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Preface

These are notes for a rigorous course on multi-variable calculus, the calculus of differ-
entiation and integration of functions of several variables.

Two excellent books on the subject are the following:

• Walter Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New
York-Auckland-Düsseldorf, third edition, 1976. (Chapters 9 & 10)

• Michael Spivak. Calculus on manifolds. A modern approach to classical theorems
of advanced calculus. W. A. Benjamin, Inc., New York-Amsterdam, 1965.

To a large extent my notes follow one or the other of these books. The notes are terse
giving the students an opportunity to devise proofs for themselves.

The notes presuppose a familiarity of the reader with single-variable calculus, topology,
and linear algebra. Some results from linear algebra are collected in Appendix A (without
proof). Appendix B gathers a few more miscellaneous facts.

Also at the end of the notes the reader may find an index of terms and a list of symbols
which refer to the page where they are introduced.

Finally a word on notation: Throughout the notes the symbols j, k, ℓ, m, and n will
refer to elements of N, the set of natural numbers. Also, the symbol Ω denotes an open set
in Rn unless noted otherwise.
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CHAPTER 1

Limits and continuity

1.1. Norms

1.1.1 The inner product in Rn. Given x and y in Rn we define their inner product or
scalar product x · y by

x · y = x⊤y =
n∑

j=1

xjyj .

Here xj and yj denote the components of x and y, respectively.
The inner product is a map from Rn × Rn → R. Let x, y, z ∈ Rn and α, β ∈ R. Then

the following statements hold:

(1) x · x > 0 unless x = 0.
(2) x · y = y · x.
(3) x · (αy + βz) = α(x · y) + β(x · z).
(4) If x = 0 or y = 0, then x · y = 0.

Note that x · y may be 0 even though neither x nor y is 0. Also, property (4) may be
established from properties (1) – (3) without referring to the specific definition of x · y.
1.1.2 Schwarz’s inequality. For any two vectors x and y in Rn Schwarz’s inequality

|x · y| ≤
√
x · x√y · y

holds. To see this assume y ̸= 0 and find the minimum of t 7→ (x + ty) · (x + ty) which
cannot be negative.

1.1.3 The norm on Rn. Given x ∈ Rn we define its norm |x| by

|x| =
√
x · x.

We are using the same symbol for the norm of a vector in Rn and the absolute value of a
number in R. This cannot cause confusion even when n = 1.

The norm is a map from Rn to [0,∞). Let x, y ∈ Rn and α ∈ R. Then the following
statements hold:

(1) |x| > 0 unless x = 0.
(2) |αx| = |α||x|.
(3) |x+ y| ≤ |x|+ |y| (the triangle inequality).
(4) |x| = 0 if and only if x = 0.

Again property (4) follows from (1) – (3) directly (without referral to the specific definition
of the norm).

1.1.4 Rn as a metric space. Given x and y in Rn we define their distance by |x− y|.
The distance function (also called a metric) is a map from Rn × Rn → [0,∞). Let

x, y, z ∈ Rn. Then the following statements hold:
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2 1. LIMITS AND CONTINUITY

(1) |x− y| = 0 if and only if x = y.
(2) |x− y| = |y − x|.
(3) |x− y| ≤ |x− z|+ |z − y| (the triangle inequality).

These properties may be proved without referring to the specific definition of the norm.
A set S equipped with a distance function X ×X → [0,∞) satisfying properties (1) –

(3) (properly interpreted) is called a metric space. In particular, every subset of Rn is a
metric space.

1.1.5 The norm of a linear operator. Suppose that A is a linear operator from Rn to
Rm and let M = max{|Aj,k| : 1 ≤ j ≤ m, 1 ≤ k ≤ n}. Then |Ax|2 ≤ mnM2|x|2. Hence

∥A∥ = sup{|Ax| : x ∈ Rn, |x| ≤ 1}

is a finite number called the norm of A. In fact ∥A∥ ≤
√
mnM .

Note that |Ax| ≤ ∥A∥ |x| for all x ∈ Rn. In fact, ∥A∥ = inf{C : ∀x ∈ Rn : |Ax| ≤ C|x|}.
1.1.6 Properties of the operator norm. Let A,B ∈ L(Rn,Rm) and α ∈ R. Then the
following statements hold (justifying the use of the word norm):

(1) ∥A∥ > 0 unless A = 0.
(2) ∥αA∥ = |α| ∥A∥.
(3) ∥A+B∥ ≤ ∥A∥+ ∥B∥ (the triangle inequality).

In particular, L(Rn,Rm) is a metric space.
If A ∈ L(Rn,Rm) and B ∈ L(Rm,Rk), then BA ∈ L(Rn,Rk) and

∥BA∥ ≤ ∥B∥ ∥A∥ .

Note, however, that AB may not be defined.

1.1.7 The invertible linear operators form an open set. Suppose A,B ∈ L(Rn,Rn)
and that A is invertible. If γ = ∥B −A∥

∥∥A−1
∥∥ < 1, then |Bx| ≥ (1− γ)|x|/

∥∥A−1
∥∥ so that

B is also invertible. In fact,
∥∥B−1

∥∥ ≤
∥∥A−1

∥∥ /(1 − γ). Hence the set of invertible linear
operators on Rn is open in the space L(Rn,Rn).

1.2. Limits and continuity

The concepts of limits for and continuity of functions between metric spaces is a familiar
from topology. Nevertheless we review these here for functions between euclidean spaces.

1.2.1 Limits. Suppose f is a function from Ω to Rm and x0 is a point in Ω, the closure
of Ω. The vector L ∈ Rm is called a limit of f at x0, if the following statement holds: for
every ε > 0 there is a δ > 0 such that, for all x ∈ Ω, we have that 0 < |x− x0| < δ implies
|f(x)− L| < ε.

A limit, if it exists, is uniquely determined by f and x0. We denoted it by limx0
f or,

when convenient, by limx→x0
f(x).

The function f has limit L at x0 if and only if the components fk have limit Lk for each
k = 1, ...,m.

1.2.2 Continuity. Suppose f is a function from Ω to Rm and x0 is a point in Ω. We say
that f is continuous at x0, if the following statement holds: for every ε > 0 there is a δ > 0
such that, for all x ∈ Ω, we have that |x− x0| < δ implies |f(x)− f(x0)| < ε.

We see immediately that f is continuous at x0, if and only if it has a limit at x0 which
coincides with f(x0).



1.2. LIMITS AND CONTINUITY 3

The function f is called continuous on Ω, if it is continuous at every point of Ω. The
set of all continuous functions from Ω to Rm is denoted by C0(Ω,Rm).

1.2.3 Continuity of the norm. The norm defined in 1.1.3, a function from Rn to [0,∞),
is continuous.

1.2.4 Linear operators are continuous. If A is a linear operator from Rn to Rm, then
the map x 7→ Ax is continuous.

1.2.5 Continuity of the operator inverse. The map A 7→ A−1 defined on the set of all
invertible operators on Rn is continuous.

1.2.6 Limit rules. Suppose f and g are functions from Ω to Rm, h is a function from Ω
to R, and x0 is a point in Ω. Also assume that f , g, and h have limits at x0. Then the
following are true:

(1) limx0(f + g) = limx0 f + limx0 g.
(2) limx0

f · g = (limx0
f) · (limx0

g).
(3) limx0

hf = (limx0
h)(limx0

f).

Lastly, suppose that f : Ω → Rm has values in the open set Ω′ and limit y0 at x0 and
that p : Ω′ → Rk has limit z0 at y0. Then p ◦ f has limit z0 at x0.

Since the concepts of limit and continuity are closely related these limit rules imply
analogous rules for continuity.





CHAPTER 2

Differentiation

2.1. The total derivative

2.1.1 Definition. Suppose f is a function from Ω to Rm and x is a point in Ω. If there
exists a linear operator A : Rn → Rm, i.e., an m× n-matrix A, such that

lim
h→0

|f(x+ h)− f(x)−Ah|
|h|

= 0,

we say that f is differentiable at x and call A a total derivative or just a derivative of f at
the point x.

If f is differentiable at every point of Ω we say that f is differentiable on Ω.1

2.1.2 Uniqueness of the derivative. Suppose f is as in 2.1.1. If A and B are total
derivatives of f at x, then A = B.

Therefore it is customary to denote the total derivative of f at x by f ′(x). If f is
differentiable on Ω, the map x 7→ f ′(x) is a function from Ω to Rm×n.

2.1.3 Linear approximation. The function f : Ω → Rm is differentiable at x0 if and
only if there exists a linear operator A : Rn → Rm and a function r : Ω → Rm such that
(i) r is continuous at x0, (ii) r(x0) = 0, and (iii) the identity

f(x) = f(x0) +A(x− x0) + |x− x0|r(x)

holds. Of course, A is then equal to f ′(x0).
The function Rn → Rm : x 7→ f(x0) + f ′(x0)(x− x0) is called the linear approximation

of f at x0.

2.1.4 Examples. Suppose Ω = Rn and f(x) = Ax+ b where A ∈ L(Rn,Rm) and b ∈ Rm.
Then f ′(x) = A for every x ∈ Rn.

Let f : R2 → R :
( x
y

)
7→ x2y. Find f ′

(
2
3

)
.

2.1.5 Differentiability implies continuity. If a function is differentiable at a given
point, then it is also continuous there.

