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Preface

For millennia humankind has concerned itself with the concepts of patterns, shape, and
quantity. Out of these grew mathematics which, accordingly, comprises three branches:
algebra, geometry, and analysis. We are concerned here with the latter. As quantity is
commonly expressed using real numbers, analysis begins with a careful study of those. Next
are the concepts of continuity, derivative, and integral. While at least the ideas, if not the
formal definition, of the former two have been rather stable since the advent of the calculus
the same is not true for the concept of integral. Initially integrals were thought of as anti-
derivatives until, in the 19th century, Augustin-Louis Cauchy (1789 – 1857) and Bernhard
Riemann (1826 – 1866) defined the integral of a function over an interval [a, b] by partitioning
the interval into shorter and shorter subintervals. However, the Riemann integral proved
to have severe shortcomings leading many mathematicians at the end of the 19th century
to search for alternatives. In 1901 Henri Lebesgue (1875 – 1941) presented a new idea
using more general subsets than subintervals in the sums approximating the integral. In
order to make this work he assumed having a concept of the size, i.e., a measure, of such
sets compatible with the length of intervals. Clearly, one should at least require that the
measure of the union of two disjoint sets equals the sum of their respective measures but it
turned out to be much more fruitful to require such a property of countable collections of
pairwise disjoint sets, a property which is called countable additivity. One wishes, of course,
to assign a measure to any subset; alas this is not always possible and one may have to be
satisfied with a domain for the measure smaller than the power set. For this the framework
of a σ-algebra gained widespread acceptance. Lebesgue’s approach to the integral had a
tremendous impact on analysis.

It is an important consequence of Lebesgue’s ideas that the mere presence of a countably
additive measure defined on a σ-algebra in a set X allows to develop a theory of integration
and thus a rather abstract approach to the subject. In this course we will take this abstract
approach in the beginning. Later we will define Lebesgue measure and investigate more
concrete problems for functions defined on R or Rn.

These notes were informed by the following texts: Bennewitz [1], Folland [2], Gordon
[3], Henze [4], Hewitt and Stromberg [5], Kolmogorov and Fomin [6], Riesz and Sz.-Nagy [7],
and Rudin [8] and [9]. Thanks are also owed to several generations of students who had to
work through previous versions of these notes finding errors and suggesting improvements.
Steven Redolfi deserves a particular mention in this context.

iii





CHAPTER 1

Abstract Integration

1.1. Integration of non-negative functions

1.1.1 Dealing with infinity. The set [0,∞] = [0,∞)∪{∞} becomes a totally ordered set
after declaring x ≤ ∞ for any x ∈ [0,∞] (and maintaining the usual order in [0,∞)). Recall
that a totally ordered space is a topological space, since intervals of the types {x : x < b},
{x : a < x < b}, and {x : a < x} (with a, b ∈ [0,∞]) form a base of a topology. In fact, it is
sufficient to choose a and b in Q and this implies that every open set is a union of at most
countably many of such basic sets.

We also extend the usual arithmetic from [0,∞) to [0,∞] by declaring x+∞ = ∞+x =
∞ for all x and x·∞ = ∞·x = ∞ unless x = 0 in which case we set instead 0·∞ = ∞·0 = 0.
Addition and multiplication are then associative and commutative and multiplication is
distributive over addition. We also define ∞p = ∞ when 0 < p <∞.

Suppose n 7→ an is a sequence in [0,∞]. We define
∑∞

n=1 an = ∞, if ak = ∞ for some
k ∈ N or if the series is numerical but not convergent. Otherwise, if the series is convergent,
the symbol

∑∞
n=1 an represents its limit.

1.1.2 σ-algebras. A collection M of subsets of a set X is called a σ-algebra in X if M
has the following three properties: (i) X ∈ M; (ii) A ∈ M implies that Ac, the complement
of A in X, is in M, too; and (iii) An ∈ M for all n ∈ N implies that

⋃
n∈NAn ∈ M.

For example, the set {∅, X} and the power set of X (denoted by P(X)) are σ-algebras
in X.

Any σ-algebra contains the empty set as well as finite unions and finite and countable
intersections (by de Morgan’s laws) of its elements.

The elements of M are called measurable sets. The pair (X,M) (or X itself, if no
confusion can arise) is called a measurable space.

1.1.3 Measures. Let (X,M) be a measurable space. A function µ : M → [0,∞] or
µ : M → C is called a measure on M, if µ(∅) = 0 and if

µ(

∞⋃
n=1

An) =

∞∑
n=1

µ(An)

provided that the An are pairwise disjoint measurable sets. The latter property is called
countable additivity or σ-additivity. We call µ a positive measure if its values are in [0,∞]
and a complex measure if they are in C. We may speak of a measure on X, if no confusion
about the underlying σ-algebra can arise. A measure space (X,M, µ) is a measurable space
with a measure defined on its σ-algebra.

If µ is a measure, it has the following continuity property: if n 7→ An is a non-decreasing
sequence (i.e., An ⊂ An+1 for all n) of measurable sets, then µ(

⋃∞
n=1An) = limn→∞ µ(An).

Moreover, a positive measure µ is monotone, i.e., if A ⊂ B, then µ(A) ≤ µ(B).

1



2 1. ABSTRACT INTEGRATION

1.1.4 First examples. The following are simple examples of measures which may be
defined for any set X.

1. The Dirac measure (or unit mass measure) is defined on the power set P(X) of X.
Fix x0 ∈ X. Then define, for any subset E of X,

µx0
(E) =

{
1 if x0 ∈ E,

0 if x0 ̸∈ E.

2. The counting measure is also defined on the power set of X. If E has finitely many
elements then µ(E) is their number and otherwise infinity. The case where X = N and
M = P(N) is particularly interesting.

1.1.5 Simple functions. Suppose (X,M) is a measurable space. A simple function is a
function on X which assumes only finitely many values in [0,∞), each one on a measurable
set. A simple function may always be represented as

∑n
k=1 αkχAk

with pairwise distinct
values αk and pairwise disjoint non-empty measurable sets Ak whose union is X. This
representation, being uniquely determined, is called the canonical representation of the
function.

Sums and products of simple functions are again simple functions. Moreover, if s1 and
s2 are simple functions, then so are max{s1, s2} and min{s1, s2}.
1.1.6 Integrals of simple functions. Let (X,M, µ) be a measure space with a positive
measure µ. If s is a simple function with canonical representation s =

∑n
k=1 αkχAk

we
define its integral with respect to the measure µ to be∫

µ

s =

n∑
k=1

αkµ(Ak).

If the measure under consideration is known from the context, we will generally drop the
corresponding subscript on the integral sign.

For all c ∈ [0,∞) we have
∫
cs = c

∫
s and the function ϕ : M → [0,∞] defined by

ϕ(E) =
∫
µ
sχE =

∑n
k=1 αkµ(Ak∩E) is again a positive measure. It follows that the integral

is also additive (i.e.,
∫
(s1 + s2) =

∫
s1 +

∫
s2). Moreover, if s1 and s2 satisfy s1 ≤ s2, then∫

s1 ≤
∫
s2. One may now show that

∫
µ
s =

∑n
k=1 αkµ(Ak), if s =

∑n
k=1 αkχAk

, even if

this is not the canonical representation of s.

1.1.7 Non-negative measurable functions. Suppose (X,M) is a measurable space. A
function f : X → [0,∞] is called measurable, if it is the pointwise limit of a non-decreasing
sequence of simple functions. Note that f + g and fg are measurable, if f and g are.

Theorem. f : X → [0,∞] is measurable, if and only if the preimage of any open set
in [0,∞] is measurable.

Sketch of proof. Assume first that f is measurable and that n 7→ sn is a non-
decreasing sequence of simple functions converging to it. Then note that {x : α < f(x)} =⋃∞

n=1{x : α < sn(x)} and {x : f(x) < β} =
⋃∞

k=1{x : β − 1/k < f(x)}c. Conversely,
assume that {x : q < f(x)} is measurable for all non-negative q ∈ Q and let k 7→ qk
be an enumeration of these numbers. Then sn = max{qkχ{t:qk<f(t)} : k ≤ n} defines a
non-decreasing sequence of simple functions converging to f . □

Corollary. Suppose n 7→ fn is a sequence of non-negative measurable functions.
Then sup{fn : n ∈ N}, inf{fn : n ∈ N}, lim supn→∞ fn, and lim infn→∞ fn are measurable,
too.
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1.1.8 Integrals of non-negative functions. Assume that (X,M, µ) is a measure space
with a positive measure µ. The integral of a measurable function f : X → [0,∞] with
respect to µ is defined by∫

µ

f = sup

{∫
µ

s : s simple and 0 ≤ s ≤ f

}
.

