal projections.
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Theorem. The linear transformation P : V → V is an orthogonal projection, if and
only if P 2 = P ∗ = P .

Sketch of proof. Suppose P is an orthogonal projection. Since we have 〈P ∗2x, y〉 =
〈x, P 2y〉 = 〈x, Py〉 = 〈P ∗x, y〉 for all x, y ∈ V we find that P ∗ is idempotent. Moreover,
(kerP ∗)⊥ = ranP ⊕ kerP = V , i.e., (kerP ∗)⊥ = ranP = (kerP )⊥ = ranP ∗ by definition
and 5.3.5. It follows that P ∗ is the orthogonal projection onto ranP , i.e., it coincides with
P .

Conversely, if P 2 = P = P ∗, we have kerP = (ranP ∗)⊥ = (ranP )⊥, i.e., P is an
orthogonal projection. �

5.5. Least squares approximation

Throughout this section V is a finite-dimensional inner product space.
5.5.1 The problem. Suppose Ax = b does not have a solution since b is not in the range

of A. We then might be interested in finding an approximation. The best approximation
would make the distance between b and Ax as small as possible, i.e., we should be trying to
find the minimum of {‖Ax− b‖ : x ∈ Rn} if there is such a thing.

This problem occurs frequently in data fitting. If two variables are expected to behave
proportionally one is interested in the proportionality constant. To find it one takes a
number of measurements but, due to measuring errors, it is unreasonable to hope that they
all lie exactly on a line. In this case one tries to find the line which best describes the data.
5.5.2 The distance of a point to a subspace. Let M be a subspace of V and b an

element of V . Then min{‖m− b‖ : m ∈ M}, if it exists, is called the distance from b to M .

Theorem. If b is an element of V and M a subspace of V , then the distance from b to
M exists and is given by ‖b− Pb‖ where P is the orthogonal projection onto M .

Sketch of proof. Let m be an arbitrary point of M . Then b−m = b−Pb+Pb−m
where Pb −m ∈ M and b − Pb = (1 − P )b ∈ M⊥. By the Pythagorean theorem we have
‖b−m‖2 = ‖b− Pb‖2 + ‖Pb−m‖2 which implies that ‖b−m‖ ≥ ‖b− Pb‖ for all m ∈ M .
Since we have equality for m = Pb, we see that the lower bound ‖b−Pb‖ is actually attained,
i.e., we have a minimum. �

5.5.3 Orthogonal projections in Kn. Suppose M is a subspace of Kn and A is a matrix
whose columns are a basis of M . Hence, if dimM = ℓ, then A is an n×ℓ-matrix where ℓ ≤ n.
By the rank-nullity theorem 4.2.2 we have kerA = {0}. It follows that the ℓ× ℓ-matrix A∗A
is invertible, since A∗Ax = 0 implies x∗A∗Ax = ‖Ax‖2 = 0 and hence x = 0. Now define
the n× n-matrix

P = A(A∗A)−1A∗.

Then P is the orthogonal projection onto M . P 2 = P = P ∗ is obvious. Next note that aj ,
the j-th column of A, is given by Aδj . Hence Paj = A(A∗A)−1A∗Aδj = Aδj = aj . ranP ⊂ M is clear.
5.5.4 Least squares approximation. Suppose A is an m × n matrix with real entries

where the rank of A is n and m > n. By 5.5.2 the vector Ax is closest to b if Ax = Pb when
P denotes the orthogonal projection onto the column space of A. Hence we want to find a
solution of the system Ax = Pb. Since Pb is in the range of A the rank of A and the rank
of the augmented matrix (A,Pb) are the same, namely n. Hence we have a unique solution
x0. It is called the least squares solution.
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Since, by 5.5.3, P = A(A∗A)−1A∗ the equation Ax = Pb implies A∗Ax = A∗b. The
latter has a unique solution which is x0.

Note that to find P we would have to compute the inverse of A∗A. This is avoided by
solving instead of Ax = Pb the equation A∗Ax = A∗b.
5.5.5 Approximating points in a plane. Suppose m (pairwise distinct) points with

coordinates (x1, y1), ..., (xm, ym) are given. If m = 2, then there is a unique line passing
through these points. A straight line is, of course given by the equation y = sx+ c and we
want to find, ideally, numbers s and c such that yj = sxj + c for j = 1, ...,m. In other words
we want to solve the system x1 1

...
...

xm 1

(
s
c

)
=

 y1
...
ym

 .