2.1.6 Differentiation rules for sums and products. Suppose f and g are functions
from Ω to Rm, h is a function from Ω to R, and x is a point in Ω. Also assume that f , g,
and h are differentiable at x. Then the following statements hold:

(1) (f + g)′(x) = f ′(x) + g′(x).
(2) (f · g)′(x) = f(x)⊤g′(x) + g(x)⊤f ′(x).
(3) (hf)′(x) = h(x)f ′(x) + f(x)h′(x).

1Later we need the concept of differentiability on a compact set K. A function is called continuously
differentiable onK, if it may be extended to a continuously differentiable function in some open set containing

K.
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6 2. DIFFERENTIATION

2.1.7 The chain rule. Suppose f : Ω → Rm and g : Ω′ → Rk where Ω′ is an open set in
Rm containing the range of f . If f is differentiable at x and g is differentiable at f(x), then
g ◦ f is differentiable at x and

(g ◦ f)′(x) = g′(f(x))f ′(x).

This is known as the chain rule. Its proof uses the linear approximations of f and g at x
and f(x), respectively.

2.1.8 Differentiable functions are locally Lipschitz. Suppose B is an open ball in Rn,
that f : B → Rm is differentiable, and that there is a number M such that ∥f ′(x)∥ ≤ M
for all x ∈ B. Then f satisfies a Lipschitz condition, i.e.,

|f(x2)− f(x1)| ≤M |x2 − x1|

whenever x1, x2 ∈ B.
If m = 1 we even get f(x2)−f(x1) = f ′(x)(x2−x1) for some point x on the line joining

x1 and x2.

Sketch of proof: Let γ : [0, 1] → B : t 7→ x1 + t(x2 − x1). Consider the function
g : [0, 1] → R : t 7→ (f(x2)− f(x1)) · f(γ(t)). Product rule, chain rule, and the mean value
theorem for one variable imply

|f(x2)− f(x1)|2 = g(1)− g(0) = (f(x2)− f(x1))
⊤f ′(γ(t0))γ

′(t0)

for some t0 ∈ (0, 1). □

2.1.9 Functions with derivative 0 are constant. Any function f with f ′(x) = 0 for all
x in its domain must be constant as long as any two points in its domain can be connected
by a continuous path, i.e., a continuous function γ from [0, 1] to the domain of f such that
γ(0) and γ(1) are the given points.

2.2. Partial derivatives

2.2.1 Partial derivatives. Recall that (e1, ..., en) is the standard basis in Rn. Let f =
(f1, ..., fm)⊤ be a function from Ω to Rm, and x a point in Ω. If 1 ≤ j ≤ n and 1 ≤ ℓ ≤ m,
define

(Djfℓ)(x) = lim
t→0

fℓ(x+ tej)− fℓ(x)

t
if the limit exists.

The numbers (Djfℓ)(x), j = 1, ..., n, ℓ = 1, ...,m are called partial derivatives of f at x.

2.2.2 Differentiability implies the existence of the partial derivatives. Suppose
f : Ω → Rm is differentiable at x. Then the partial derivatives Djfℓ exist and

f ′(x) =

 (D1f1)(x) · · · (Dnf1)(x)
...

...
(D1fm)(x) · · · (Dnfm)(x)

 .

2.2.3 Continuously differentiable functions. If f ′ : Ω → L(Rn,Rm) is continuous, then
f is called continuously differentiable. The set of all continuously differentiable functions
from Ω to Rm is denoted by C1(Ω,Rm).

Theorem. f ∈ C1(Ω,Rm) if and only if the partial derivatives Djfℓ : Ω → R, j =
1, ..., n and ℓ = 1, ...,m, are continuous.
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Sketch of proof: If x 7→ f ′(x) is continuous, then so are all the partial derivatives.
Conversely, if all the partial derivatives are continuous, then so is the matrix A of partial
derivatives (given in 2.2.2) as a function of x but we need to show that A = f ′(x). To this

end assume first m = 1 and let h = x−x0 =
∑n

j=1 hjej , v0 = x0, and vk = x0+
∑k

j=1 hjej .
Then, using the mean value theorem for functions of one variable,

f(x)− f(x0) =

n∑
k=1

(f(vk)− f(vk−1)) =

n∑
k=1

(Dkf)(vk−1 + tkhkek)hk

for tk ∈ (0, 1). Since A(x− x0) =
∑n

k=1 hk(Dkf)(x0) the claim follows using the continuity
of x 7→ (Dkf)(x). □

2.2.4 Derivatives of higher order. Let f be a function from Ω to Rm. The partial
derivatives Djfℓ : Ω → R may themselves have partial derivatives Dk(Djfℓ), k = 1, ..., n.
These are called partial derivatives of the second order. If they are continuous then Djfℓ ∈
C1(Ω,R). If this is the case for all j = 1, ..., n and ℓ = 1, ...,m we say that f is twice
continuously differentiable and denote the space of such functions by C2(Ω,Rm).

More generally, Cr(Ω,Rm) is the space of those functions from Ω to Rm for which all
partial derivatives of order up to and including r ∈ N exist and are continuous.

2.2.5 Another mean value theorem. Suppose Ω is an open subset in R2 and f a real-
valued function on Ω for which D1f and D2D1f exist everywhere. If (a, b) ∈ Ω and if u and
v are so small that the rectangle Q with vertices (a, b), (a+u, b), (a, b+v), and (a+u, b+v)
is still in Ω, then there is a point (x, y) ∈ Q such that

f(a+ u, b+ v)− f(a+ u, b)− f(a, b+ v) + f(a, b) = uv(D2D1f)(x, y).

Sketch of proof: Let ϕ : [a, a + u] → R and ψ : [b, b + v] → R be given by ϕ(t) =
f(t, b + v) − f(t, b) and ψ(t) = (D1f)(x, t) for a certain x ∈ (a, a + u). The mean value
theorem for functions of one variable applies to both ϕ and ψ. □

2.2.6 Mixed partial derivatives commute. If f ∈ Ck(Ω,R), j1, ...jk ∈ {1, ..., n}, and π
is a permutation of {1, ..., k}, then

Dj1 ...Djkf = Djπ(1)
...Djπ(k)

f.

Sketch of proof: This follows from the following statement in which we assume that
k = 2 and that n = 2 so that Ω is an open subset of R2. Suppose f ∈ C1(Ω,R) and that
D2D1f exists and is continuous there. Then D1D2f also exists and equals D2D1f in Ω.

Given ε > 0 it follows from 2.2.5 that∣∣∣∣f(a+ u, b+ v)− f(a+ u, b)− f(a, b+ v) + f(a, b)

uv
− (D2D1f)(a, b)

∣∣∣∣ < ε/2

for all sufficiently small but non-zero u and v. Thus, taking v → 0,∣∣∣∣ (D2f)(a+ u, b)− (D2f)(a, b)

u
− (D2D1f)(a, b)

∣∣∣∣ ≤ ε/2 < ε.

□

2.2.7 The gradient. Suppose that all partial derivatives of f : Ω → R exist at x ∈ Ω.
The column vector

(∇f)(x) = ((D1f)(x), ..., (Dnf)(x))
⊤

is called the gradient of f at x.
Thus, if f is differentiable at x, then (∇f)(x) = f ′(x)⊤.
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2.2.8 Directional derivatives. Suppose f : Ω → R is differentiable at x and u ∈ Rn.
Then

lim
t→0

f(x+ tu)− f(x)

t
= u · (∇f)(x).

If u is a unit vector this is called the directional derivative of f in direction u at x.
We now define (u · ∇)0 to be the identity operator, even if u = 0 and, recursively,

(u · ∇)jf = u · ∇[(u · ∇)j−1f ]

for j = 1, ..., k provided that f ∈ Ck(Ω,R).

2.2.9 The multi-index notation. A multi-index is an element of Nn
0 for some natural

number n. If α is such a multi-index we define

|α| = α1 + ...+ αn and α! = α1!...αn!.

Furthermore, if x ∈ Rn, we set

xα = xα1
1 ...xαn

n .

Finally,

Dαf = Dα1
1 ...Dαn

n f

if f ∈ C |α|(Ω,R).
Using this notation and taking into account that mixed partial derivatives commute, as

explained in 2.2.6, we obtain by induction and a version of the multinomial theorem (see
B.1) that

[(u · ∇)kf ](x) =

n∑
ℓk=1

...

n∑
ℓ1=1

uℓk ...uℓ1(Dℓk ...Dℓ1f)(x) =
∑
|α|=k

k!

α!
uα(Dαf)(x)

for k = 1, ..., r provided that f ∈ Cr(Ω,R) and u ∈ Rn.

2.3. Taylor’s theorem and extrema

2.3.1 Taylor’s theorem. Suppose Ω is convex, f ∈ Cr(Ω,R) for some r ∈ N, and x0, x ∈
Ω. Then there exists a number t ∈ (0, 1) such that

f(x) =

r−1∑
k=0

1

k!
[((x− x0) · ∇)kf ](x0) +

1

r!
[((x− x0) · ∇)rf ](x0 + t(x− x0))

=
∑
|α|<r

(Dαf)(x0)

α!
(x− x0)

α +
∑
|α|=r

(Dαf)(x0 + t(x− x0))

α!
(x− x0)

α.

Sketch of proof: Let h = x − x0 and g = f ◦ γ where γ : [0, 1] → Ω : t 7→ x0 + th.
Then, by the chain rule, g′(t) = f ′(γ(t))h = [(h ·∇)f ](γ(t)). Induction shows that g(k)(t) =
[(h · ∇)kf ](γ(t)) for 1 ≤ k ≤ r. Now apply Taylor’s theorem for one variable. □

2.3.2 Extrema. Let x0 be a point in the domain of a real-valued function f . If there is
a neighborhood U of x0 such that f(x) ≤ f(x0) for all x ∈ U , then x0 is called a relative
maximum of f . If the inequality is strict except for x = x0, then x0 is called a strict relative
maximum of f . The terms relative minimum and strict relative minimum are analogously
defined. A (strict) relative extremum is a point which is either a (strict) relative maximum
or minimum.
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2.3.3 Critical points. If f is differentiable in its domain and if f ′(x0) = 0, then x0 is
called a critical point of f .