If
∫
µ
f <∞, then f is called integrable.

1.1.9 Basic properties of integrals. Suppose that (X,M, µ) is a measure space with a
positive measure µ and that f, g : X 7→ [0,∞] are measurable. Then the following statements
hold:

(1) If f ≤ g then
∫
f ≤

∫
g.

(2) If f = 0 then
∫
f = 0 even if µ(X) = ∞.

(3)
∫
f = 0 if and only if µ({x : f(x) > 0}) = 0.

(4) If c ∈ [0,∞] then
∫
cf = c

∫
f .

1.1.10 The monotone convergence theorem. We now turn to the monotone conver-
gence theorem, the cornerstone of integration theory.

Theorem. Let (X,M, µ) be a measure space with a positive measure µ and n 7→ fn a
sequence of non-negative measurable functions on X such that 0 ≤ f1 ≤ f2 ≤ ... ≤ ∞ and
lim fn = f pointwise. Then f is measurable and

lim
n→∞

∫
fn =

∫
f.

Sketch of proof. The measurability of f was shown in Corollary 1.1.7.
The sequence n 7→

∫
fn is non-decreasing and converges to some a ∈ [0,

∫
f ]. Thus

it is sufficient to show that
∫
s ≤ a for any simple function s such that 0 ≤ s ≤ f .

To do this introduce the measure ϕ(E) =
∫
sχE , fix a c ∈ (0, 1), and define the sets

En = {x : fn(x) ≥ cs(x)}. The En are measurable, En ⊂ En+1, and
⋃∞

n=1En = X. This
implies

∫
s = limn→∞ ϕ(En) ≤ a/c and, since c may be arbitrarily close to 1,

∫
s ≤ a. □

One important consequence of this theorem is that we may find integrals of non-negative
measurable functions by taking limits of integrals of non-decreasing sequences of simple
functions. In particular, we obtain the additivity of the integral, i.e.,

∫
(f + g) =

∫
f +

∫
g

whenever f and g are non-negative measurable functions.

1.1.11 Fatou’s lemma. If (X,M, µ) is a measure space with a positive measure µ and
fn : X → [0,∞] are measurable for all n ∈ N, then∫

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn.

Sketch of proof. Consider the sequence gk = inf{fk, fk+1, ...}. □

1.1.12 Measures induced by positive functions. Let (X,M, µ) be a measure space
with a positive measure µ and f : X → [0,∞] a measurable function. Define ϕ : M → [0,∞]
by ϕ(E) =

∫
µ
fχE . Then ϕ is a positive measure. Moreover, if g : X → [0,∞] is measurable

then gf is measurable and ∫
ϕ

g =

∫
µ

gf.
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1.1.13 Double series of non-negative numbers. Let f be a non-negative function on
N2 and ν the counting measure on N2. Then E 7→ µ(E) =

∫
ν
fχE is a positive measure on

N2. Moreover, if ρ is a bijection from N to N2, then

µ(N2) =

∞∑
j=1

∞∑
k=1

f(j, k) =

∞∑
k=1

∞∑
j=1

f(j, k) =

∞∑
k=1

f(ρ(k)).

1.1.14 The notion of almost everywhere. Suppose (X,M, µ) is a measure space with
a positive measure µ. Any statement depending on a parameter x ∈ X is said to be true
for almost all x ∈ X or almost everywhere, if it is true for all x ∈ X \ N where N is a
set of measure zero. For instance, we say that a function f vanishes almost everywhere, if
f(x) = 0 for all x outside a set of measure 0. Of course, this notion depends on the measure
under consideration, and the measure has to be mentioned explicitly in case of doubt.

1.2. Integration of complex-valued functions

Throughout this section (X,M, µ) denotes a measure space with a positive measure µ.

1.2.1 Measurable functions. Suppose Y is a topological space and S is a measurable
subset of X. Then we say that f : S → Y is measurable if the preimage of every open set in
Y is measurable. Note that, in view of Theorem 1.1.7, this definition is compatible with the
earlier one when Y = [0,∞] and S = X. We are particularly interested in the case where
Y = C and µ(Sc) = 0 (e.g., S = X).

The following statements hold.

(1) Let Y be [0,∞], R or C. Then χE is measurable if and only if E is.
(2) Continuous functions of measurable functions are measurable.
(3) f : S → R2 is measurable if and only if its components are.
(4) h : S → C is measurable if and only if its real and imaginary parts are.
(5) If f, g : S → C are measurable so are f + g and fg.
(6) The complex-valued measurable functions form a vector space.
(7) If h : S → C is measurable then so is |h| and there is a measurable function α such

that |α| = 1 and h = α|h|.
1.2.2 Splitting a complex-valued function into four parts. When f is a real-valued
function on X we define f± = max{±f, 0}, the positive and negative parts of f . Note that
f+, f− ≥ 0, f+f− = 0, f = f+ − f−, and |f | = f+ + f−. Thus, when f is a complex-valued
function on X we may split it into four parts, viz., the positive and negative parts of both
the real and imaginary parts of f . Thus we may write

f = (Re f)+ − (Re f)− + i(Im f)+ − i(Im f)−.

A complex-valued function on X is measurable if and only if the four parts (Re f)± and
(Im f)± are all measurable.

1.2.3 Integrable functions and definition of the integral. A measurable function
f : X → C is called integrable if

∫
|f | < ∞. It is integrable if and only if each of its four

parts (Re f)± and (Im f)± are.
If f : X → C is integrable we define∫

f =

∫
(Re f)+ −

∫
(Re f)− + i

∫
(Im f)+ − i

∫
(Im f)−

and note that
∫
f is a complex number.
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1.2.4 Linearity of the integral. The set of integrable functions is a vector space and the
integral is a linear functional on it, i.e.,∫

(αf + βg) = α

∫
f + β

∫
g

whenever f, g are integrable and α, β ∈ C.

Sketch of proof. Any constant multiple of an integrable function is integrable in
view of part (4) of 1.1.9. The additivity of the integral for non-negative functions was
shown in 1.1.10. Thus, taking part (1) of 1.1.9 into account, it follows that the sum of two
integrable functions is integrable and hence that the set of integrable functions is a vector
space.

Next one proves linearity of the integral for real functions and real constants using the
fact that then (f+g)++f−+g− = (f+g)−+f++g+. This shows that

∫
f =

∫
Re f+i

∫
Im f

from which the general claim follows easily. □

1.2.5 Integrals of almost everywhere defined functions. If f is defined only on S ⊂ X
and if µ(Sc) = 0, let f̃ be any measurable extension of f to all of X. The value of

∫
f̃ is

then independent of the choice of that extension and we will simply write
∫
f for

∫
f̃ .

1.2.6 Generalized triangle inequality. If f is integrable then∣∣ ∫ f
∣∣ ≤ ∫

|f |. (1)

Remark: If X = {1, 2} and µ is the counting measure then (1) becomes |f(1) + f(2)| ≤
|f(1)|+ |f(2)|.
1.2.7 Sequences of measurable functions. Suppose n 7→ fn : X → C is a sequence
of measurable functions. If n 7→ fn(x) converges for every x ∈ S ∈ M, define f : S → C
by f(x) = limn→∞ fn(x). Since the convergence of fn implies the convergence of each of
(Re fn)± and (Im fn)± it follows that f is measurable.

1.2.8 Lebesgue’s dominated convergence theorem. We turn now to the most powerful
tool of integration theory.

Theorem. Let (X,M, µ) be a measure space with a positive measure µ and n 7→
fn : X → C a sequence of measurable functions. Let S be the set of those x where
f(x) = limn→∞ fn(x) exists and assume that µ(Sc) = 0. If there exists an integrable
function g : X → [0,∞] such that |fn| ≤ g for all n, then f is integrable,

lim
n→∞

∫
|fn − f | = 0, (2)

and

lim
n→∞

∫
fn =

∫
f. (3)

Sketch of proof. Since fn → f one gets that |fn| → |f | and hence that |f | ≤ g.
Equation (2) follows after applying Fatou’s lemma to 2g− |fn − f | ≥ 0. Then linearity and
|
∫
(fn − f)| ≤

∫
|fn − f | imply equation (3). □

1.2.9 Averages. Suppose µ is a positive measure on X and that X =
⋃∞

n=1Xn with
µ(Xn) < ∞. Also assume that f : X → C is integrable and that S is a closed subset of C.
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If the averages

Af (E) =
1

µ(E)

∫
µ

fχE

are in S whenever 0 < µ(E) <∞, then f(x) ∈ S for almost all x ∈ X.