Denoting the vectors (x1, ..., xm)⊤ and (y1, ..., ym)⊤ by X and Y , respectively, and the
vector all of whose components are 1 by E we may write this as Ax = b where A = (X,E),
x =

(
s
c

)
, and b = Y . The equation A∗Ax = A∗b becomes(

X∗X X∗E
E∗X E∗E

)(
s
c

)
=

(
X∗Y
E∗Y

)
which is merely a 2× 2 system.

The frontispiece of these lecture notes was created using this algorithm (with m = 37).

Exercise 1. Find the best straight line approximating the points (1, 2), (3, 3), and
(5, 3). y = x/4 + 23/12.

Exercise 2. Assuming that none of the yj are 0 devise a scheme to compute the
best approximation of the data from Exercise 1 by an exponential function y = cerx.
y = 1.934 e0.101x.



CHAPTER 6

Spectral theory

Throughout this chapter V is going to be a non-trivial complex vector space of dimension
n < ∞ and T is a linear transformation from V to V .

6.1. Eigenvalues and Eigenvectors

6.1.1 The Fibonacci sequence. After setting f0 = 0 and f1 = 1 define recursively the
numbers fn+1 = fn + fn−1 for all n ∈ N. These famous numbers are called Fibonacci
numbers. The first few are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. While it is always
easy to compute the next number in the sequence, it would be desirable to compute, say,
f100 without computing all previous ones. And, indeed, it is possible to do so with the aid
of eigenvalues and eigenvectors (whatever these may be).

Let Fn =
( fn−1

fn

)
for n ∈ N. Then the recursion relation is Fn+1 = MFn where M is

the matrix
(
0 1
1 1

)
. We may find f100 as the second entry of F100 = M99

(
0
1

)
and the problem

has become one of finding powers of matrices.
Let λ1,2 = (1±

√
5)/2 and S =

(−λ2 −λ1
1 1

)
(the number λ1 = (1 +

√
5)/2 is the famous

golden ratio). One may then compute that S−1MS =
(
λ1 0
0 λ2

)
and a simple induction proof

show that S−1MnS =
( λn

1 0
0 λn

2

)
. Hence

Mn =
1√
5

(
−λ2 −λ1

1 1

)(
λn
1 0
0 λn

2

)(
1 λ1

−1 −λ2

)
and this gives fn = (λn

1 − λn
2 )/

√
5 ≈ 0.4472 e0.48121n.

At a first glance this procedure may look a bit mysterious but a second look shows that
the key is to find the matrix S which “diagonalizes” the matrix M . This, in turn is done,
as we will see, by studying the eigenvalues and eigenvectors of M . The diagonalization
of matrices (and linear transformations) is extremely important for theoretical as well as
numerical linear algebra.
6.1.2 Eigenvalues and eigenvectors. Let T : V → V be a linear transformation, and λ

a scalar. If there exists a non-trivial (non-zero) element x ∈ V such that Tx = λx, then λ
is called an eigenvalue of T and x is called an eigenvector of T associated with λ. Thus λ
is an eigenvalue of T , if and only if T − λ1 is not injective.

The set of all eigenvalues is called the spectrum of T and is denoted by σ(T ) (this
definition assumes that V is finite-dimensional).
6.1.3 Geometric eigenspaces. The eigenvectors of T associated with the eigenvalue λ

are precisely the non-trivial elements of ker(T − λ1). The subspace ker(T − λ1) (including
the zero element) is called the geometric eigenspace of λ and its dimension is called the
geometric multiplicity of λ.
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6.1.4 Existence of an eigenvalue. Any linear transformation T : V → V has at least
one eigenvalue. To see this pick a non-trivial v0 ∈ V and consider the vectors vk = T kv0 for
k = 1, ..., n. These vectors must be linearly dependent. Hence there are scalars α0, ..., αn,
not all 0, such that α0v0+ ...+αnvn = 0. If ℓ is the largest index such that αℓ 6= 0, we must
have ℓ ≥ 1 and we may as well assume that αℓ = 1. By A.2.6, the fundamental theorem of
algebra, we have α0+α1z+ ...+αℓz

ℓ = (z−λ1)...(z−λℓ) for appropriate numbers λ1, ..., λℓ.
Hence we also have

S = α01+ α1T + ...+ αℓT
ℓ = (T − λ11) ◦ ... ◦ (T − λℓ1).