If x0 is a relative extremum of a differentiable function f , then x0 is a critical point
of f . Thus we have a necessary condition for a point x0 to be a relative extremum of f .

2.3.4 A sufficient criterion for the presence of an extremum. The following theorem
gives a sufficient condition for a point x0 to be a relative extremum of f . If f is twice
continuously differentiable the n2 second order partial derivatives (DjDkf)(x) form a real
symmetric matrix, called the Hessian of f at x. We will denote it by H(x).

Theorem. Let f ∈ C2(Ω,R). Suppose that there is a point x0 such that f ′(x0) = 0
and H(x0) is positive (negative) definite. Then x0 is a strict relative minimum (maximum)
of f .

Sketch of proof: Suppose H(x0) is positive definite, i.e., its smallest eigenvalue is
positive. For sufficiently small h we obtain from Taylor’s theorem the existence of a t ∈ (0, 1)
such that

f(x0 + h)− f(x0) =
∑
|α|=2

(Dαf)(x0 + th)

α!
hα =

1

2
h⊤H(x0 + th)h.

Since the quadratic form q given by q(h) = h⊤H(x0)h is positive definite, we obtain that
f(x0 + h)− f(x0) > 0 for sufficiently small but non-zero h. □

2.3.5 A sufficient criterion for the absence of an extremum. Let f ∈ C2(Ω,R) and
suppose that there is a point x0 such that f ′(x0) = 0. Let H denote the Hessian of f . Then
the following two equivalent statements hold:

(1) If H(x0) is indefinite, then x0 is not an extremum of f .
(2) If x0 is an extremum of f , then H(x0) is semi-definite.

2.4. The inverse and implicit function theorems

2.4.1 The geometric series. Suppose a is a real number and |a| < 1. Then

∞∑
k=0

ak =
1

1− a
.

2.4.2 Contraction mappings. Let (M,d) be a metric space and T a function from a
subset of M to M . T is called a contraction mapping or a contraction, if there is an α < 1
such that

d(T (x), T (y)) ≤ αd(x, y)

for all x, y ∈M .
It is easy to see that every contraction mapping is continuous.

2.4.3 Fixed points. Let M be a set and T a function from a subset of M to M . A point
x in the domain of T for which T (x) = x is called a fixed point of T .

If T is a contraction, it can have at most one fixed point.

2.4.4 The contraction mapping theorem. Let (M,d) be complete metric space and
T :M →M a contraction mapping. Then there is a unique fixed point of T .

Sketch of proof: Uniqueness of the fixed point follows from 2.4.3.



10 2. DIFFERENTIATION

For existence of a fixed point pick y0 and define y1 = T (y0), y2 = T (y1) and so forth.
Then

d(ym+1, ym) ≤ αd(ym, ym−1) ≤ ... ≤ αmd(y1, y0)

and

d(ym+k, ym) ≤ d(y1, y0)

k−1∑
j=0

αm+j ≤ αm

1− α
d(y1, y0).

It follows that m 7→ ym is a Cauchy sequence and, using completeness, that it has a limit
y ∈M . Since T is continuous, this limit is a fixed point. □

2.4.5 The inverse function theorem. If f ∈ C1(Ω,Rn) and f ′(x0) is invertible, then
there are open sets U and V in Rn such that x0 ∈ U , f ′(x) is invertible for all x ∈ U ,
f(U) = V , and f |U : U → V is bijective. Moreover, the inverse g of f |U is continuously
differentiable on V .

Sketch of proof: Let A = f ′(x0).
(a) Since f ′ is continuous and λ = 1/(2

∥∥A−1
∥∥) > 0 there is an open ball U centered at

x0 such that ∥f ′(x)− f ′(x0)∥ < λ for all x ∈ U . According to 1.1.7, f ′(x) is invertible for
all such x.

(b) Next we show that f |U is injective. For a fixed y ∈ Rn define ϕ : U → Rn by

ϕ(x) = x+A−1(y − f(x)).

Then ϕ is a contraction and therefore has at most one fixed point.
(c) Next we prove that V = f(U) is open. Pick z ∈ V so that z = f(x1) for some x1 ∈ U

and choose r such that B(x1, r) ⊂ U . To show that B(z, λr) ⊂ V pick a y ∈ B(z, λr) and

consider the associated function ϕ. Since ϕ maps B(x1, r) to itself the contraction mapping
theorem 2.4.4 applies and guarantees the existence of a fixed point x2 of ϕ and hence
f(x2) = y.

(d) Define g : V → U to be the inverse of f |U . Pick y, y + v ∈ V . Let x = g(y) and
x+ u = g(y + v). Then f(x) = y and f(x+ u) = y + v and hence, letting B = f ′(x)−1,

|g(y+v)−g(y)−Bv| = |B(v−f ′(x)u)| = |B(f(x+u)−f(x)−f ′(x)u)| ≤ |u| ∥B∥ |r(x+u)| (1)

for some function r which is continuous at x and vanishes there. With y we associate, as
above, a function ϕ and obtain ϕ(x + u) − ϕ(x) = u − A−1v and, since ϕ is a contraction,
|u−A−1v| ≤ |u|/2. Hence |u| ≤ |v|/λ. This and (1) show that g is differentiable at y.

(e) Now we may apply the chain rule to f(g(y)) = y to obtain g′(y) = f ′(g(y))−1 and
conclude that g′ is continuous. □

2.4.6 The implicit function theorem. Suppose Ω is an open set in Rn+m, f ∈ C1(Ω,Rn),
and f(

( x0
y0

)
) = 0 for some x0 ∈ Rn and y0 ∈ Rm such that

( x0
y0

)
∈ Ω. Let f ′(

( x0
y0

)
) =

(A1, A2) where A1 ∈ Cn×n and A2 ∈ Cn×m. Assume that A1 is invertible.
Then there exist open sets U ⊂ Ω and W ⊂ Rm and a function g ∈ C1(W,Rn) with the

following properties: y0 ∈ W , x0 = g(y0),
(
g(y)
y

)
∈ U and f(

(
g(y)
y

)
) = 0 for all y ∈ W , and

g′(y0) = −(A1)
−1A2.

Sketch of proof: To simplify notation we will frequently write (x, y) for the vector( x
y

)
∈ Rn+m when x ∈ Rn and y ∈ Rm. In particular, we will write f(x, y) in place of

f(
( x
y

)
). Moreover, if we write a vector in Rn+m as a pair (x, y), we tacitly assume that

x ∈ Rn and y ∈ Rm. A (rectangular) zero-matrix of any size will be denoted by 0 while an
identity matrix of any size will be denoted by 1.
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(a) Define F (x, y) =
(
f(x,y)

y

)
, a function from Ω to Rn+m. If f ′ = (P,Q) with P (x, y) ∈

Rn×n and Q(x, y) ∈ Rn×m, then F ′ =
(
P Q
0 1

)
∈ C0(Ω,Rn+m). Moreover, F ′(x0, y0) =(

A1 A2
0 1

)
and is therefore invertible.

(b) We may now apply the inverse function theorem to F . It shows that there are
open sets U, V = F (U) ⊂ Rn+m such that (x0, y0) ∈ U and G = (F |U )−1 : V → U is
bijective and continuously differentiable. Then W = {y ∈ Rm : (0, y) ∈ V } is open and
contains y0. If G(0, y) = (x, z) ∈ U , then z = y and x is uniquely determined by y. Define
g :W → Rn : y 7→ x.

(c) It is easy to see that g(y0) = x0. But it remains to show that g′(y0) = −(A1)
−1A2

and g ∈ C1(W,Rn). To see this note first that, by the inverse function theorem, F ′(x, y) is
invertible for every (x, y) ∈ U . This entails that P (x, y) is invertible. Thus

G′ = (F ′ ◦G)−1 =
(
(P◦G)−1 −(P◦G)−1(Q◦G)

0 1

)
.

Now, using G(0, y) = (g(y), y), note that g′(y) = −P (g(y), y)−1Q(g(y), y). □

2.5. Extrema under constraints

2.5.1 Extrema under constraints. Suppose h ∈ C1(Ω,R). Instead of looking for ex-
trema of h in Ω we will now consider the problem of finding extrema of h in certain non-open
subsets of Ω. To be precise, we want to find extrema of h among those points x in Ω which
also satisfy the constraints f(x) = 0 where f ∈ C1(Ω,Rm).

2.5.2 An example. Find the points closest to the origin on the parabola x + y2 = 3.

Here the function h is given by h(x, y) =
√
x2 + y2. Since the distance has a minimum

if and only if its square has a minimum, we may choose, more simply, h(x, y) = x2 + y2.
The constraint is given by f(x, y) = x+ y2 − 3. In this case, any point (x, y) satisfying the
constraint satisfies x = 3 − y2. Hence the square of the distance of a point (x, y) on the
parabola to the origin is (3−y2)2+y2 = y4−5y2+9. For a minimum we need 4y3−10y = 0

which gives critical points at (3, 0) and (1,±
√
10)/2. The latter are the minima.