Sketch of proof. Sc is a countable union of closed balls. If B is one of these balls
and E = f−1(B) ∩Xn has positive measure, then Af (E) ∈ B, a contradiction. □

1.3. Convex functions and Jensen’s inequality

1.3.1 Convex functions. A function φ : (a, b) → R is called convex on (a, b) if

φ((1− t)x+ ty) ≤ (1− t)φ(x) + tφ(y)

for all t ∈ [0, 1] and all x, y ∈ (a, b). (We allow for a = −∞ and b = ∞.)
If φ is convex and a < u < v < w < b, then

φ(v)− φ(u)

v − u
≤ φ(w)− φ(u)

w − u
≤ φ(w)− φ(v)

w − v
.

Conversely, if
φ(v)− φ(u)

v − u
≤ φ(w)− φ(v)

w − v

whenever a < u < v < w < b, then φ is convex.
A convex function is continuous. A differentiable function is convex if and only if its

derivative is non-decreasing.

1.3.2 Jensen’s inequality. Let µ be a positive measure on a set X such that µ(X) = 1.
Suppose f : X → (a, b) is integrable and φ is convex on (a, b). Then

φ

(∫
f

)
≤

∫
φ ◦ f.

Sketch of proof. Let β(v) = sup{(φ(v)− φ(u))/(v − u) : u ∈ (a, v)}. Then

φ(y) ≥ φ(v) + β(v)(y − v)

for all v, y ∈ (a, b), in particular for y = f(x) and v =
∫
f . Integration establishes the

inequality. □

1.4. Lp-spaces

Throughout this section (X,M, µ) denotes a measure space with a positive measure µ.

1.4.1 Conjugate exponents. If p, q > 1 and p + q = pq or, equivalently, 1/p + 1/q = 1,
then p and q are called conjugate exponents. We also regard 1 and∞ as conjugate exponents.

1.4.2 Hölder’s inequality. Suppose p, q > 1 are conjugate exponents. Let f, g be mea-
surable, nonnegative functions on X. Then∫

fg ≤
(∫

fp
)1/p (∫

gq
)1/q

.

Assuming the right-hand side is finite, equality holds here if and only if there are α, β ∈
[0,∞), not both zero, such that αfp = βgq almost everywhere.
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Sketch of proof. Let A and B be the factors on the right side of the inequality. The
inequality is trivial if either of A and B is zero or infinity. Hence consider 0 < A,B < ∞.
Defining F = f/A and G = g/B we get

∫
F p =

∫
Gq = 1.

Whenever F (x) and G(x) are positive there are numbers s(x), t(x) such that F (x) =
es(x)/p and G(x) = et(x)/q which implies that F (x)G(x) ≤ F (x)p/p + G(x)q/q since the
exponential function is convex. Now integrate. □

1.4.3 Minkowski’s inequality. Suppose 1 < p <∞ and let f, g be measurable, nonneg-
ative functions on X. Then(∫

(f + g)p
)1/p

≤
(∫

fp
)1/p

+

(∫
gp
)1/p

.

Assuming the right-hand side is finite, equality holds here if and only if there are α, β ∈
[0,∞), not both zero, such that αf = βg almost everywhere.

Sketch of proof. If the left-hand side is in (0,∞) use that (f + g)p = f(f + g)p−1 +
g(f + g)p−1. If it is infinity use the convexity of t 7→ tp, i.e., ((f + g)/2)p ≤ (fp + gp)/2. □

1.4.4 p-semi-norms. For 0 < p <∞ and a complex-valued, measurable function f define

∥f∥p =

(∫
|f |p

)1/p

.

If this is finite, f is called p-integrable.
If 1 ≤ p <∞ Minkowski’s inequality 1.4.3 allows to show that the set of all p-integrable

functions forms a vector space. The function f 7→ ∥f∥p is a semi-norm on it.

1.4.5 Essentially bounded functions. If f is a complex-valued, measurable function
defined on X let S = {α ∈ [0,∞) : |f(x)| ≤ α almost everywhere}. Unless S is empty we
call f essentially bounded and set

∥f∥∞ = inf S.

If S = ∅ we define instead ∥f∥∞ = ∞. It follows that |f(x)| ≤ ∥f∥∞ almost everywhere.
The number ∥f∥∞ is called the essential supremum of |f |.

The function f 7→ ∥f∥∞ is a semi-norm on the vector space of all essentially bounded
functions.

1.4.6 Lp-spaces. Fix p ∈ [1,∞]. If 1 ≤ p < ∞ the p-integrable functions form a semi-
normed space. So do the essentially bounded functions when p = ∞. Note that ∥f−g∥p = 0
if and only if f and g are equal almost everywhere. Equality almost everywhere is an
equivalence relation which partitions the given space into equivalence classes. The class
of all functions related to f is denoted by [f ]. The collection of these classes is again a
vector space (addition and scalar multiplication interact well the classes) which we denote
by Lp(µ). The function [f ] 7→ ∥f∥p is well defined and turns Lp(µ) into a normed vector
space. Products of classes are also well defined, i.e., [f ][g] = [fg]. Henceforth, abusing
notation, we will generally write f even when we mean its class [f ].

1.4.7 Hölder’s and Minkowski’s inequalities. If p and q are conjugate exponents in
[1,∞], if f ∈ Lp(µ) and g ∈ Lq(µ), then fg ∈ L1(µ) and

∥fg∥1 ≤ ∥f∥p∥g∥q.

This follows from Hölder’s inequality 1.4.2 except when the exponents are one and infinity
when it follows from basic properties of integrals.
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Also, if p ∈ [1,∞] and f, g ∈ Lp(µ), then, as we saw in 1.4.6,

∥f + g∥p ≤ ∥f∥p + ∥g∥p.
1.4.8 Cauchy sequences of p-integrable and essentially bounded functions. If
n 7→ fn is a Cauchy sequence in the set of essentially bounded functions, it converges almost
everywhere to a measurable function. If 1 ≤ p <∞ and n 7→ fn is a Cauchy sequence in the
set of p-integrable functions, then there exists a subsequence k 7→ fnk

converging pointwise
almost everywhere to some measurable function f .

Sketch of proof. If p = ∞ let Bn,m = {x : |fn(x) − fm(x)| > ∥fn − fm∥∞}. The
union of all these sets, B, has measure zero. If x ∈ Bc then fn(x) is a Cauchy sequence in
C and hence converges to some number f(x).

Now let p <∞. There is a subsequence k 7→ fnk
such that ∥fnk+1

−fnk
∥p < 2−k. Define

gk =
∑k

j=1 |fnj+1
− fnj

| and g = lim gk. Use Fatou’s lemma and Minkowski’s inequality to

show that ∥g∥p ≤ 1. Since g is finite almost everywhere fnk+1
= fn1 +

∑k
j=1(fnj+1 − fnj )

converges almost everywhere to some function f as k → ∞. □

1.4.9 Lp(µ) is a Banach space. If p ∈ [1,∞] then Lp(µ) is a Banach space.

Sketch of proof. Let n 7→ fn be a Cauchy sequence in Lp(µ), and f , fnj , and B as
in Theorem 1.4.8. If 1 ≤ p < ∞ then, by Fatou, ∥fn − f∥pp ≤ εp for sufficiently large n.
Therefore f = fn + (f − fn) gives rise to an element in Lp(µ) and ∥fn − f∥p → 0.

A similar argument works for p = ∞. □

1.4.10 Approximation by simple functions. We extend our definition of simple func-
tions to include all complex linear combinations of characteristic functions of measurable
sets. Denote the set of all simple functions by S and the set of simple functions which are
different from zero only on a set of finite measure by S0. Then S is dense in L∞(µ) and S0

is dense in Lp(µ) for every p ∈ [1,∞).

1.5. Exercises

1.1. Find all σ-algebras for X = {1, 2, 3}.
1.2. Investigate the cancelation “laws” in [0,∞] which identify conditions under which

either of the statements a+ b = c+ b or a · b = c · b implies a = c.

1.3. Suppose µ is a measure. Prove that the sequence n 7→ µ(An) converges to µ(A)
provided that A1 ⊃ A2 ⊃ ... ⊃ A =

⋂∞
n=1An, and µ(A1) is finite.

1.4. Give an example of a measure space and a sequence An of measurable sets such
that An ⊃ An+1 but limn→∞ µ(An) ̸= µ (

⋂∞
n=1An).

1.5. Show that any positive measure is countably subadditive, i.e., that µ(
⋃∞

j=1Aj) ≤∑∞
j=1 µ(Aj) if µ is a positive measure and the Aj are measurable sets.

1.6 (Numerical series). Suppose X is a subset of the integers, M the corresponding
power set, and µ the counting measure. Show that integrals turn into sums or series. In
particular, show that

∫
f =

∑∞
n=1 f(n), if X = N. Which property of series corresponds to

the concept of integrability?