Now assume that each T − λj1 is invertible. Then S is also invertible which prevents that
Sv0 = 0 which we know to be the case. Hence for at least one j the space ker(T − λj1) is
non-trivial so that λj is an eigenvalue.
6.1.5 Eigenvectors corresponding to distinct eigenvalues are linearly indepen-

dent. This claim is proved as follows: Let v1, ..., vm be eigenvectors of T respectively associ-
ated with the pairwise distinct eigenvalues λ1, ..., λm. Suppose that α1v1 + ...+αmvm = 0.
Apply the operator S = (T − λ21)...(T − λm1) to both sides of the equation. Then
0 = α1(λ1 − λ2)...(λ1 − λm)v1. Hence α1 = 0. Similarly, α2 = ... = αm = 0.

As a corollary we obtain also that T can have at most n = dimV distinct eigenvalues.
6.1.6 Diagonalizable transformations. Suppose the eigenvalues of T are λ1, ..., λm and

that their respective geometric multiplicities are µ1, ..., µm. If
∑m

k=1 µk = n, the dimension
of V , then V has a basis of eigenvectors e1, ..., en. Let S : Kn → V be defined by Sδk = ek as
in 4.4.3. Then M = S−1TS is a diagonal matrix, in fact M = diag(λ1, ..., λ1, ..., λm, ..., λm)with respect to the

canonical basis. when the eigenvalues are repeated according to their geometric multiplicity and the basis is
properly ordered.V is a direct sum of

eigenspaces Consequently, we define a linear transformation to be diagonalizable, if V has a basis of
eigenvectors or, equivalently, if

∑m
k=1 µk = n.

6.1.7 The functional calculus for diagonalizable matrices. Let T : V → V be a
diagonalizable linear transformation with eigenvalues λ1, ..., λn (repeated according to their
geometric multiplicity). Define S and M as in 6.1.6 so that M = S−1TS = diag(λ1, ..., λn).

If f a function from σ(T ) = {λ1, ..., λn} to C, define

f(T ) = S diag(f(λ1), ..., f(λn))S
−1

which is a linear transformation from V to V . When f, g are both functions from σ(T ) to
C and α ∈ C we have the following properties:

(1) (f + g)(T ) = f(T ) + g(T ).
(2) (αf)(T ) = αf(T ).
(3) (fg)(T ) = f(T )g(T ) = g(T )f(T ).

We emphasize that this definition is compatible with the previous definitions when f is
a polynomial and when f(s) = 1/s (assuming that 0 6∈ σ(T ) and identifying 1/T with T−1).

We can therefore define, for instance, roots and exponentials (in addition to powers) of
diagonalizable linear transformations.

6.2. Spectral theory for general linear transformations

6.2.1 Invariant subspaces. A subspace W of V is called an invariant subspace of T if
T (W ) ⊂ W . For instance, for any k ∈ N and λ ∈ C the spaces ran(T−λ1)k and ker(T−λ1)k
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are invariant subspaces of T . For the former case note that Tw = (T −λ1)k(T −λ1)v+λw,
if w = (T − λ1)kv.

If W is an invariant subspace of T , then the restriction T |W of T to W is a linear
transformation from W to W .
6.2.2 Kernels of powers of T . We begin with an instructive example.

Exercise. Determine the eigenspaces of A, A2, and A3 when A =
(
0 1
0 0

)
.

Clearly we have in general
{0} = kerT 0 ⊂ kerT ⊂ kerT 2 ⊂ ...

and the exercise shows that some of the inclusions could be strict. However, we have the
following two facts:

(1) If kerT k = kerT k+1 for some k ∈ N0, then kerT k+m = kerT k for all m ∈ N.
(2) kerTn = kerTn+1 where n = dimV . If not, all inclusions previous to the n-th are

also strict so that dimkerTn+1 ≥ n+ 1 which is absurd.
6.2.3 Kernel and range of Tn. Suppose x ∈ ranTn ∩ kerTn, i.e., x = Tny for some y

and Tnx = 0. Then y ∈ kerT 2n = kerTn so that x = 0. Hence ranTn and kerTn intersect
only trivially. By the rank-nullity theorem their union spans V . Thus we have shown that

V = ranTn ] kerTn

for any linear transformation T : V → V .
6.2.4 Algebraic eigenspaces. If λ is an eigenvalue of T we call the space ker(T − λ1)n

the algebraic eigenspace of λ. The geometric eigenspace ker(T −λ1) is, of course, a subspace
of the algebraic eigenspace. The algebraic eigenspaces of T are invariant subspaces of T .