While things are not always so easy, this example gives us an important hint, namely
that it is useful to solve the equation f(x, y) = 0 for one of the variables, say x. This gives
us a function x = g(y) so that f(g(y), y) = 0 and we want then to minimize y 7→ H(y) =
h(g(y), y). We need to look for critical points of H, i.e., for zeros of H ′. The chain rule
gives us

h′(g(y), y)
(
g′(y)
1

)
= 0.

The identity f(g(y), y) = 0 gives, in addition,

f ′(g(y), y)
(
g′(y)
1

)
= 0.

Taking these equations simultaneously shows that the 2 × 2-matrix
( h′(g(y),y)

f ′(g(y),y)

)
has 0 as

an eigenvalue 0 with eigenvector
(
g′(y)
1

)
. Therefore the rows are linearly dependent, i.e.,

(h′ + λf ′)(g(y), y) = 0 for some suitable λ. Studying the set where

(h′ + λf ′)(x, y) = 0 (2)

often allows for some progress without solving the constraint equation explicitly.
Returning to our example we find that equation (2) becomes

(2x+ λ, 2y + 2λy) = (0, 0).
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The first equation gives x = −λ/2. The second is satisfied for y = 0 or λ = −1. In the
former case the constraint gives x = 3. In the latter case we obtain first x = 1/2 and then,

from the constraint, that y = ±
√
10/2.

2.5.3 Lagrange’s multiplier method. Let h ∈ C1(Ω,R) and f ∈ C1(Ω,Rm) where
m < m+ k = n. Assume that x0 is an extremum of the restriction of h to the set of those
points x ∈ Ω satisfying f(x) = 0 (so that, in particular, f(x0) = 0). Furthermore, assume
that f ′(x0) has maximal rank m. Then there exists a row λ = (λ1, ..., λm) such that

(h+ λf)′(x0) = 0.

Sketch of proof: After possibly relabelling the independent variables xj we may
assume that f ′(x0) = (A1, A2) where A1 is an invertible m×m-matrix and A2 is an m× k-
matrix. We also write x0 =

( α
β

)
where α ∈ Rm and β ∈ Rk. Similarly, h′(x0) = (b1, b2)

with b⊤1 ∈ Rm and b⊤2 ∈ Rk.
Since A1 is invertible the equation b1 + λA1 = 0 has a unique solution λ (a row with m

components). Hence (h+ λf)′(x0) = (0, b2 + λA2). We need to show that b2 + λA2 = 0.
By the implicit function theorem there exists a neighborhood W of β and a function

g ∈ C1(W,Rm) such that g(β) = α and f(g(w), w) = 0 for all w ∈W . The chain rule gives
therefore A1g

′(β) +A2 = 0. Multiplying on the left with λ gives

− b1g
′(β) + λA2 = 0. (3)

According to our assumption the function w 7→ H(w) = h(g(w), w) has a relative extremum
at β. Hence

0 = H ′(β) = b1g
′(β) + b2. (4)

Combining equations (3) and (4) shows that indeed b2 + λA2 = 0. □

2.5.4 Example. Which points on the ellipse given as the intersection of the plane x+ y+
2z = 2 and the paraboloid z = x2 + y2 are farthest from and closest to the origin?



CHAPTER 3

The multi-dimensional Riemann integral

3.0.1 n-cells. Given a, b ∈ Rn such that ak ≤ bk we call the set

I = {x ∈ Rn : ak ≤ xk ≤ bk for k = 1, ..., n}

a closed n-cell . I is called an open n-cell if

I = {x ∈ Rn : ak < xk < bk for k = 1, ..., n}.

The quantity

|I| =
n∏

k=1

(bk − ak)

is called the volume of I.

3.0.2 Partitions. The set P = {I1, ..., Ir} of closed n-cells Ik is called a partition of the
closed n-cell I if the union of the Ik is I and if the interiors of the Ik are pairwise disjoint.

If P ∗ = {J1, ..., Js} is also a partition of I and if for every Jk there is an Iℓ such that
Jk ⊂ Iℓ then P ∗ is called a refinement of P .

For any two partitions P and P ′ of I there is a partition P ∗ which is a refinement of
both P and P ′. P ∗ is called a common refinement of P and P ′.

3.0.3 Riemann sums. Suppose I is a closed n-cell, f : I → R is a bounded function, and
P = {I1, ..., Ir} is a partition of I. For every Ik ∈ P define Mk = sup{f(x) : x ∈ Ik} and
mk = inf{f(x) : x ∈ Ik}. Define

U(P, f) =

r∑
k=1

Mk|Ik| and L(P, f) =

r∑
k=1

mk|Ik|.

Suppose that P and P ′ are partitions of an n-cell I and that P ∗ is a common refinement
of P and P ′. Then

L(P, f) ≤ L(P ∗, f) ≤ U(P ∗, f) ≤ U(P ′, f).

3.0.4 The Riemann integral. Let I be a closed n-cell and f : I → R a bounded function.
The numbers ∫

I
f = inf{U(P, f) : P is a partition of I}

and ∫
I
f = sup{L(P, f) : P is a partition of I}

are called the upper and lower Riemann integral of f over I.
If upper and lower Riemann integral of f over I coincide, then we say that f is Riemann

integrable over I and we define ∫
I
f =

∫
I
f =

∫
I
f,

the Riemann integral of f over I.

13
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3.0.5 A criterion for integrability. Suppose I is a closed n-cell and f : I → R is a
bounded function. Then f is Riemann integrable if and only if, for every positive ε, there
is a partition P such that

U(P, f)− L(P, f) < ε.

3.0.6 Continuous functions are Riemann integrable. If f is a continuous real-valued
function on the closed n-cell I, then f is Riemann integrable over I.

Sketch of proof: Since f is uniformly continuous on I one may construct an appro-
priate partition. □

3.0.7 Sets of measure zero. A set E ⊂ Rn is said to have measure zero if, for every ε > 0,
there are countably many open n-cells Uj , j ∈ N, such that E ⊂

⋃∞
j=1 Uj and

∑∞
j=1 |Uj | < ε.

Any set with countably many elements has measure zero. Moreover, if each of the
countably many sets En, n ∈ N, has measure zero than so does the set

⋃∞
n=1En.

3.0.8 Examples. Let I = [a1, b1]× ...× [an, bn] be an n-cell and fix j ∈ {1, ..., n}. The sets
{x ∈ I : xj = aj} and {x ∈ I : xj = bj} are called faces of the cell. Each face has measure
zero.

Let E be a closed (n− 1)-cell and f a continuous, real-valued function on E. Then the
graph of f , i.e., the set {

( x
f(x)

)
: x ∈ E} ⊂ Rn, has measure zero. To see this let ε > 0

be given and let {R1, ..., Rk} be a collection of intervals of length ϵ partitioning a closed
interval containing f(E). If {E1, .., EN} is a partition of E so that, for j = 1, ..., N , we have
Mj −mj < ε, then the graph of f |Ej

lies in at most two of the sets Ej ×Rk. From this the
conclusion follows.

3.0.9 Oscillation. Suppose E ⊂ Rn and f a bounded function from E to R. For each
x0 ∈ E and δ > 0 define

M(x0, δ) = sup{f(x) : x ∈ E, |x− x0| < δ} and m(x0, δ) = inf{f(x) : x ∈ E, |x− x0| < δ}.
Then

osc(x0) = lim
δ→0

(M(x0, δ)−m(x0, δ))

exists for all x0 ∈ E. It is called the oscillation of f at x0.
The function f is continuous at x0 if and only if osc(x0) = 0.

3.0.10 Riemann integrable functions are nearly continuous. A bounded real-valued
function f defined on a closed n-cell is Riemann integrable if and only if the set of points
where it is not continuous has measure zero.

Sketch of proof: Denote the domain of f by I and define Bk = {x ∈ I : osc(x) ≥
1/k}, B =

⋃∞
k=1Bk, and C = sup{|f(x)| : x ∈ I}.

Assume that f is integrable. Let P = {I1, ..., IN} be a partition of I such that U(P, f)−
L(P, f) < ε/k and assume that {I1, ...Iℓ} is the set of those cells in P whose interiors intersect
Bk. Then

1

k

ℓ∑
j=1

|Ij | ≤
ℓ∑

j=1

|Ij |(Mj −mj) ≤
N∑
j=1

|Ij |(Mj −mj) = U(P, f)− L(P, f) < ε/k.

Since the faces of the n-cells have measure zero it follows that Bk, and hence B, has measure
zero.

Assume B has measure zero. Then there are open cells Uj , j ∈ N, such that B ⊂
⋃∞

j=1 Uj

and
∑∞

j=1 |Uj | < ε. Moreover, if x0 ∈ I \ B, then f is continuous at x0. Hence there is an
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open n-cell Vx0
such that sup{f(x) : x ∈ Vx0

}− inf{f(x) : x ∈ Vx0
} < ε. Since I is compact,

it is covered by a finite collection of the Uj and the Vxk
. There is a partition P = {I1, ..., Ir}

of I such that each of the first ℓ cells is in one of the Uj while each of the remaining ones is

in one of the Vxk
. For this partition we have U(P, f)− L(P, f) < 2Cε+ |I|ε. □

3.0.11 Integrals over bounded sets. Let E be a bounded subset of Rn and f a bounded
function from E to R. If I is a closed n-cell containing E we extend f to a function defined
on I by setting it equal to 0 on I \E. Denoting the extension by fe we define

∫
E
f =

∫
I
fe,

if the latter exists. While E is contained in many n-cells, this definition does not depend
on the choice of such a cell. We then say that f is Riemann integrable over E.