1.7. Suppose (X,M, µ) is a measure space with a positive measure µ and f is a complex-
valued integrable function on X. If

∫
fχE = 0 for every E ∈ M, prove that f = 0 almost

everywhere on X.
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1.8. Suppose (X,M, µ) is a measure space with a positive measure µ and f is integrable
with respect to µ. If |

∫
f | =

∫
|f |, prove the existence of an α ∈ C such that |f | = αf

almost everywhere.

1.9 (Convergence in measure). Suppose (X,M, µ) is a measure space with a positive
measure µ. The sequence fn : X → C of measurable functions is said to converge in
measure to f : X → C if limn→∞ µ({x ∈ X : |fn(x)−f(x)| ≥ δ}) = 0 for every δ > 0. Show
that fn → f in measure, if fn → f pointwise almost everywhere and µ(X) < ∞. Give a
counterexample for the case when µ(X) = ∞.

1.10 (Egorov’s theorem). Suppose µ(X) < ∞ and fn is a sequence of complex-valued
measurable functions on X converging pointwise to some function f . Then, for every ε > 0,
there exists a measurable set E ⊂ X such that µ(E) < ε and fn → f uniformly on Ec.

1.11. Prove that the geometric mean of n positive numbers is not larger than their
arithmetic mean: n

√
y1...yn ≤ (y1 + ...+ yn)/n, in particular 2ab ≤ a2 + b2 for real numbers

a and b.

1.12. If a1, ..., an are non-negative real numbers and p ∈ [1,∞), prove that( n∑
k=1

ak
)p ≤ np−1

n∑
k=1

apk.

1.13. Suppose (X,M, µ) is a measure space with a positive measure µ. Construct a
Cauchy sequence n 7→ fn in Lp(µ) which does not converge for any x ∈ X. You may assume
that µ is a measure which assigns to intervals their lengths.





CHAPTER 2

Measures

2.1. Types of measures

2.1.1 Generating a σ-algebra. Let X be a set. The intersection of all elements of a
collection of σ-algebras in X is again a σ-algebra in X. Therefore, if A is any collection of
subsets of X, there exists a smallest σ-algebra M(A) in X containing A. M(A) is called
the σ-algebra generated by A.

2.1.2 The Borel σ-algebra. If X is a topological space, the σ-algebra generated by the
topology is called the Borel σ-algebra and is denoted by B(X). Its elements are called
Borel sets. A measure defined on a σ-algebra containing all the Borel sets is called a Borel
measure. All closed sets, all Fσ sets (countable unions of closed sets) and all Gδ sets
(countable intersections of open sets) are Borel sets.

If X and Y are topological spaces, we call the function f : X → Y Borel measurable
(or simply Borel), if it is measurable with respect to B(X), i.e., if the preimage of any open
set in Y is in B(X). Note that every continuous function f : X → Y is Borel.

If (X,M) is a measurable space, Y a topological space, and f : X → Y is measurable,
then B(Y ) ⊂ {E ⊂ Y : f−1(E) ∈ M}.
2.1.3 Restriction of a measure. Let (X,M, µ) be a measure space and W a measurable
subset of X. Then MW = {E ∩W : E ∈ M} is a σ-algebra in W and µW = µ|MW

is a
measure on MW .

2.1.4 Finite and σ-finite measures. A positive measure on X is called finite, if µ(X)
is finite. It is called σ-finite if there is countable collection of sets of finite measure whose
union is X.

2.1.5 Probability measures. A positive measure µ on X such that µ(X) = 1 is called a
probability measure. The measurable sets are then called events. For instance the measure
space (X,M, µ) where X = {1, ..., 6}, M = P(X), µ({k}) = 1/6 represents a die. µ(A)
gives the probability that rolling the die yields one of the elements contained in A.

2.1.6 Complete measures. A positive measure µ is called complete if every subset of a
set of measure zero is measurable.

2.1.7 Completion of positive measures. If (X,M, µ) is a measure space with positive
measure µ then,

M = {E ⊂ X : ∃A,B ∈ M : A ⊂ E ⊂ B,µ(B \A) = 0}

is a σ-algebra and µ : M → [0,∞] : E 7→ µ(E) = µ(A) if A ⊂ E ⊂ B and µ(B \A) = 0 is a
complete positive measure which extends µ.

µ is called the completion of µ and M is called the completion of M with respect to µ.

11
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2.1.8 Measurability of functions and completion of measures. Suppose M is the
completion of a σ-algebra M with respect to the positive measure µ and f is a complex-
valuedM-measurable function. Then there is anM-measurable function g and a setN ∈ M
such that µ(N) = 0 and f = g outside N .

Sketch of proof. One proves this, in turn, for characteristic functions, simple func-
tions, non-negative functions, and, finally, for complex-valued functions. □

2.1.9 Regular positive measures. If µ is a positive Borel measure a measurable set E
is called outer regular with respect to µ if

µ(E) = inf{µ(V ) : E ⊂ V , V open}.

It is called inner regular with respect to µ if

µ(E) = sup{µ(K) : K ⊂ E, K compact}.

If E is both outer and inner regular it is called simply regular. The measure µ is called outer
or inner regular or just regular if every measurable set has the respective property.

2.2. Construction of measures

2.2.1 Outer measure. Let X be a set. A function µ∗ : P(X) → [0,∞] is called monotone
if µ∗(A) ≤ µ∗(B) whenever A ⊂ B. µ∗ is called countably subadditive (or σ-subadditive) if
always µ∗(

⋃∞
j=1Aj) ≤

∑∞
j=1 µ

∗(Aj).

A monotone, countably subadditive function µ∗ : P(X) → [0,∞] for which µ∗(∅) = 0 is
called an outer measure on P(X).

2.2.2 Constructing outer measures. Let X be a set. Suppose E ⊂ P(X) and | · | : E →
[0,∞] are such that ∅ ∈ E , X is the countable union of elements of E , and |∅| = 0. Then
µ∗ : P(X) → [0,∞] defined by

µ∗(A) = inf{
∞∑
j=1

|Ej | : Ej ∈ E , A ⊂
∞⋃
j=1

Ej}

is an outer measure on P(X). If A ⊂
⋃∞

j=1Ej with Ej ∈ E we call {Ej : j ∈ N} a countable
cover of A by elements of E .

Sketch of proof. Obviously, µ∗ is well-defined, µ∗(∅) = 0, and µ∗ is monotone. To
show countable subadditivity note that one may assume that µ∗(Aj) <∞ for all j ∈ N and
that Ej,k can be chosen so that

∑∞
k=1 |Ej,k| − µ∗(Aj) is sufficiently small. □

2.2.3 Carathéodory’s construction of a measure. Let X be a set and µ∗ an outer
measure on P(X). Define

C = {A ⊂ X : ∀B ⊂ X : µ∗(B) = µ∗(A ∩B) + µ∗(Ac ∩B)}

and µ = µ∗|C . Then C is a σ-algebra and µ is a complete positive measure.

Sketch of proof. Obviously C containsX and the complement of any of its elements.
Thus we need to show closedness of C under countable unions but we begin with finite unions.
If E1, E2 ∈ C one shows that µ∗((E1 ∪E2)∩B)+µ∗((E1 ∪E2)

c ∩B) = µ∗(B) by employing
Carathéodory’s criterion and subadditivity (twice). It follows that C contains unions of
two and, after induction, also unions of finitely many of its elements. Of course, C is also
closed under finite intersections. Moreover, if E1 ∩ E2 = ∅, Carathéodory’s criterion gives
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µ∗((E1 ∪E2)∩R) = µ∗(E1 ∩R) + µ∗(E2 ∩R) by choosing B = (E1 ∪E2)∩R and A = E1.
Induction shows now that

µ∗((E1 ∪ ... ∪ Ek) ∩R) =
k∑

j=1

µ∗(Ej ∩R) (4)

when E1, ..., Ek ∈ C are pairwise disjoint, and, in particular, the finite additivity of µ∗|C .
Now suppose Ak ∈ C for each k ∈ N and A =

⋃∞
j=1Aj . Define Rk =

⋃k
j=1Aj and

Ek = Ak \ Rk−1. These are in C. The latter are pairwise disjoint,
⋃k

j=1Ej = Rk, and⋃∞
j=1Ej = A. Therefore we find, using (4) and monotonicity of µ∗, that

µ∗(B) =

k∑
j=1

µ∗(Ej ∩B) + µ∗(Rc
k ∩B) ≥

k∑
j=1

µ∗(Ej ∩B) + µ∗(Ac ∩B)

for every k ∈ N. Taking the limit and using the countable subadditivity of µ∗ we get
µ∗(B) ≥ µ∗(A ∩ B) + µ∗(Ac ∩ B). Since the opposite inequality always holds, C is closed
under countable unions and hence a σ-algebra.