The nontrivial elements of the algebraic eigenspace are called generalized eigenvectors
and its dimension is called the algebraic multiplicity of λ. you can’t say ‘its’

here.6.2.5 The algebraic eigenspaces span V . Let λ1, ..., λm be the pairwise distinct
eigenvalues of T . Then

V = ker(T − λ11)
n ] ... ] ker(T − λm1)

n

and, in particular, the sum of the algebraic multiplicities of the λj equals n = dimV .

Sketch of proof. Since ran(T −λ11)
n is an invariant subspace of T this follows from

6.2.3 and induction. � More needed here.

6.3. Spectral theory for normal transformations

6.3.1 Eigenvectors of T and T ∗ coincide. If T is normal so is T − λ1 and we have, by
5.4.2, that ‖(T − λ1)x‖ = ‖(T ∗ − λ1)x‖. Hence, if x is an eigenvector of T associated with
λ, then it is also an eigenvector of T ∗ associated with λ.

If x1 and x2 are eigenvectors of T associated with different eigenvalues λ1 and λ2,
respectively, then they are orthogonal, since

(λ1 − λ2)〈x1, x2〉 = 〈λ1x1, x2〉 − 〈x1, λ2x2〉 = 〈T ∗x1, x2〉 − 〈x1, Tx2〉 = 0.

6.3.2 Normal linear transformations are diagonalizable. Suppose T : V → V is a
normal linear transformation. For normal transformations 5.4.2 shows that algebraic and
geometric eigenspaces coincide. Hence V has a basis of eigenvectors which proves that T
is diagonalizable. Indeed, using the previous result 6.3.1, we obtain that we may find an
orthonormal basis of V consisting of eigenvectors of T .
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6.3.3 Functions of T and T ∗. If T is normal and f is a complex-valued function defined
on σ(T ), then f(T )∗ = f(T ). This is true since S satisfies S∗ = S−1 when the vectors Sδk
form an orthonormal basis.
6.3.4 Self-adjoint transformations. A normal linear transformation is self-adjoint if

and only if all its eigenvalues are real. T (α1x1 + ... + αnxn) = α1λ1x1 + ...αnλnxn =
T ∗(α1x1 + ...+ αnxn).
6.3.5 Positive linear transformations. The linear transformation T is called positive

semi-definite if 〈x, Tx〉 ≥ 0 for all x ∈ V and positive definite if 〈x, Tx〉 > 0 unless x = 0.
Every positive semi-definite transformation is self-adjoint. To see this let F = T − T ∗ and
note that 〈x, Fx〉 = 0 for all x ∈ V . Hence 0 = 〈x + y, F (x + y)〉 + i〈x + iy, F (x + iy)〉 =
2〈y, Fx〉 for all x, y ∈ V . This implies F = 0.

The eigenvalues of a positive (semi)-definite linear transformation are all positive (non-
negative).iff
6.3.6 Roots. Suppose k ∈ N. If R : V → V is a linear transformation such that Rk = T ,

we call R a k-th root of T . Since, by A.2.7, every non-zero complex number has exactly k
k-th roots (0 is the only k-th root of 0), the functional calculus shows that diagonalizable
linear transformations have (in general) infinitely many k-th roots.

However, a positive semi-definite transformation has exactly one positive semi-definite
k-th root.

Sketch of proof. Let R be a positive semi-definite k-th root of T . By 4.2.1 it is
enough to determine how R acts on the eigenvectors of T . Let v be one such eigenvector
of T associated with the eigenvalue λ and let e1, ..., en be linearly independent eigenvectors
of R associated with the eigenvalues γ1, ..., γn, respectively. Then v = α1e1 + ... + αnen
and λv = Tv = Rkv = α1γ

k
1 e1 + ...αnγ

k
nen. This implies that αj = 0 unless γk

j = λ. Hence
Rv = k

√
λ v. Rv =

∑n
j=1 αjγjej =

∑
γk
j =λ αjγjej =

k
√
λ
∑n

j=1 αjej . �

6.4. The functional calculus for general linear transformations

6.4.1 Nilpotent transformations. The linear transformation T is called nilpotent if there
exists a natural number m such that Tm = 0. If T is nilpotent, then Tn = 0 (recall that
n = dimV ).

A nilpotent transformation T : V → V has only one eigenvalue, namely zero. Its
algebraic multiplicity is n.