In particular, if the boundary ∂E of E has measure zero and f : E → R is continuous,
then f is Riemann integrable over E.

3.0.12 Properties of the Riemann integral. Let E be bounded a subset of Rn and
assume that f and g are Riemann integrable over E. Then the following statements hold:

(1)
∫
E
(f + g) =

∫
E
f +

∫
E
g.

(2)
∫
E
(cf) = c

∫
E
f whenever c ∈ R.

(3) fg is Riemann integrable over E.
(4) If f ≥ 0 then

∫
E
f ≥ 0.

(5) |f | is Riemann integrable over E and |
∫
E
f | ≤

∫
E
|f |.

(6) If E1 ∪ E2 = E and E1 ∩ E2 = ∅, then
∫
E
f =

∫
E1
f +

∫
E2
f .

3.0.13 Iterated integrals. Suppose A ⊂ Rn is a closed n-cell, B ⊂ Rm is a closed m-cell,
and f : A × B → R is Riemann integrable over A × B. Then x 7→ φ(x) =

∫
B
f(x, ·) and

x 7→ ψ(x) =
∫
B
f(x, ·) are Riemann integrable. Moreover,∫

A×B

f =

∫
A

φ =

∫
A

ψ. (5)

Sketch of proof: Let P = (A1, ..., AN ) be a partition of A and Q = (B1, ..., BM )
a partition of B giving rise to a partition R of A × B consisting of the cells Aj × Bk.

If mk(x) = inf{f(x, y) : y ∈ Bk} we get φ(x) ≥
∑M

k=1mk(x)|Bk|. If x ∈ Aj we have
mk(x) ≥ mj,k = inf{f(x, y) : x ∈ Aj , y ∈ Bk} and hence

inf{φ(x) : x ∈ Aj} ≥
M∑
k=1

mj,k|Bk|.

Thus

L(R, f) =

N∑
j=1

M∑
k=1

mj,k|Aj ||Bk| ≤ L(P,φ) ≤ U(P,φ).

Similarly, U(R, f) ≥ U(P,ψ) ≥ L(P,ψ). Also, since φ ≤ ψ and f is Riemann integrable, we
get that both φ and ψ are Riemann integrable and that (5) holds. □

3.0.14 Differentiating an integral. Let f : [x0, x1] × [y0, y1] → R be a continuous
function such that D2f is also continuous. Define F (y) =

∫
[a,b]

f(·, y) for y ∈ [y0, y1]. Then

F ′(y) =

∫
[a,b]

(D2f)(·, y).
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Sketch of proof: For y > y0 we have F (y) − F (y0) =
∫
[a,b]

∫
[y0,y]

(D2f)(x, u)dudx.

Hence, given ε > 0, ∣∣∣∣∣F (y)− F (y0)

y − y0
−
∫
[a,b]

(D2f)(·, y)

∣∣∣∣∣ < ε(b− a)

when |y− y0| is sufficiently small. This uses that D2f is, in fact, uniformly continuous. □



CHAPTER 4

Integration of differential forms

Recall that Ω always denotes an open subset of Rn.

4.1. Integration along paths

4.1.1 Smooth paths. A smooth path in Ω is a continuously differentiable function from
Q1 = [0, 1] to Ω.

4.1.2 Integration along a smooth path. Given a smooth path γ in Ω, we may integrate
a list ω = (ω1, ..., ωn) of continuous real-valued functions defined on Ω along γ by defining∫

γ

ω =

∫
[0,1]

n∑
j=1

ωj(γ(t))γ
′
j(t)dt.

For example, if ω(x) = (x2, x1, 0) and γ(t) = (2t3, 3t, t2)⊤, then∫
γ

ω = 6.

If ω(x) = (0, x1) and γ(t) = (a cos(2πt), b sin(2πt))⊤, then∫
γ

ω = πab.

4.2. Integration over surfaces

4.2.1 Smooth surfaces. A smooth surface in Ω is a continuously differentiable function
from Q2 = {(x, y) : 0 ≤ x, 0 ≤ y, x+ y ≤ 1} to Ω.

4.2.2 Integration over a smooth surface. Given a smooth surface ϕ in Ω we define,
for α = (α1, α2) ∈ {1, ..., n}2, the Jacobian determinants

J(ϕ, α) = det

(
D1ϕα1

D2ϕα1

D1ϕα2
D2ϕα2

)
.

These are continuous functions from Q2 to R. Note that J(ϕ, (k, k)) = 0 and J(ϕ, (k, ℓ)) =
−J(ϕ, (ℓ, k)) for ℓ, k = 1, ..., n.

Now we define the integral of an array of continuous real-valued functions ωj,k, j, k =
1, ..., n, defined on Ω by∫

ϕ

ω =

∫
Q2

n∑
j=1

n∑
k=1

ωj,k ◦ ϕ J(ϕ, (j, k)) =
∫
Q2

∑
1≤j<k≤n

(ωj,k − ωk,j) ◦ ϕ J(ϕ, (j, k)).

17
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For example, if

ω(x) =

x1 x3 0
0 x2 x1
x2 0 x3

 and ϕ(s, t) =

sin(πs) cos(2πt)
sin(πs) sin(2πt)

cos(πs)

 ,

then ∫
γ

ω = 2π.

4.3. The general case

4.3.1 The standard k-simplex. Suppose k ∈ N. Then the set Qk = {x ∈ Rk : 0 ≤
xj , x1 + ... + xk ≤ 1} is called the standard k-simplex in Rk. We also define the standard
0-simplex to be Q0 = R0 = {0}.
4.3.2 k-surfaces. If k ∈ N we define a k-surface in Ω to be a function ϕ ∈ C1(Qk,Ω). A
0-surface in Ω is a point in Ω. Qk is called the parameter domain of ϕ.

4.3.3 Multi-indices. We have introduced the concept of a multi-index in 2.2.9. In this
chapter we need a slightly different kind of object. Henceforth, given n, k ∈ N, we call a list
of k elements from {1, ..., n} a k-index of type n. The set of k-indices of type n is denoted
by Nn

k . It has precisely n
k elements.

A k-index β is called a basic k-index if β1 < β2 < ... < βk. There are
(
n
k

)
basic k-indices

in Nn
k if k ≤ n and none if k > n. The set of all basic k-indices of type n is denoted by Ink .

4.3.4 Jacobians. Given n continuously differentiable real-valued functions ϕ1, ..., ϕn de-
fined on Qk and a k-index α = (α1, ..., αk) of type n we define the Jacobian

J(ϕ, α) = det

D1ϕα1
· · · Dkϕα1

...
...

D1ϕαk
· · · Dkϕαk


which is a continuous function on Qk.

4.3.5 The vector space Wn
k (Ω). The real vector space of functions ω : Nn

k → C0(Ω,R)
is denoted by Wn

k (Ω). In other words, an element of Wn
k (Ω) assigns to each k-index α of

type n a function ωα ∈ C0(Ω,R). We also define Wn
0 (Ω) = C0(Ω,R).

The set of functions from Nn
k to R is an nk-dimensional vector space. It has a standard

basis eα, α ∈ Nn
k , defined by α(β) = 1 if α = β and α(β) = 0 if α ̸= β.1

Treating the eα as (constant) functions on Ω we may now represent an element ofWn
k (Ω)

by ω =
∑

α∈Nn
k
ωαeα.

4.3.6 Integration over a k-surface. Suppose ϕ is a k-surface in Ω and ω ∈ Wn
k (Ω).

Then we define ∫
ϕ

ω =

∫
Qk

∑
α∈Nn

k

ωα ◦ ϕ J(ϕ, α)

if k > 0. If k = 0 we set
∫
ϕ
ω = ω(ϕ(0)).

1This construction is exactly parallel to the construction of the standard base in Rn if one considers it

as the space of real-valued functions on {1, ..., n}.
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4.3.7 Differential k-forms. We call two functions ω1, ω2 ∈Wn
k (Ω) equivalent, if

∫
ϕ
ω1 =∫

ϕ
ω2 for all k-surfaces ϕ in Ω. This relation is an equivalence relation and will be denoted

by ω1 ∼ ω2.

Definition. Suppose k ∈ N. A differential form ω of order k in Ω, or simply a k-form
in Ω, is an equivalence class of functions ω̃ ∈Wn

k (Ω). A differential form of order 0 in Ω, or
simply a 0-form in Ω is a continuous real-valued function on Ω.

A k-form in Ω assigns to each k-surface in Ω a real number. If ω̃ is a representative of
ω and ϕ is a k-surface, we shall write ω(ϕ) =

∫
ϕ
ω̃ or

∫
ϕ
ω =

∫
ϕ
ω̃.

The differential forms of order k form a real vector space.

4.3.8 Elementary properties of k-forms. If α is a k-index and π is a permutation of
{1, ..., k} we define απ = (απ(1), ..., απ(k)).

Suppose b ∈ C0(Ω,R), α ∈ Nn
k , and π is a transposition of {1, ..., k}. Then beα ∼ −beαπ

.
If αj = αℓ for some j ̸= ℓ then beα ∼ 0. If ω̃ ∈Wn

k (Ω) with k > n, then ω̃ ∼ 0.
Suppose ω1 and ω2 are k-forms in Ω and ϕ is a k-surface in Ω. Let c be real number.

Then the following statements are true.

(1)
∫
ϕ
(ω1 + ω2) =

∫
ϕ
ω1 +

∫
ϕ
ω2.

(2)
∫
ϕ
cω = c

∫
ϕ
ω.