Equation (4) for R = X, monotonicity, and subadditivity give

k∑
j=1

µ∗(Ej) ≤ µ∗(

∞⋃
j=1

Ej) ≤
∞∑
j=1

µ∗(Ej)

for all k ∈ N when the Ej are pairwise disjoint. This proves countable additivity of µ.
Completeness of µ follows when we show that every set of outer measure 0 is in C. Thus

assume µ∗(A) = 0. Then µ∗(Ac ∩B) = µ∗(A∩B)+µ∗(Ac ∩B) ≥ µ∗(B) ≥ µ∗(Ac ∩B). □

2.3. Lebesgue measure on R

2.3.1 Lengths of open intervals. Let E = {(a, b) : −∞ < a ≤ b <∞} be the set of finite
open intervals and note that ∅ = (a, a) ∈ E . We define the length of such an interval (a, b)
to be b− a and denote it by |(a, b)|. By 2.2.2 the set E and the length function | · | give rise
to an outer measure m∗ on P(R).

2.3.2 m∗ is an extension of length. We need to show that m∗((a, b)) = b−a. It is obvious
that m∗((a, b)) ≤ b−a and we assume, by way of contradiction, that m∗((a, b)) = b−a− 3δ
for some positive δ. Thus there are intervals (ak, bk), k ∈ N, such that (a, b) ⊂

⋃∞
k=1(ak, bk)

and
∑∞

k=1(bk − ak) < b− a− 2δ. Since [a+ δ, b− δ] is compact there is a K ∈ N such that

[a+ δ, b− δ] ⊂
K⋃

k=1

(ak, bk).

Now a + δ is in one of these K intervals, i.e., there is a k1 ∈ {1, ...,K} such that ak1
<

a + δ < bk1
. Unless bk1

> b − δ there is a k2 such that ak2
< bk1

< bk2
. Induction shows

now the existence of an L ≤ K such that akℓ
< bkℓ−1

< bkℓ
for ℓ = 2, ..., L and bkL

> b− δ.
This proves

∞∑
k=1

(bk − ak) > b− a− 2δ

which is in contradiction with the previous estimate.
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2.3.3 The Lebesgue σ-algebra and Lebesgue measure. The set

L(R) = {A ⊂ R : ∀B ⊂ R : m∗(B) = m∗(A ∩B) + m∗(B ∩Ac)}
is a σ-algebra called the Lebesgue σ-algebra. Its elements are called Lebesgue measurable
sets.

The restriction of m∗ to L(R) is a complete positive measure. It is called Lebesgue
measure and is usually denoted by m., i.e.,

m = m∗|L(R).

2.3.4 Important properties of Lebesgue measure. The following statements hold:

(1) A countable set is Lebesgue measurable and has measure zero.
(2) The outer measure of each of the intervals [a, b], [a, b) and (a, b] is b− a.
(3) Open intervals are Lebesgue measurable.
(4) The Borel σ-algebra B(R) is contained in the Lebesgue σ-algebra L(R).
(5) Lebesgue measure is translation-invariant, i.e., m(A) = m(x + A) where x + A =

{x+ a : a ∈ A}.
2.3.5 Regularity of Lebesgue measure. Recall that Lebesgue measure is a Borel mea-
sure since the Borel σ-algebra is contained in the Lebesgue σ-algebra.

Theorem. Lebesgue measure on R is regular. Moreover the following statements hold:

(1) If E is a Lebesgue measurable set and ε a positive number then there is a closed
set C and an open set V such that C ⊂ E ⊂ V and m(V \ C) < ε.

(2) If E is a Lebesgue measurable set then there is an Fσ-set F and a Gδ-set G such
that F ⊂ E ⊂ G and m(G \ F ) = 0.

Sketch of proof. Let E be a measurable set and ε > 0 be given. For each k we have
an open set Vk such that [−k, k] ∩ E ⊂ Vk and m([−k, k] ∩ E) + ε/2k+1 > m(Vk). Now
notice that V =

⋃∞
k=1 Vk is open, that E ⊂ V , and that m(V \E) < ε/2. This proves outer

regularity of Lebesgue measure.
This proves also the existence of an open set U which contains Ec and satisfies m(U \

Ec) < ε/2. Let C = U c and note that U \ Ec = E \ U c to obtain a closed set C such that
C ⊂ E and m(E \ C) < ε/2. Since C =

⋃∞
k=1([−k, k] ∩ C) is a countable union of compact

sets inner regularity of Lebesgue measure follows.
Statements (1) and (2) are now also immediate. □

2.3.6 Completion of the Borel σ-algebra. The Lebesgue σ-algebra L(R) is the com-
pletion of the Borel σ-algebra B(R) with respect to Lebesgue measure.

Sketch of proof. If E ∈ L(R), then E ∈ B(R), the completion of B(R), by regularity.
For the converse one checks Carathéodory’s criterion. □

2.4. Comparison of the Riemann and the Lebesgue integral

2.4.1 Partitions. A partition P of [a, b] is a finite subset of [a, b] which contains both a
and b. If the number of elements in P is n+ 1 we will label them so that

a = x0 < x1 < . . . < xn−1 < xn = b.

A partition P ′ is called a refinement of P if P ⊂ P ′. P ∪Q is called the common refinement
of the partitions P and Q.
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2.4.2 Upper and lower sums. If P is a partition of [a, b] with n + 1 elements and
f : [a, b] → R is a bounded function we define the lower Riemann sum L(f, P ) and the
upper Riemann sum U(f, P ) by

L(f, P ) =

n∑
j=1

mj(xj − xj−1)

and

U(f, P ) =

n∑
j=1

Mj(xj − xj−1)

where mj = inf{f(x) : xj−1 ≤ x ≤ xj} and Mj = sup{f(x) : xj−1 ≤ x ≤ xj}.
If P ′ is a refinement of the partition P then

L(f, P ) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f, P ).

2.4.3 Definition of the Riemann integral. Let [a, b] be a bounded interval in R and
f : [a, b] → R a bounded function. The numbers sup{L(f, P ) : P is a partition of [a, b]} and
inf{U(f, P ) : P is a partition of [a, b]} are called lower and upper Riemann integrals of f
over [a, b], respectively. Note that the lower Riemann integral is never larger than the upper
Riemann integral.

The function f is called Riemann integrable over [a, b] if its lower and upper Riemann
integrals coincide. This common value is then called the Riemann integral of f over [a, b]

and is denoted by
∫ b

a
f . We emphasize that, by definition, Riemann integrable functions are

bounded and are defined on finite intervals.

2.4.4 Comparison of the Riemann and the Lebesgue integral. Let [a, b] be a
bounded interval in R. If f : [a, b] → R is Riemann integrable over [a, b] then it is Lebesgue

integrable and
∫ b

a
f =

∫
m
f (here m is the restriction of Lebesgue measure to [a, b]).

Sketch of proof. Let k 7→ Pk be a sequence of successive refinements of partitions
such that limk→∞ L(f, Pk) equals the lower Riemann integral, and that limk→∞ U(f, Pk)
equals the upper Riemann integral. This uses 2.4.2.

The lower and upper Riemann sums L(f, Pk) and U(f, Pk) can be represented as
Lebesgue integrals of simple functions ℓk and uk. The sequences k 7→ ℓk and k 7→ uk
have pointwise limits defining measurable functions ℓ and u such that ℓ(x) ≤ f(x) ≤ u(x).

The dominated convergence theorem implies that
∫
m
ℓ = limk→∞ L(f, Pk) equals the

lower Riemann integral of f . Likewise we have that
∫
m
u = limk→∞ U(f, Pk) equals the

upper Riemann integral of f .
Now suppose that f is Riemann integrable. Then

∫
m
ℓ =

∫
m
u and this shows that,

almost everywhere, ℓ = f = u. Hence f is measurable and its Lebesgue integral is equal to
the Riemann integral. □

2.4.5 The set of Riemann integrable functions. The (bounded) function f : [a, b] → R
is Riemann integrable if and only if it is almost everywhere continuous.

Sketch of proof. We use the notation from 2.4.4. We may choose the partitions in
such a way that the distance of adjacent points of Pk is at most 1/k. The statement follows
from the observation that, if x belongs to none of the points of the partitions Pk, then f is
continuous at x if and only if ℓ(x) = u(x). □
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2.5. Complex measures and their total variation

2.5.1 Complex measures. Recall that a complex measure is a complex-valued countably
additive function on a given σ-algebra. This includes, of course, the case when all values of
the measure are real in which case we will speak of a real measure. Note that when λ is a
complex measure and E1, E2, ... are pairwise disjoint and measurable sets, then

∑∞
j=1 λ(Ej)

converges absolutely.
Given two complex measures µ and λ defined on the same σ-algebra and a complex

number c we may define the complex measures µ+ λ and cµ by (µ+ λ)(E) = µ(E) + λ(E)
and (cµ)(E) = cµ(E), respectively. Thus the set of all complex measures on a given σ-
algebra is a complex vector space.