If λ is an eigenvalue of T and W = ker(T−λ1)n then (T−λ1)|W : W → W is nilpotent.
6.4.2 Jordan chains and Jordan blocks. Suppose that the vectors x, (T − λ1)x, ...,
(T − λ1)m−1x are non-trivial and that (T − λ1)mx = 0. Then these vectors are linearly
independent generalized eigenvectors of T associated with the eigenvalue λ. Apply (T −
λ1)m−1 to the equation α0x + ... + αm−1(T − λ1)m−1x = 0 to conclude α0 = 0 etc. Theyauch von hinte-

naufgezaeumt. span a subspace W and the restriction (T − λ1)|W of T − λ1 is a nilpotent transformation
from W to itself. The list ((T − λ1)m−1x, ..., x) is an ordered basis of W called the Jordan
chain generated by x. Note that x must be a generalized eigenvector of λ, i.e., fixing x
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determines λ. With respect to this basis T |W is represented by the m×m-matrix

Nm =


λ 1 0 . . . 0
0 λ 1 . . . 0
...

... . . . . . . ...
0 0 . . . λ 1
0 0 . . . 0 λ

 .

Such a matrix is called a Jordan block of size m with eigenvalue λ.
6.4.3 The structure of nilpotent transformations. Suppose λ is the only eigenvalue of

the linear transformation T : V → V . Then T−λ1 is nilpotent. Moreover, V =
⊎r

j=1 W (xj)

where each W (xj) is the span of a Jordan chains generated by a vector xj . With respect to
the basis (properly ordered) given by the union of these Jordan chains T is represented by
the matrix 

J1 0 . . . 0
0 J2 . . . 0
...

... . . . ...
0 0 . . . Jr


where each matrix Jℓ, ℓ = 1, ...r, is a Jordan block with eigenvalue λ.

Sketch of proof. The proof is by induction on the dimension of V . We assume,
without loss of generality, that λ = 0. Let M be the set of all natural numbers for which
the theorem is true. Then, clearly, 1 ∈ M .

Next assume that n− 1 ∈ M and that dimV = n > 1. Since T is nilpotent dimT (V ) ≤
n− 1. Therefore there is a subspace F of V of dimension n− 1 such that T (V ) ⊂ F . Since
T |F : F → F is also nilpotent, we have that F =

⊎k
j=1 W (xj) where the W (xj) are spaces

spanned by Jordan chains generated by the vectors x1, ..., xk. We denote the lengths of
these chains by m1, ..., mk and arrange the labels so that m1 ≤ m2 ≤ ... ≤ mk. Now
choose g ∈ V \ F . Since Tg ∈ F there is an h ∈ F and numbers α1, ..., αk such that
Tg = Th+

∑k
j=1 αjxj .

We now distinguish two cases. In the first case all of the numbers αj are zero and we
define xk+1 = g − h. Then (xk+1) is a Jordan chain of length 1 and V = F ] span{xk+1}.

In the second case there is a number p such that αp 6= 0 but αj = 0 whenever j > p.
In this case we define x̃p = (g − h)/αp. Then (Tmp x̃p, ..., x̃p) is a Jordan chain of length
mp + 1. Set F ′ =

⊎
j ̸=p W (xj). Then F ′ ∩W (x̃p) = {0} and V = F ′ ]W (x̃p). This shows

that n ∈ M and the claim follows now from the induction principle. �

The above proof is due to Gohberg and Goldberg (A simple proof of the Jordan de-
composition theorem for matrices, American Mathematical Monthly 103 (1996), p. 157 –
159).
6.4.4 The Jordan normal form of a linear transformation. Let T : V → V be a linear
transformation and λ1, ..., λm its pairwise distinct eigenvalues. Each algebraic eigenspace is
a direct sum of subspaces spanned by Jordan chains, i.e.,

ker(T − λk1)
n =

rk⊎
j=1

spanW (xk,j).
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Thus, in view of 6.2.5, we have

V =

m⊎
k=1

rk⊎
j=1

spanW (xk,j).

The union of all these Jordan chains form a basis of V . With respect to this basis (properly
ordered) the matrix associated with T is of the form

J =


A1 0 . . . 0
0 A2 . . . 0
...

... . . . ...
0 0 . . . Ar


where each of the Aj is a Jordan block and where r =

∑m
k=1 rk is the total number of Jordan

chains involved. This matrix J is called a Jordan normal form of the linear transformation
T . We have, of course, J = S−1TS where S : Kn → V is the transformation which assigns
to δk the k-the vector in the basis described above.
6.4.5 The functional calculus. Given k ∈ N and a k − 1 times differentiable function f

we define the k × k-matrix

f#
k (λ) =


f(λ) f ′(λ) 1

2f
′′(λ) . . . f(k−1)(λ)

(k−1)!