4.3.9 Basic representatives of k-forms. Suppose k ≤ n. If the entries of the k-index
α are pairwise distinct, there is a permutation π of {1, ..., k} such that β = απ is a basic
k-index. Since eα ∼ (−1)πeβ we can, for any k-form ω, choose a representative ω̃ such that
ω̃α = 0 unless α is a basic k-index. Such a representative is called a basic representative of
ω. If k > n and ω is a k-form, then ω = 0. In this case the basic representative has ωα = 0
for all α.

Theorem. Suppose k ≤ n. Let ω be a k-form in Ω and ω̃ a basic representative of ω.
Then ω = 0 if and only if ω̃α = 0 for every α ∈ Nn

k . In other words, the equivalence class
of representatives of a k-form contains precisely one basic representative.

Sketch of proof. Suppose, by way of contradiction, that ω̃α(x0) > 0 for some x0 ∈ Ω
and some basic k-index α. Construct a k-surface ϕ in a sufficiently small neighborhood of
x0 such that J(ϕ, α) = 1 and J(ϕ, β) = 0 for all basic k-indices β ̸= α. Then

∫
ϕ
ω =∫

Qk ω̃α ◦ ϕ J(ϕ, α) > 0, the desired contradiction. □

4.3.10 The wedge product of differential forms. Suppose p, q ∈ N, ω is a p-form, and
λ is a q-form in Ω. Let ω̃ be the basic representative of ω and λ̃ the basic representative of
λ, i.e,2

ω̃ =
∑
α∈In

p

ω̃αeα and λ̃ =
∑
β∈In

q

λβeβ .

Then we define the (p+ q)-form ω ∧ λ to be the form represented by∑
α∈In

p

∑
β∈In

q

ω̃αλ̃βe(α,β).

We also define the product of 0-forms with k-forms: If ω and λ are both 0-forms then ω ∧λ
is the 0-form given by the product of the continuous functions ω and λ. If ω is a 0-form and

2Customarily, an expression of the form
∑

a∈A b(a) is set equal to 0 if A = ∅.
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λ is a q-form, then

ω ∧ λ =
∑
β∈In

q

ωλβeβ .

Similarly, if ω is a p-form and λ is a 0-form, then

ω ∧ λ =
∑
α∈In

p

ωαλeα.

Note that ω ∧ λ = 0 if p+ q > n.
The wedge product of differential forms is associative and left and right distributive but

not commutative. In fact, ω ∧ λ = (−1)pq λ ∧ ω.
4.3.11 Differentiation of differential forms. We say a differential form of order k is of
class Cr if the functions ωα in its basic representation

∑
α∈In

k
ωαeα are elements of Cr(Ω,R).

A form of class Cr is called an r times continuously differentiable form.
We will now define an operator d which maps k-forms of class Cr to (k + 1)-forms of

class Cr−1.
If f is a 0-form of class C1 in Ω we define df to be the 1-form with basic representative

n∑
j=1

(Djf)ej

using that In1 = {1, ..., n}.
If k ≥ 1 and ω is a k-form of class C1 with basic representative

ω̃ =
∑
α∈In

k

ω̃αeα,

we define dω to be the (k + 1)-form represented by∑
α∈In

k

n∑
j=1

(Djω̃α)e(j,α).

4.3.12 Examples. The following are important examples.

(1) Consider x 7→ xj as a 0-form. Then dxj := d(x 7→ xj) has representative ej . It is
therefore customary to write dxj for ej and representatives of general 1-forms in Ω
may be written as

∑n
j=1 ωjdxj , where the ωj are continuous real-valued functions

on Ω.
(2) dxj ∧ dxℓ is represented by ej,ℓ.
(3) d2xj = d(d(x 7→ xj) = 0.
(4) Let ϕ be a 1-surface and f a 0-form of class C1. Then∫

ϕ

df =

∫
[0,1]

n∑
j=1

(Djf)(ϕ)ϕ
′
j =

∫
[0,1]

(f ◦ ϕ)′ = f(ϕ(1))− f(ϕ(0)).

(5) Let ω be the 1-form with basic representative xpeq, 1 ≤ p, q ≤ n. Then dω is
represented by ep,q = dxp ∧ dxq. In particular, dω = 0 if p = q.

4.3.13 Differentiation rules. Suppose ω is a differentiable p-form and λ is a differentiable
q-form in Ω. Then the following statements hold:

(1) If p = q, then d(ω + λ) = dω + dλ.
(2) If c ∈ R, then d(cω) = cdω.
(3) d(ω ∧ λ) = (dω) ∧ λ+ (−1)pω ∧ (dλ).
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Moreover, d2 = 0 on twice continuously differentiable forms.

4.3.14 Change of variables. Suppose T ∈ C1(Ω,Ω′) where Ω′ is an open set in Rm. If
k ∈ N and ω is a k-form in Ω′ with basic representative

ω̃ =
∑
α∈Im

k

ω̃αe
(m)
α

we define a k-form ωT in Ω by setting

ω̃T =
∑
α∈Im

k

(ω̃α ◦ T )dTα1
∧ ... ∧ dTαk

=
∑
β∈In

k

( ∑
α∈Im

k

(ω̃α ◦ T )tα,β
)
e
(n)
β

where

tα,β = det

Dβ1Tα1 · · · Dβk
Tα1

...
...

Dβ1Tαk
· · · Dβk

Tαk

 .

If ω is a 0-form we set ωT = ω ◦ T .
Example: Suppose n = 2, m = 3, k = 2, T (x1, x2) = (x21 + x22, x1x2, x2)

⊤, and ω(y) =

y2y3e
(3)
1,2 + y1 e

(3)
2,3. Then ωT = (2x31x

2
2 − 2x1x

4
2 + x21x2 + x32)e

(2)
1,2.

4.3.15 Basic properties of variable changes. Let Ω and Ω′ be open sets in Rn and
Rm, respectively. Suppose that T ∈ C1(Ω,Ω′) and that ω is a p-form and λ a q-form in Ω′.
Then

(1) If p = q then (ω + λ)T = ωT + λT .
(2) (ω ∧ λ)T = ωT ∧ λT .
(3) If ω is of class C1 and T ∈ C2(Ω,Ω′) then ωT is of class C1 and d(ωT ) = (dω)T .

4.3.16 Compositions of variable changes. Suppose Ω, Ω′, and Ω′′ are open sets in Rn,
Rm, and Rp, respectively. Let T ∈ C1(Ω,Ω′) and S ∈ C1(Ω′,Ω′′) and ω a k-form in Ω′′.
Then ST = S ◦ T ∈ C1(Ω,Ω′′) and

ωST = (ωS)T .

Sketch of proof: Show this first for the case when k = 0 and k = 1. Then use
4.3.15. □

4.3.17 Variable changes and integration. Suppose Ω and Ω′ are open sets in Rn and
Rm, respectively. If ω is a k-form in Ω′, ϕ is a k-surface in Ω and T ∈ C1(Ω,Ω′), then ωT

is a k-form in Ω, T ◦ ϕ is a k-surface in Ω′ and∫
T◦ϕ

ω =

∫
ϕ

ωT .

Sketch of proof: First show that this true when k = n and ϕ is the identity on Qk.
Then note that ∫

T◦ϕ
ω =

∫
1

ωT◦ϕ =

∫
1

(ωT )ϕ =

∫
ϕ

ωT .

□



22 4. INTEGRATION OF DIFFERENTIAL FORMS

4.4. Stokes’ theorem

4.4.1 Chains. Let Sk(Ω) denote the set of k-surfaces in Ω. A k-chain in Ω is a function
f : Sk(Ω) → Z such that f(s) = 0 for all but finitely many s ∈ Sk(Ω). We define the sum
of two k-chains f and g by (f + g)(s) = f(s) + g(s) and an integer multiple of a k-chain by
(rf)(s) = rf(s) when r ∈ Z. Then f + g and rf are again k-chains in Ω.

Defining f(s0) = 1 and f(s) = 0 for s ̸= s0 shows that we may consider a k-surface as
a k-chain. A function f defined this way will be denoted by [s0]. We may now represent
k-chains as n1[s1] + ...+ nℓ[sℓ] with integers nj and k-surfaces sj , j = 1, ..., ℓ.

The set of k-chains Sk(Ω) → Z is denoted by Ck(Ω).
A k-chain n1[s1] + ...+ nℓ[sℓ] is of class C

r, if each of the k-surfaces s1, ..., sℓ is of class
Cr for some r in N.

4.4.2 Boundaries. Suppose ℓ ≤ k. The points e
(ℓ)
0 = 0 ∈ Rℓ and e

(ℓ)
j , j = 1, ..., ℓ, are the

vertices of Qℓ. Let p0, p1, ..., pℓ be points in Rk. The ℓ-surface

Qℓ → Rk : (u1, ..., uℓ) 7→ p0 +

ℓ∑
j=1

uj(pj − p0)

is called an affine ℓ-simplex in Rk which we denote by ⟨p0, ..., pℓ⟩. Note that pj is the image

of e
(ℓ)
j . For the associated chain we will write [p0, ..., pℓ] instead of [⟨p0, ..., pℓ⟩].
An affine ℓ-simplex ⟨p0, ..., pℓ⟩ has ℓ+1 faces ⟨p0, ...,��pj , ..., pℓ⟩, j = 0, ..., ℓ. Each of these

faces is an affine (ℓ− 1)-simplex and the chain

k∑
j=0

(−1)j [p0, ...,��pj , ..., pℓ]

is called the boundary of [p0, ..., pℓ].
More generally, if ϕ is a k-surface ∈ Rn, we define

∂[ϕ] =

k∑
j=0

(−1)j [ϕ ◦ ⟨e(k)0 , ...,
�
�e
(k)
j , ..., e

(k)
k ⟩]

noting that ⟨e(k)0 , ...,
�
�e
(k)
j , ..., e

(k)
k ⟩ maps Qk−1 to Qk.