If λ is a complex measure define the real and imaginary part of λ by (Reλ)(E) =
Re(λ(E)) and (Imλ)(E) = Im(λ(E)), respectively. Both Reλ and Imλ are real measures.

2.5.2 Total variation of a measure. If the sets En, n ∈ N, are pairwise disjoint and
their union is E we call {En : n ∈ N} a partition of E.

Let µ be a complex measure on a σ-algebra M. Define a function |µ| : M → [0,∞] by

|µ|(E) = sup{
∞∑

n=1

|µ(En)| : {En : n ∈ N} is a partition of E}.

The function |µ| is called the total variation of µ. The number |µ|(A) is called the total
variation of A (when the meaning of µ is clear from the context).

Theorem. The total variation of a complex measure is a positive measure which sat-
isfies |µ|(E) ≥ |µ(E)| for all E ∈ M. If λ is a positive measure satisfying λ(E) ≥ |µ(E)| for
all E ∈ M then λ ≥ |µ|.

Sketch of proof. Obviously, |µ|(∅) = 0 and |µ|(E) ≥ |µ(E)|. To prove countable
additivity choose a partition of E approximating |µ|(E) to establish one inequality and
partitions approximating the |µ|(En) to establish the other. Finally note that λ(E) ≥
|µ|(E) follows from λ(E) =

∑∞
n=1 λ(En) ≥

∑∞
n=1 |µ(En)|. □

2.5.3 The total variation of a complex measure is a finite measure. Let (X,M)
be a measurable space and µ a complex measure on M. Then |µ|(X) <∞.

Sketch of proof. Since
∑∞

k=1 µ(Ak) is convergent when the Ak are pairwise disjoint,
there can be no sequence k 7→ Ak of pairwise disjoint sets satisfying |µ(Ak)| > 1. However,
using induction and the lemma below, the assumption |µ|(X) = ∞ allows to show the
existence of a sequence k 7→ Ak of pairwise disjoint sets satisfying |µ(Ak)| > 1. This
contradiction proves the claim. □

Lemma. If |µ|(E) = ∞ then there is a measurable set A ⊂ E such that |µ|(A) = ∞
|µ(A)| > 1, and |µ(E \A)| > 1.

Sketch of proof. Since |µ|(E) = ∞ there are measurable, pairwise disjoint subsets

E1, ..., EN of E such that
∑N

k=1 |µ(Ek)| > π(1 + |µ(E)|). Set µ(Ek) = rke
iαk and define

the function f : [−π, π] → [0,∞) by

f(t) =

N∑
k=1

rk cos+(αk − t).
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Since f is continuous it has a maximum attained at a point t0. Let S = {k ∈ {1, ..., N} :
cos(αk − t0) > 0} and B =

⋃
k∈S Ek. At least one of B and E \ B has infinite variation.

Since

|µ(B)| =

∣∣∣∣∣∑
k∈S

µ(Ek)

∣∣∣∣∣ ≥ f(t0) ≥
1

2π

∫ π

−π

f(t)dt =
1

π

N∑
k=1

|µ(Ek)| > 1 + |µ(B) + µ(E \B)|,

we have both |µ(B)| > 1 and |µ(E \B)| > 1. □

2.5.4 A norm for complex measures. Given a complex measure µ define ∥µ∥ = |µ|(X).
This function ∥·∥ is a norm turning the set of complex measures into a normed vector space.

2.5.5 Positive and negative variations. Suppose now that µ is a real measure. Define

µ+ =
1

2
(|µ|+ µ), µ− =

1

2
(|µ| − µ).

Then both µ+ and µ− are finite positive measures called the positive and negative variation
of µ, respectively. The pair (µ+, µ−) is called the Jordan decomposition of µ.

2.6. Absolute continuity and mutually singular measures

2.6.1 Absolute continuity. A measure λ (complex or positive) is called absolutely contin-
uous with respect to a positive measure µ if all sets of µ-measure zero also have λ-measure
zero. We denote this relationship by λ≪ µ.

2.6.2 A complex measure is absolutely continuous with respect to its total
variation. Let (X,M, λ) be a measure space with a complex measure λ. Since |λ(E)| ≤
|λ|(E) it follows that λ≪ |λ|.
2.6.3 A criterion for absolute continuity. Suppose λ is a complex measure and µ is
a positive measure. Then λ ≪ µ if and only if for every ε > 0 exists a δ > 0 such that for
every measurable set E the condition µ(E) < δ implies |λ(E)| < ε.

Sketch of proof. The “if” direction is simple. For the “only if” direction we prove
the contrapositive. Thus assume there is an ε > 0 and there are sets En such that µ(En) <
2−n but |λ(En)| ≥ ε. If F =

⋂∞
k=1

⋃∞
n=k En we have µ(F ) = 0 but |λ|(F ) ≥ ε. Finally note

that λ≪ µ if and only if |λ| ≪ µ. □

2.6.4 Mutually singular measures. Suppose µ is a measure. If there is a measurable
set A such that µ(E) = µ(E ∩A) for all E ∈ M we say that the measure µ is concentrated
on A. It follows that µ is concentrated on A if and only if µ(E) = 0 for all measurable
E ⊂ Ac. Lebesgue measure, for instance, is concentrated on the set of irrational numbers.

If µ is concentrated on A and A ⊂ B, then µ is concentrated on B. If µ is concentrated
on A1 and also on A2, then µ is concentrated on A1 ∩A2.

Two measures µ and λ are called mutually singular if they are concentrated on disjoint
sets. This is indicated by λ ⊥ µ.

2.6.5 Basic properties. Suppose that µ, λ, λ1, and λ2 are measures on M and that µ is
positive. Then the following statements hold:

(1) λ is concentrated on A if and only if |λ| is.
(2) λ1 ⊥ λ2 if and only if |λ1| ⊥ |λ2|.
(3) λ≪ µ if and only if |λ| ≪ µ.
(4) If λ1 ≪ µ and λ2 ⊥ µ then λ1 ⊥ λ2.
(5) If λ≪ µ and λ ⊥ µ then λ = 0.
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We get two more statements when it makes sense to define αλ1 + βλ2, i.e., when λ1 and λ2
are complex measures and α, β ∈ C or when they are both positive measure and α, β ≥ 0.

(1) If λ1 ⊥ λ and λ2 ⊥ λ, then αλ1 + βλ2 ⊥ λ.
(2) If λ1 ≪ µ and λ2 ≪ µ, then αλ1 + βλ2 ≪ µ.

2.6.6 Discrete and continuous measures. Let (X,M) be a measurable space such
that M contains all countable subsets of X. A measure µ on M is called discrete, if it
is concentrated on a countable set. It is called continuous, if µ({x}) = 0 for all x ∈ X.
Discrete and continuous measures are mutually singular.

A complex or sigma-finite positive measure µ can be expressed uniquely as the sum of
a discrete and a continuous measure.

2.7. Exercises

2.1. Let F = {{n} : n ∈ Z} and G = {{r} : r ∈ R}. Find the smallest σ-algebra in Z
containing F and the smallest σ-algebra in R containing G.

2.2. Construct the measure modeling the rolling of two dice. That is identify X, M,
and µ.

2.3. Suppose (X,M, µ) is a complete measure space, g is a measurable function, and
f = g almost everywhere. Show that f is also measurable.

2.4. Suppose (X,M, µ) is a measure space with a positive measure µ. Define λ∗(E) =
inf{µ(A) : A ∈ M, E ⊂ A} for every E ⊂ X and C = {E ⊂ X : ∀T ⊂ X : λ∗(T ) =
λ∗(E ∩ T ) + λ∗(Ec ∩ T )}.

Prove the following statements:

(1) λ∗ is an outer measure on P(X).
(2) M ⊂ C.
(3) λ∗(E) = µ(E) whenever E ∈ M.
(4) If µ is σ-finite, C is the completion of M with respect to µ.

2.5. Determine the regularity properties of the counting measure and the Dirac measure
on Rn.

2.6. Find a function which is Lebesgue integrable but not Riemann integrable.

2.7. Find a function f on [0,∞) such that the improper Riemann integral∫ ∞

0

f = lim
R→∞

∫ R

0

f

exists and is finite, but f is not Lebesgue integrable.

2.8. A step function is a simple function s : R → C such that {x : s(x) = α} is a finite
union of bounded intervals for all α (allowing, of course, for the empty set). Show that step
functions are dense in Lp(m).