0 f(λ) f ′(λ) . . . f(k−2)(λ)
(k−2)!

...
... . . . . . . ...

0 0 . . . f(λ) f ′(λ)
0 0 . . . 0 f(λ)

 .

Let T : V → V be a linear transformation and J = S−1TS its Jordan normal form. In
J replace every k × k Jordan block with eigenvalue λ by fk#(λ) to obtain a new matrix
which we call f(J). Then define f(T ) = Sf(J)S−1. This definition is compatible with the
one in 6.1.7 since k is there always equal to 1.

We have again the following properties:
(1) (f + g)(T ) = f(T ) + g(T ).
(2) (αf)(T ) = αf(T ).
(3) (fg)(T ) = f(T )g(T ) = g(T )f(T ).

As before, this implies that the definition of f(T ) is compatible with the previous definitions
when f is a polynomial and when f(s) = 1/s.
6.4.6 Projections onto spectral subspaces. We call an algebraic eigenspace or a direct

sum of such a spectral subspace. Let f be a function which takes the value 1 near some of the
eigenvalues and the value 0 near the others. Note that the function f is then “idempotent”,
i.e., f2 = f . Then the f#

k (λ) is either a zero matrix or an identity matrix. It follows now
that f(T ) is also idempotent, i.e., f(T ) is a projection. Its range is the direct sum of the
algebraic subspaces of those λ for which we have f(λ) = 1.
6.4.7 Linear first order systems of ordinary differential equations. Suppose A is an
n× n-matrix and (a, b) an interval in the real line. With the help of the functional calculus
we can define exp(Ax) for x ∈ (a, b) and hence u(x) = exp(Ax)u0 where u0 is a fixed vector
in Rn. Then u is a solution of the differential equation u′ = Au and, in fact, any solution
of that equation can be obtained this way by choosing the vector u0 appropriately.
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Exercise. Compute exp(Ax) when A =
(
1 −4
1 5

)
. Then check that either column of this

matrix solves u′ = Au.





APPENDIX A

Appendix

A.1. Set Theory

A.1.1 Relations. A relation from a set A to a set B is a subset of A×B, i.e., a collection
of ordered pairs (a, b) where a ∈ A and b ∈ B. If A = B we speak of a relation on A.

Let R be a relation from A to B. The set of all elements a ∈ A for which there is a
b ∈ B such that (a, b) ∈ R is called the domain of R and denoted by domR. Similarly,
the set of all elements b ∈ B for which there is an a ∈ A such that (a, b) ∈ R is called the
codomain or target of R.
A.1.2 Reflexivity, symmetry, and transitivity. A relation R on A is called reflexive, if
(a, a) ∈ R for all a ∈ A. It is called symmetric, if (a, b) ∈ R implies that (b, a) ∈ R. Finally,
it is called transitive, if (a, b) ∈ R and (b, c) ∈ R imply that (a, c) ∈ R.
A.1.3 Equivalence relations. A relation is called an equivalence relation if it is reflexive,

symmetric, and transitive.
An equivalence relation on A partitions A into so called equivalence classes, i.e., pairwise

disjoint subsets of A whose union is equal to A.
A.1.4 Functions. A function from a set A to a set B is a relation f from A to B (written

as f : A → B) with the following properties: (1) dom f = A and (2) if (a, b) ∈ f and
(a, b′) ∈ f then b = b′, i.e., b is uniquely determined by a. Customarily one writes b = f(a),
if f is a function and (a, b) ∈ f . When A and B are real intervals you should think of f as
its graph.

A function f : A → B is called surjective, if every b ∈ B is in the range of f . It is called
injective, if f(a1) = f(a2) implies a1 = a2. A function which is both injective and surjective
is called bijective.

If f : A → B is bijective, then there is a function f−1 : B → A such that f−1(f(x)) = x
for all x ∈ A and f(f−1(y)) = y for all y ∈ B. f−1 is called the inverse (function) of f .
A.1.5 The induction principle. A most important tool for proving facts about the

natural numbers is the induction principle:

Theorem. Let S be a subset of the set N of natural numbers. If 1 ∈ S and if n+1 ∈ S
whenever n ∈ S, then S = N.

A.2. Algebra

A.2.1 Binary operations. Let S be a set. A function which assigns an element of S to
any pair of elements of S is called a binary relation on S. Frequently one denotes the image
of (a, b) under the binary operation by a+ b, a · b, or ab.
A.2.2 Groups. Suppose G is a set and · a binary operation on G. Then (G, ·) is called a

group, if the following conditions are satisfied:

39
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(1) For all a, b, c ∈ G we have (a · b) · c = a · (b · c) (associative law).
(2) There is an element e (called a left identity) such that e · a = a for all a ∈ G.
(3) For every a ∈ G there is an element (called a left inverse) b ∈ G such that b ·a = e.