Finally, if ψ =
∑ℓ

j=1 nj [ϕj ] is any chain in Ck(Ω) we define its boundary as

∂ψ =

ℓ∑
j=1

nj∂[ϕj ].

4.4.3 Examples. Suppose k = 3 and ℓ = 2. Let p0 = (0, 0, 0)⊤, p1 = (1, 1, 1)⊤, and p2 =
(0, 1, 1)⊤. The 2-surface ⟨p0, p1, p2⟩ represents a triangle in R3. The boundary ∂[p0, p1, p2]
consists of the three edges of the triangle. Also, ∂(∂[p0, p1, p2]) = 0.

Find the boundary of the 2-surface

ϕ(s, t) =

sin(πs) cos(2πt)
sin(πs) sin(2πt)

cos(πs)

 , (s, t) ∈ Q2.

Plot the surface and its boundary.

4.4.4 ∂2 = 0. For any k-chain σ we have ∂2σ = 0.
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4.4.5 Integration over chains. Let γ be a k-chain in Ω and ω a k-form in Ω. Since

γ =
∑ℓ

j=1 nj [ϕj ] with k-surfaces ϕj we define

ω(γ) =

∫
γ

ω =

ℓ∑
j=1

nj

∫
ϕj

ω.

4.4.6 The fundamental theorem of calculus. Suppose n = 1, Ω = R and a, b ∈ R
with a < b. Let ϕ be the 1-chain [a, b] given by the 1-surface ⟨a, b⟩, i.e., by [0, 1] → R : t 7→
a + (b − a)t. Also, let f be a continuously differentiable 0-form in R. Then df is a 1-form
represented by f ′e1 = f ′dx and the following identity, called the fundamental theorem of
calculus, holds: ∫

ϕ

df =

∫
∂ϕ

f.

Sketch of proof: If we use the letter ϕ also for the function ⟨a, b⟩ well-known results
from calculus show∫

ϕ

df =

∫
[0,1]

f ′(ϕ)ϕ′ =

∫
[0,1]

(f ◦ ϕ)′ = f(ϕ(1))− f(ϕ(0))

and, since ∂ϕ = [ϕ(1)]− [ϕ(0)]∫
∂ϕ

f =

∫
ϕ(1)

f −
∫
ϕ(0)

f = f(ϕ(1))− f(ϕ(0)).

□

4.4.7 Stokes’ theorem. Let Ω be an open subset of Rn and k ∈ N. If ϕ is a k-chain of
class C2 in Ω and ω is a (k − 1)-form of class C1 in Ω, then∫

ϕ

dω =

∫
∂ϕ

ω.

Sketch of proof: It is sufficient to prove that∫
ϕ

(Drf)er,α =

∫
∂ϕ

feα

for r ∈ {1, ..., k}, α = (1, ..., �r, ..., k), ϕ = [e0, ..., ek], and a continuously differentiable
function f : Qk → R. To see this recall that ⟨e0, ..., ek⟩ is the identity map, which we denote
by 1, on Qk.

Note that J(1, (r, α)) = (−1)r+1 so that
∫
ϕ
(Drf)er,α = (−1)r+1

∫
Qk Drf . To evaluate

this we use iterated integrals and integrate first over the r-th component tr of Qk from 0 to
s = 1− t1 − ...−��tr − ...− tk. This gives∫

ϕ

(Drf)er,α = (−1)r+1

∫
Qk−1

(f(t1, ..., tr−1, s, tr+1, ...tk)− f(t1, ..., tr−1, 0, tr+1, ...tk)).

Defining σ(j) = ⟨e0, ...,��ej , ..., ek⟩ the boundary of ϕ is given by
∑k

j=0(−1)j [σ(j)]. Then

J(σ(j), α) = 0 unless j = 0 or j = r. In fact, J(σ(r), α) = 1 and J(σ(0), α) = (−1)r+1.
Hence ∫

∂ϕ

feα =

k∑
j=0

(−1)j
∫
σ(j)

feα = (−1)r
∫
Qk−1

(f ◦ σ(r) − f ◦ σ(0)).
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It remains to prove that
∫
Qk−1(f(t1, ..., tr−1, s, tr+1, ...tk) =

∫
Qk−1 f ◦ σ(0) which follows

from 4.3.17 for a simple transformation T : Qr → Qr. □

4.4.8 Green’s theorem. Let n = 2. If ϕ is 2-chain in Ω ⊂ R2 and if ω = fe1 + ge2 is a
1-form of class C1, then dω = (D1g −D2f)e1,2. Stokes’ theorem is called Green’s theorem
in this case ∫

ϕ

(D1g −D2f)e1,2 =

∫
∂ϕ

(fe1 + ge2).

In particular, when f(x1, x2) = −x2/2 and g(x1, x2) = x1/2 we get∫
ϕ

e1,2 =
1

2

∫
∂ϕ

(x1e2 − x2e1).

This quantity is called the area of (the range of ) ϕ. Use Green’s theorem to find the area
of the triangle with vertices p0 = (0, 0)⊤, p1 = (a, 0)⊤, and p2 = (b, c)⊤ where a, b, c > 0.



APPENDIX A

Vector spaces and linear transformations

A.1. Vector spaces

A.1.1 Euclidean vector spaces. Rn is the set of all ordered lists of n real numbers.
Its elements are called vectors, real numbers themselves are sometimes called scalars. The
entries of a list defining a vector are called components or coordinates. We will usually think
of the lists as columns rather than rows. For typographical reasons we shall often use the
notation (a1, ...., an)

⊤ for the column whose components are a1, ..., an.
Two elements of Rn may be added componentwise, i.e.,

(a1, ...., an)
⊤ + (b1, ..., bn)

⊤ = (a1 + b1, ..., an + bn)
⊤.

If α is a scalar and a is a vector, we define

α(a1, ...., an)
⊤ = (αa1, ..., αan)

⊤.

This is called the scalar multiplication of a by α. With these operations Rn is a real vector
space in the sense of Linear Algebra.

There is also a canonical inner product (or scalar product) associated with Rn:

x · y =

n∑
j=1

xjyj

when x = (x1, ..., xn)
⊤ and x = (y1, ..., yn)

⊤.
Equipped with vector addition, scalar multiplication, and inner product as just defined

Rn is called the euclidean vector space of dimension n.

A.1.2 Linear combinations. If x1, ..., xn ∈ Rn and α1, ..., αn ∈ R, the vector

α1x1 + ...+ αnxn

is called a linear combination of x1, ..., xn.

A.1.3 Linearly independence. The vectors x1, ..., xn ∈ Rn are called linearly indepen-
dent if α1x1 + ... + αnxn = 0 implies that α1 = ... = αn = 0. Otherwise, they are called
linearly dependent .

A set is called linearly independent, if any finite number of its elements are linearly
independent.

A.1.4 Subspaces. A nonempty subset S of Rn is called a subspace of Rn if αx+ βy ∈ S
whenever x, y ∈ S and α, β ∈ R. A subspace is a vector space with respect to the operations
of vector addition and scalar multiplication defined in A.1.1.

A.1.5 Spans. Let A be a nonempty subset of Rn. The set of all linear combinations of
finitely many elements of A is called the span of A. The span of A, denoted by spanA, is a
subspace of Rn. If W = spanA we also say that W is spanned by A or that A spans W .

25
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If A = ∅ we define spanA = {0}, the trivial vector space. Here we wrote, as is customary,
0 for the vector (0, ..., 0)⊤.

A.1.6 Bases and dimension. Suppose V is a subspace of Rn. A set B ⊂ V is called a
basis of V , if it is linearly independent and spans V . The empty set is a basis of the trivial
vector space {0}. Every basis of V has the same number of elements. This number is called
the dimension of V .

We call (v1, ..., vn) ∈ V n an ordered basis of V , if v1, ..., vn are pairwise distinct and
form a basis of V .

The vectors e1 = (1, 0, ..., 0)⊤, e2 = (0, 1, 0, ..., 0)⊤, ... en = (0, ..., 0, 1)⊤ form a basis
of Rn. The ordered basis (e1, ..., en) is called the standard basis of Rn. Sometimes we may
want to emphasize the dimension of the space to which a standard basis element belongs.

Then we use e
(n)
j instead of ej .

A.2. Linear operators

A.2.1 Linear operators. Let V and W be two vector spaces over R. The function
F : V →W is called a linear operator or a linear transformation, if

F (αx+ βy) = αF (x) + βF (y)

for all α, β ∈ R and all x, y ∈ V .
If F is a linear operator we have F (0) = 0 and F (−x) = −F (x).
It is customary to write Fx in place of F (x).

A.2.2 Kernel and range. The kernel of a linear operator F : V →W is the set kerF =
{x ∈ V : F (x) = 0}. The range of a linear transformation F : V → W is the set ranF =
F (V ) = {F (x) : x ∈ V } of all images of F .

Kernel and range of F are subspaces of V and W , respectively. The dimension of kerF
is called the nullity of F while the dimension of ranF is called the rank of F .

A.2.3 The vector space of linear operators. The set of all linear operators from the
vector space V to the vector space W is denoted by L(V,W ). We define an addition and a
scalar multiplication of linear operators by (F +G)(x) = F (x)+G(x) and (αF )(x) = αF (x)
when F and G are linear operators and α a real number. One may then show that L(V,W )
is a real vector space.