2.9. Show that the 2.6.3 may fail, if λ is a positive measure which is allowed to assume
the value ∞.



CHAPTER 3

Integration on Product Spaces

3.1. Product measure spaces

Throughout this section (X,M, µ) and (Y,N , ν) denote measure spaces with positive
measures µ and ν.

3.1.1 Measurable rectangles. For every A ∈ M and B ∈ N the set A × B is called a
measurable rectangle in X × Y . The σ-algebra generated by the measurable rectangles is
denoted by M⊗N . It is called a product σ-algebra.

3.1.2 Carathéodory’s construction. Both ∅ = ∅×∅ andX×Y are measurable rectangles
so that by 2.2.2 the function

λ∗(E) = inf
{ ∞∑

j=1

µ(Aj)ν(Bj) : Aj ∈ M, Bj ∈ N , E ⊂
∞⋃
j=1

Aj ×Bj

}
is an outer measure on P(X × Y ). By 2.2.3 the set

C = {E ⊂ X × Y : ∀T ⊂ X × Y : λ∗(T ) = λ∗(E ∩ T ) + λ∗(Ec ∩ T )}

is a σ-algebra and λ = λ∗|C is a complete positive measure.
The measurable rectangles are contained in C. Moreover, aided by the monotone con-

vergence theorem, one shows that λ is an extension of the map E ×F 7→ µ(E)ν(F ) defined
on the measurable rectangles.

3.1.3 Product σ-algebra and product measure. Let C and λ be as in 3.1.2 and assume
that µ and ν are σ-finite. Then the completion M⊗N of M⊗N with respect to λ is C.

Sketch of proof. Since the measurable rectangles are in both M ⊗ N and C we
have M ⊗ N ⊂ C but λ|M⊗N is, in general, not a complete measure even if µ and ν are.
Suppose A,B ∈ M⊗N , A ⊂ E ⊂ B, and λ(B \ A) = 0. Then E satisfies Carathéodory’s
criterion so that M⊗N ⊂ C. To show the converse assume E ∈ C and, at first, that
λ(E) < ∞. For every k ∈ N there is a sequence of measurable rectangles Ak,n × Bk,n

so that E ⊂ Dk =
⋃∞

n=1Ak,n × Bk,n and λ(Dk \ E) ≤ 1/k. Let D =
⋂∞

k=1Dk. Then
D ∈ M⊗N , E ⊂ D, and λ(D \ E) = 0. Since µ and ν are σ-finite the same result holds
even if λ(E) = ∞. Similarly there is a C ∈ M ⊗ N such that C ⊂ E and λ(E \ C) = 0.
Thus we have E ∈ M⊗N . □

The measure λ defined in 3.1.2 (defined on either M⊗N or M⊗N ) is called a product
measure and will henceforth be denoted by µ⊗ ν.

3.1.4 Sections of sets. Let E be a subset of X × Y and x ∈ X and y ∈ Y . Then
Ex = {y : (x, y) ∈ E} ⊂ Y and Ey = {x : (x, y) ∈ E} ⊂ X are called the x-section and the
y-section of E, respectively.
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Since {E ∈ M ⊗ N : ∀x ∈ X : Ex ∈ N} is a σ-algebra, it equals M ⊗ N . Thus one
obtains the following statement: If E ∈ M ⊗ N , x ∈ X, and y ∈ Y , then Ex ∈ N and
Ey ∈ M.

3.2. Fubini’s theorem

Throughout this section (X,M, µ) and (Y,N , ν) denote measure spaces with complete,
positive, σ-finite measures µ and ν. The proof of Fubini’s theorem is rather involved. The
material in 3.2.1 – 3.2.3 serves only preparatory purposes.

3.2.1 Monotone classes. Let X be a set. A monotone class A is a collection of subsets of
X with the property that it contains the union of any non-decreasing sequence of elements
of A as well as the intersection of any non-increasing sequence of elements of A.

Every σ-algebra is a monotone class and the intersection of monotone classes is again
a monotone class. The monotone class generated by a collection E of subsets of X is the
intersection of all monotone classes containing E .

Theorem. M⊗N is the smallest monotone class containing all finite unions of mea-
surable rectangles.

Sketch of proof. Let A be the smallest monotone class containing E , the set of all
finite unions of measurable rectangles. Then A ⊂ M ⊗ N . The claim follows if we can
show that A contains complements and finite unions of its elements since this turns A into
a σ-algebra. Thus, for P ⊂ X×Y define Ω(P ) = {Q ⊂ X×Y : P \Q,Q\P, P ∪Q ∈ A} and
note that (i) P ∈ Ω(Q) if and only if Q ∈ Ω(P ) and (ii) Ω(P ) is a monotone class. Now one
shows, if P ∈ E , then E ⊂ Ω(P ) and hence A ⊂ Ω(P ). Also, if Q ∈ A, then A ⊂ Ω(Q). □

3.2.2 Fubini’s theorem – preliminary version. If E ∈ M ⊗ N , then the function
x 7→ ν(Ex) is M-measurable and the function y 7→ µ(Ey) is N -measurable. Moreover
(µ ⊗ ν)(E) =

∫
µ
ν(Ex) =

∫
ν
µ(Ey) (here we write ν(Ex) and µ(Ey) as abbreviations for

x 7→ ν(Ex) and y 7→ µ(Ey), respectively).

Sketch of proof. Let Ω be the set of all those elements E ∈ M ⊗ N for which
the conclusions of the theorem hold. The proof takes the following steps: (i) Any finite
union of pairwise disjoint measurable rectangles is in Ω. (ii) Any finite union of measurable
rectangles is a finite union of pairwise disjoint measurable rectangles. (iii) Ω contains the
union of a non-decreasing sequence of its elements. (iv) Ω contains the intersection of a
non-increasing sequence of its elements, provided they are contained in a rectangle A × B
with µ(A), ν(B) < ∞. (v) Since µ and ν are σ-finite we have non-decreasing sequences
Xk ∈ M and Yk ∈ N such that X × Y =

⋃∞
k=1Xk × Yk and µ(Xk), ν(Yk) < ∞. Define

Ω′
k = {E ∈ M ⊗ N : E ∩ (Xk × Yk) ∈ Ω}. Since Ω′

k is a monotone class containing all
finite unions of measurable rectangles, it equals M ⊗ N . (vi) Now suppose that E is the
intersection of a non-increasing sequence n 7→ En ∈ Ω. Then E =

⋃∞
k=1(E ∩ (Xk × Yk)) =⋃∞

k=1

⋂∞
n=1(En ∩ (Xk × Yk)). Since En ∈ M⊗N = Ω′

k, the sequence n 7→ En ∩ (Xk × Yk)
is a non-increasing sequence in Ω so that, by (iv), E ∩ (Xk × Yk) is also in Ω. Finally, by
(iii), E itself is in Ω. Thus Ω is a monotone class and hence equal to M⊗N . □

3.2.3 Sections of functions. If f is a complex-valued function defined on X × Y and
x ∈ X we denote the function y 7→ f(x, y) by fx and call it the x-section of f . Similarly fy

denotes the function x 7→ f(x, y) when y is a fixed element of Y .
If f is a M⊗N -measurable function and f = g+h where g is M⊗N -measurable and

h = 0 almost everywhere with respect to µ⊗ ν, then the following statements are true:
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(1) If x ∈ X, then gx is N -measurable.
(2) If y ∈ Y , then gy is M-measurable.
(3) For almost all x ∈ X the function hx is N -measurable and zero almost everywhere.
(4) For almost all y ∈ Y the function hy is M-measurable and zero almost everywhere.

Sketch of proof. Statements and (1) and (2) hold by 3.1.4. To prove (3) and (4)
let P be the set where h does not vanish. Then P ⊂ Q for some Q ∈ M ⊗ N and
(µ ⊗ ν)(Q) = 0. From 3.2.2 we get 0 =

∫
µ
ν(Qx) so that 0 = ν(Qx) = ν(Px) for all x

outside a set S of measure zero. For x ̸∈ S the function hx is zero outside Px, i.e., almost
everywhere. Hence hx is then N -measurable. □

Recall that, by 2.1.8, there is always a M⊗N -measurable function g which coincides
with f almost everywhere.

3.2.4 Fubini’s theorem. Let (X,M, µ) and (Y,N , ν) be measure spaces with complete,
positive, σ-finite measures µ and ν and f a M⊗N -measurable function on X ×Y . Define,
when it makes sense to do so, φ(x) =

∫
ν
fx, ψ(y) =

∫
µ
fy, φ∗(x) =

∫
ν
|fx|, and ψ∗(y) =∫

µ
|fy|.
Then the following statements hold:

(1) If 0 ≤ f ≤ ∞, then φ and ψ are M-measurable and N -measurable, respectively.
Moreover, ∫

µ

φ =

∫
µ⊗ν

f =

∫
ν

ψ.