It follows that a left identity is also a right identity (then just called an identity), i.e.,
a · e = a for all a, and that a left inverse is also a right inverse (then just called an inverse).
In fact, the identity and the inverse of a given element are unique. Suppose ba = e and
cb = e. Then ae = eae = cbaba = ceba = cba = ea = a. The identity is often denoted by 1
and the inverse of a by a−1.

If a · b = b · a for all a, b ∈ G, the group is called abelian or commutative. For abelian
groups one often uses + to symbolize the binary operation. The identity element is then
denoted by 0 and the inverse of a by −a. The sum a+ (−b) is abbreviated by a− b.
A.2.3 Fields. Suppose F is a set and + and · are two binary operations of F . Then

(F,+, ·) is called a field, if the following conditions are satisfied:
(1) (F,+) is a commutative group with identity element 0.
(2) (F \ {0}, ·) is a commutative group with identity element 1.
(3) For all a, b, c ∈ F we have a · (b+ c) = ab+ ac (distributive law).

Recall that Q and R (with the usual addition and multiplication) are fields. Another
important number field, the field of complex numbers, is described below.
A.2.4 The field of complex numbers. Denote ordered pairs of real numbers (a, b) by
a + ib allowing for the simplifications a + i0 = a and 0 + ib = ib, in particular, 0 + i1 = i.
Define two binary operations + and · as follows: if (a, b) and (c, d) are pairs of real numbers,
then

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

and
(a+ ib) · (c+ id) = (ac− bd) + i(ad+ bc).

Note that i · i = −1.
The numbers a + ib so defined are called complex numbers and the set of all complex

numbers is a field denoted by C.
Let x, y, and z be complex numbers. Then we have the following conventions: One

writes x − y in place of x + (−y), and x
y or x/y for x · y−1. It is also common to write xy

instead of x · y and to let multiplication take precedence over addition, i.e., x+ yz is short
for x+ (yz).
A.2.5 Real and imaginary parts of a complex number, absolute value. If a, b ∈ R

and z = a+ ib is a complex number, then a is called the real part of z (denoted by Re(z))
and b is called the imaginary part of z (denoted by Im(z)). The number z = a− ib is called
the complex conjugate of z. Finally, |z| =

√
zz =

√
a2 + b2 ∈ [0,∞) is called the absolute

value or modulus of z.
If z ∈ C, then z + z = 2Re(z), z − z = 2i Im(z), |Re(z)| ≤ |z|, and | Im(z)| ≤ |z|. If

z, w ∈ C, then z + w = z + w, zw = z w, and |zw| = |z| |w|. If z 6= 0, then 1/z = z/|z|2.
A.2.6 The fundamental theorem of algebra. Suppose p is a complex polynomial of

degree n ≥ 1 with complex coefficients. Then there exist complex numbers a and z1, ..., zn
(not necessarily distinct) such that

p(z) = a

n∏
k=1

(z − zk).
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A.2.7 Roots of complex numbers. Let k be a natural number. A complex number a is
called a k-th root of a complex number b, if ak = b.

Every non-zero complex number as precisely k pairwise distinct k-th roots. The number
0 has only one k-th root, namely 0.
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⊕: orthogonal direct sum, 26

Re(z): the real part of the complex number z, 40
ranA: the range of A, 10
ranF : the range of F , 21
Rn: the real euclidean space of dimension n, 16
T |W : the restriction of a function T to a subset W of its domain, 33

A \B: the set consisting of all those elements in A which are not in B, 9, 19, 35, 40
KX : the set of all functions defined on X with values in K, 16
span, 9

A⊤: the transpose of a matrix A, 28
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absolute value, 40
addition

of vectors, 7
adjoint, 27
algebraic eigenspace, 33
algebraic multiplicity, 33
anti-linear, 25
associative law, 40

basis, 9, 18
canonical, 18
ordered, 18

bijective, 39
bilinear, 25
binary operation, 39

coefficients
of a linear system, 1
of a polynomial, 15

column rank, 12
commutative law, 40
complex conjugate, 40
complex number, 40
composition, 23
conjugate transpose, 28
coordinate, 23

degree of a polynomial, 15
diagonal

element, 12
main, 13

diagonal matrix, 13
diagonalizable, 32
dimension, 10, 17
direct sum

external, 19
internal, 19

distance

to a subspace, 29
distributive law, 40
dot product, 25
dual space, 27

eigenspace
algebraic, 33
geometric, 31

eigenvalue, 31
eigenvector, 31

generalized, 33
elementary row operations, 4
elimination of an unknown, 2
equivalence relation, 39
euclidean vector space, 7