A.2.4 The fundamental theorem of Linear Algebra. Suppose V and W are finite-
dimensional vector spaces and T ∈ L(V,W ). Then

dim(kerT ) + dim(ranT ) = dimV.

This is also known as the rank-nullity theorem.

A.2.5 Compositions of linear operators. Suppose U , V , and W are finite-dimensional
vector spaces. If F : U → V and G : V →W are linear operators we define

(G ◦ F )(x) = G(F (x))

for all x ∈ U . Then G ◦ F , the composition of G and F , is a linear transformation from U
to W . Note that it makes no sense to define F ◦G unless W ⊂ U .

For simplicity one often writes GF in place of G ◦ F and F 2 in place of F ◦ F .
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A.2.6 Matrices and linear operators between euclidean vector spaces. Let T be
a linear operator from Rn to Rm. Then

Te
(n)
j =

m∑
ℓ=1

Mℓ,je
(m)
ℓ

where the Mℓ,j are appropriate real numbers. These are customarily arranged in a rectan-
gular grid M with m rows and n columns, i.e.,

M =

M1,1 · · · M1,n

...
...

Mm,1 · · · Mm,n

 .

M is called an m × n-matrix . The set of all m × n-matrix with real entries is denoted by
Rm×n.

Of course, an m × n-matrix M determines a linear operator from Rn to Rm. Thus,
assuming standard bases in both domain and range, it is sensible to identify linear operators
from Rn to Rm with the corresponding m× n matrices.

A.2.7 Matrix algebra. The operations of addition, scalar multiplication, and composition
of linear operators between euclidean vector spaces are reflected in corresponding algebraic
operations on matrices. Specifically, addition and scalar multiplication are represented by

M +N

 M1,1 +N1,1 · · · M1,n +N1,n

...
...

Mm,1 +Nm,1 · · · Mm,n +Nm,n

 and αM =

αM1,1 · · · αM1,n

...
...

αMm,1 · · · αMm,n


when M and N are m× n matrices

The composition of linear transformations turns into a multiplication of matrices, if we
define the product of an ℓ×m-matrix M and an m× n-matrix N by

(MN)j,k =

m∑
s=1

Mj,sNs,k, j = 1, ..., ℓ, k = 1, ..., n.

Note that it is necessary that the number of columns of M equals the number of rows of
N in order to form the product MN . This reflects the fact that the range of the operator
associated with N has to be in the domain of the operator associated with M . Thus matrix
multiplication is not commutative (but it is associative).

A.2.8 Distributive laws in matrix algebra. We have the following distributive laws
for matrices A,B,C whenever it makes sense to form the sums and products in question:
(A+B)C = AC +BC, A(B + C) = AB +AC, and α(AB) = (αA)B = A(αB).

A.2.9 Square matrices. A matrix is called a square matrix if it has as many columns as
it has rows. The elements M1,1, ..., Mn,n of an n × n-matrix are called diagonal elements
and together they form the main diagonal of the matrix. A matrix is called a diagonal
matrix , if its only non-zero entries are on the main diagonal.

The identity transformation F (x) = x defined on an n-dimensional vector space is
represented by the identity matrix 1 which is an n×n-matrix all of whose entries are 0 save
for the ones on the main diagonal which are 1.

A.2.10 Inverses. A linear operator T from Rn to Rn as well as the associated matrix is
called invertible, if it is bijective. Since here domain and co-domain have the same dimension,
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the rank-nullity theorem guarantees that T is injective if and only if it surjective. Thus T
is invertible if and only if kerT = {0}.
A.2.11 Determinants. We define the determinant of an n×n-matrix recursively. If n = 1
we set detA = A. If n > 1 we define the minor Mj,k to be the (n − 1) × (n − 1)-matrix
obtained from A by deleting row j and column k. Then we define

detA =

n∑
j=1

(−1)j+n detMj,nAj,n.

The determinant has the following properties: (i) detA = 0 if the rows or the columns
are linearly dependent. (ii) If B is obtained by switching two rows or two columns of A,
then detB = −detA. (iii) If B is obtained by multiplying a row or a column of A by the
number c, then detB = cdetA.

A.3. Some facts about spectral theory

A.3.1 Eigenvalues and eigenvectors. Suppose A ∈ L(V, V ) where V is a real vector
space. If there exists a non-zero element x ∈ V and a real number λ such that Ax = λx,
then λ is called an eigenvalue of A and x an eigenvector associated with λ.

The kernel of A− λ1 is called the geometric eigenspace of A associated with λ.

A.3.2 Symmetric matrices. A matrix M ∈ Rn×n is called symmetric, if Mj,k = Mk,j .
Recall that M represents a linear operator from Rn to Rn.

If M is a symmetric matrix in Rn×n, then all its eigenvalues are real. Moreover, Rn has
an orthonormal basis consisting of eigenvectors.

A.3.3 Quadratic forms. A homogeneous quadratic polynomial in n variables with real
coefficients is called a quadratic form over R. Such a quadratic form is given by

q(x) =

n∑
j=1

n∑
k=1

Qj,kxjxk = x⊤Qx

where Q ∈ Rn×n. Note that the matrix Q may always be chosen to be symmetric.
A quadratic form q is called positive (or negative) semi-definite, if q(x) ≥ 0 (or q(x) ≤ 0)

whenever x ∈ Rn. It is called positive or negative definite if the inequalities are strict when
x ̸= 0. A quadratic form which is not semi-definite is called indefinite. These expressions
are also used to characterize real symmetric matrices.

The following statements are true if Q is chosen symmetric:

(1) q is positive (negative) definite if and only if all eigenvalues of Q are positive
(negative).

(2) q is positive (negative) semi-definite if and only if none of the eigenvalues of Q are
negative (positive).



APPENDIX B

Miscellaneous

B.1. Algebra

B.1.1 The multinomial theorem. Let n and k be a natural numbers and x1, ..., xn real
numbers. Then

(x1 + ...+ xn)
k =

∑ k!

α1!...αn!
xα1
1 ...xαn

n

where the sum is over all choices of non-negative integers αj , j = 1, ..., n, such that α1 +
...+ αn = k.

B.1.2 Permutations. A permutation of a finite set X is a bijection from X to itself.
The set of such permutations is a group under composition. A permutation τ is called a
transposition if there are distinct elements x, y ∈ X such that τ(x) = y and τ(y) = x while
τ(z) = z whenever z ∈ X \ {x, y}. Every permutation is a composition of transpositions.
Such factorizations of permutations are not unique. However, if one factorization of a
permutation π has an even number of factors then this is true for all factorizations of π.
One defines therefore the parity of a permutation π, denoted by (−1)π, to be (−1)ℓ = ±1,
if it has a factorization consisting of ℓ transpositions. If ℓ is even π is called an even
permutation and otherwise an odd permutation.
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List of special symbols

Ω: the closure of Ω, 2

1: the identity transformation or identity matrix, 27

J(ϕ, α): the Jacobian determinant associated with the k-index α, 18

kerF : the kernel of F , 26

L(V,W ): the space of linear operators from V to W , 26

Nn
k : the set of k-indices of type n, 18

Ink : the set of basick-indices of type n, 18
Wn

k : a function space giving rise to differential forms, 18

∥A∥: the norm of the operator A, 2
|x|: the norm of the vector x, 1

Rm×n: the set of real m× n-matrices, 27
ranF : the range of F , 26

Qk: the standard k-simplex, 18
span: the span of a set, 25

ek or e
(n)
k : the k-th member of the standard basis of Rn, 26

eα: an element of the standard basis of RNn
k , 18
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k-form, 19
k-index, 18
basic, 18

n-cell, 13

basis, 26
ordered, 26
standard, 26

boundary, 22

chain rule, 6
component, 25
continuity, 2
contraction, 9
coordinate, 25
critical point, 9

definite, 28
derivative, 5
partial, 6
total, 5

diagonal
element, 27
main, 27

diagonal matrix, 27
differentiable
form, 20
function, 5

differential form, 19
directional derivative, 8
distance, 1

eigenspace
geometric, 28

eigenvalue, 28
eigenvector, 28
euclidean vector space, 25
extremum, 8

face of a cell, 14
face of an affine simplex, 22
fixed point, 9

gradient, 7

Hessian, 9

identity matrix, 27
identity transformation, 27
indefinite, 28
inner product, 1, 25
invertible, 27

kernel, 26

limit, 2
linear approximation, 5
linear combination, 25
linear independence, 25
linear operator, 26
linearly dependence, 25
Lipschitz condition, 6

main diagonal, 27
matrix, 27
diagonal, 27
square , 27

maximum
relative, 8
strict relative, 8

metric, 1
metric space, 2
minimum
relative, 8
strict relative, 8

norm, 1
of a linear operator, 2

33



34 INDEX

nullity, 26

oscillation, 14

parity, 29
partition of an n-cell, 13
permutation
of a set, 29

quadratic form, 28

range, 26
rank, 26
rank-nullity theorem, 26
refinement, 13
Riemann integral, 13

scalar, 25
scalar multiplication, 25
scalar product, 1, 25

Schwarz’s inequality, 1
semi-definite, 28
simplex
affine, 22
standard, 18

span, 25
subspace, 25
symmetric matrix, 28

total derivative, 5
transformation
linear, 26

transposition, 29
triangle inequality
for metric spaces, 2
for normed spaces, 1

vector, 25
vector addition in Rn, 25
volume of an n-cell, 13
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