Fibonacci numbers, 31
field, 40
free unknown, 4
fundamental theorem of linear algebra,

11, 22

generalized eigenvector, 33
geometric eigenspace, 31
geometric multiplicity, 31
golden ratio, 31
Gram-Schmidt procedure, 26
group, 39

abelian, 40

hermitian matrix, 28
homogeneous system, 2, 13

idempotent, 22
identity, 40
identity matrix, 13
imaginary part, 40
injective, 39
inner product, 25
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inner product space, 25
internal sum, 19
inverse, 40

of a linear transformation, 21
inverse function, 39
isomorphic

vector spaces, 22
isomorphism

of vector spaces, 22

Jordan block, 35
Jordan chain, 34
Jordan normal form, 36

kernel, 10, 21

least squares solution, 29
linear combination, 8, 17
linear dependence, 8, 17
linear equation, 1
linear functional, 27
linear independence, 8, 17
linear transformation, 10
linearly independent

of sets, 17

main diagonal, 13
matrix, 3, 10

diagonal, 13
square , 12

modulus, 40
multiplicity

algebraic, 33
geometric, 31

negative vector, 7
nilpotent, 34
non-homogeneous system, 13
non-zero row, 4
norm, 25
normal, 28
nullity, 21

orthogonal, 26
orthogonal complement, 26
orthogonal projection, 26
orthonormal, 26

perpendicular, 26

pivot, 4
projection, 22

range, 10, 21
rank

of a linear transformation, 21
of a matrix, 12
of a row-echelon matrix, 4

rank-nullity theorem, 11, 22
real part, 40
root

of a complex number, 41
of a linear transformation, 34

row rank, 12
row-echelon matrix, 4
row-equivalent matrices, 4

scalar, 8, 16
scalar multiplication, 8, 16
scalar product, 25
self-adjoint, 28
solution, 2
solve, 2
span, 9
spectral subspace, 36
spectrum, 31
subspace, 8, 16

trivial, 8
surjective, 39
symmetric matrix, 28
system of linear equations, 1

transformation
linear, 21

transpose, 7, 28
triangle inequality, 25
trivial solution, 2
trivial vector space, 16

upper triangular
system of equations, 3

vector, 3, 7, 16
vector addition, 7, 16
vector space, 16

finite-dimensional, 17
infinite-dimensional, 17

zero row, 4



Bibliography

[1] Sheldon Axler. Linear algebra done right. Undergraduate Texts in Mathematics. Springer, Cham, third
edition, 2015.

[2] Hans-Joachim Kowalsky. Lineare Algebra. Walter de Gruyter, Berlin-New York, 1977. Achte Auflage, de
Gruyter Lehrbuch.

[3] Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2016.
[4] Lloyd N. Trefethen and David Bau, III. Numerical linear algebra. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA, 1997.

47


	Preface
	Chapter 1. Systems of linear equations
	1.1. Introduction
	1.2. Solving systems of linear equations
	1.3. Matrices and vectors

	Chapter 2. Euclidean vector spaces
	2.1. Spaces and subspaces
	2.2. Linear independence and spans
	2.3. Linear transformations in Rn
	2.4. Matrix algebra

	Chapter 3. Vector spaces
	3.1. Spaces and subspaces
	3.2. Linear independence and spans
	3.3. Direct sums

	Chapter 4. Linear transformations
	4.1. Basics
	4.2. The fundamental theorem of linear algebra
	4.3. The algebra of linear transformation
	4.4. Linear transformations and matrices

	Chapter 5. Inner product spaces
	5.1. Inner products
	5.2. Orthogonality
	5.3. Linear functionals and adjoints
	5.4. Normal and self-adjoint transformations
	5.5. Least squares approximation

	Chapter 6. Spectral theory
	6.1. Eigenvalues and Eigenvectors
	6.2. Spectral theory for general linear transformations
	6.3. Spectral theory for normal transformations
	6.4. The functional calculus for general linear transformations

	Appendix A. Appendix
	A.1. Set Theory
	A.2. Algebra

	List of special symbols
	Index
	Bibliography