(2) If f is complex-valued and
∫
µ
φ∗ <∞ or

∫
ν
ψ∗ <∞, then f ∈ L1(µ⊗ ν).

(3) If f ∈ L1(µ⊗ ν), then fx ∈ L1(ν) for almost every x ∈ X, fy ∈ L1(µ) for almost
every y ∈ Y , φ ∈ L1(µ), and ψ ∈ L1(ν). Moreover,∫

µ

φ =

∫
µ⊗ν

f =

∫
ν

ψ. (5)

Equation (5) is often written in terms of iterated integrals as∫
µ(x)

(∫
ν(y)

f(x, y)

)
=

∫
µ⊗ν

f =

∫
ν(y)

(∫
µ(x)

f(x, y)

)
.

Sketch of proof. Show (1), in turn, when f is the characteristic function of a mea-
surable set, for simple functions, and then in general. Statement (2) follows from applying
(1) to |f |. For (3) split f in real and imaginary parts and those in positive and negative
parts. □

3.2.5 Counterexamples. Iterated integrals do not coincide in the following situations:

(1) Let X = Y = N and µ = ν the counting measure (then µ ⊗ ν is the counting
measure on X × Y ). Suppose f(j, k) = 1 for j = k, f(j, k) = −1 if j = k + 1, and
zero otherwise.

(2) Let X = Y = [0, 1], µ Lebesgue measure, ν the counting measure, and f the
characteristic function of the main diagonal of [0, 1]2.
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3.3. Lebesgue measure on Rn

3.3.1 Lebesgue measure on Rn. We define Lebesgue measure mn on Rn recursively.
Specifically, given that mn is already defined we set mn+1 = mn ⊗ m1 on L(Rn+1) =

L(Rn)⊗ L(R).
3.3.2 Basics. The following statements are true:

(1) Any open rectangular box B = (a1, b1)× ...× (an, bn) is an element of L(Rn).
(2) If B = (a1, b1)× ...× (an, bn), then mn(B) equals |B| =

∏n
k=1(bk−ak), the volume

of the box (or area of the rectangle if n = 2) in geometry.
(3) mn is a Borel measure on Rn.
(4) Lebesgue measure on Rn is translation invariant, i.e., mn(A) = mn(x+A) whenever

A ∈ L(Rn) and x+A = {x+ a : a ∈ A}.
3.3.3 Further properties of Lebesgue measure. Let En be the set of all open rect-
angular boxes in Rn and ϕ∗(E) = inf{

∑∞
j=1 |Aj | : Aj ∈ En, E ⊂

⋃∞
j=1Aj}. Then ϕ∗ is an

outer measure on P(Rn). Clearly m∗
n(E) ≤ ϕ∗(E) for all E ⊂ Rn. The opposite inequality

also holds; to see this choose appropriate measurable rectangles Ak × Bk which cover E,
then appropriate boxes and intervals Ek,j and Fk,ℓ which cover Ak and Bk, respectively. In
conclusion, m∗

n = ϕ∗, i.e.,

mn(E) = inf{
∞∑
j=1

|Aj | : Aj ∈ En, E ⊂
∞⋃
j=1

Aj}.

This result has the following two consequences:

(1) mn is regular.
(2) L(Rn) is the completion of B(Rn) with respect to mn.
(3) If p+ q = n, then mn = mp ⊗mq.

3.3.4 The volume of balls. Let Bn(x,R) ⊂ Rn be the open ball of radius R centered at
x. For each natural number n there exists a positive number σn such that mn(Bn(x,R)) =
σnR

n whenever x ∈ Rn and R > 0.

Sketch of proof. It is enough to consider x = 0. When n = 1, the claim holds with
σ1 = 2. Let r(x) =

√
R2 − x2. Then we have

χBn+1(0,R)(x1, ..., xn+1) = χ(−R,R)(xn+1)χBn(0,r(xn+1))(x1, ..., xn)

and the claim follows by induction. The numbers σn may be computed explicitly in terms

of the integrals
∫ 1

0
(1− x2)(n−1)/2 dx =

∫ π/2

0
(cos t)n dt. □

3.4. Exercises

3.1. Let A = {(x, y) ∈ R2 : x ∈ Q or y ∈ Q}. Is A Lebesgue measurable? If so, what is
its measure?

3.2. Let f : R → R be a function. Show that the set {(x, f(x)) : x ∈ R} is in L(R2) and
that its Lebesgue measure is 0.

3.3. Suppose (X,M, µ) and (Y,N , ν) are measure spaces with complete, positive, σ-
finite measures µ and ν. Construct a function h with the following properties: (i) h is
M⊗N -measurable and 0 almost everywhere, (ii) there is a point x ∈ X for which hx is not
measurable, and (iii) there is a point x ∈ X for which hx is measurable but not 0 almost
everywhere.



CHAPTER 4

The Lebesgue-Radon-Nikodym theorem

4.1. The Lebesgue-Radon-Nikodym theorem

4.1.1 The Lebesgue-Radon-Nikodym theorem. Let µ be a positive σ-finite measure
on a σ-algebra M in X and λ a complex measure on M. Then

(1) there exists a unique pair of complex measures λa and λs on M such that

λ = λa + λs, λa ≪ µ, λs ⊥ µ.

If λ is positive and finite then so are λa and λs.
(2) There exists a unique function h ∈ L1(µ) such that λa(E) =

∫
µ
hχE for every

E ∈ M.

The pair λa, λs associated with λ is called the Lebesgue decomposition of λ.

Sketch of proof. This is a deep theorem. The proof below is due to von Neumann.
We shall break it in several parts.

(1) Showing uniqueness of λa, λs and h is straightforward.
(2) It is sufficient to prove the theorem for a positive (but finite) measure λ.
(3) There exists a function w ∈ L1(µ) such that 0 < w < 1.
(4) Suppose there was a measurable function g such that 0 ≤ g ≤ 1 and∫

λ

f(1− g) =

∫
µ

fgw (6)

for bounded, nonnegative, measurable functions f . Define A = {x : 0 ≤ g(x) < 1}
and B = Ac = {x : g(x) = 1} as well as

λa(E) = λ(E ∩A) and λs(E) = λ(E ∩B).

Then λa and λs are finite positive measures satisfying λa + λs = λ and λs ⊥ µ.
(5) Now let f = (1 + g + ...+ gn)χE in (6). Then∫

λ

(1− gn+1)χE∩A =

∫
λ

(1− gn+1)χE =

∫
µ

(g + ...+ gn+1)wχE .

The monotone convergence theorem shows then that λa(E) = λ(E ∩A) =
∫
µ
hχE

where h = wg/(1− g) on A. Taking E = X shows h ∈ L1(µ). It also follows that
λa ≪ µ.

(6) It remains to show the existence of g. To this end define the finite measure φ by
φ(E) = λ(E) +

∫
µ
wχE . Then∫

φ

f =

∫
λ

f +

∫
µ

fw

for any nonnegative measurable function f .

23



24 4. THE LEBESGUE-RADON-NIKODYM THEOREM

(7) The inequality∣∣∣∣∫
λ

f

∣∣∣∣ ≤ ∫
λ

|f | ≤
∫
φ

|f | ≤ ∥f∥L2(φ)(φ(X))1/2

holds for all f ∈ L2(φ). Therefore T : L2(φ) → C : f 7→
∫
λ
f is a bounded linear

functional. The representation theorem A.2.4 guarantees now the existence of a
g ∈ L2(φ) such that∫

λ

f = Tf = ⟨f, g⟩L2(φ) =

∫
φ

fg.

Putting here f = χE for any E with φ(E) > 0 shows, using 1.2.9, that 0 ≤ g ≤ 1
almost everywhere with respect to φ and hence with respect to both λ and µ. One
may now choose a representative such that 0 ≤ g ≤ 1.

□

4.1.2 Allowing for σ-finite measures. If λ is positive and σ-finite rather than finite
the Lebesgue-Radon-Nikodym theorem takes the following form: There are unique positive
σ-finite measures λa and λs on M such that λ = λa + λs, λa ≪ µ, and λs ⊥ µ. Moreover,
there is a unique non-negative measurable function h (not necessarily integrable) such that
λa(E) =

∫
µ
hχE for every E ∈ M.

To prove this let X =
⋃∞

n=1Xn with pairwise disjoint sets Xn of finite λ-measure, define
the functions gn on Xn in analogy to 4.1.1, and extend them by 0 to all of X. Then let
g =

∑∞
n=1 gn and, as before, A = {x : g(x) < 1}, λa(E) = λ(E ∩ A), λs(E) = λ(E ∩ Ac),

and h = wg/(1− g) on A. Then λa, λs, and h have the required properties.

4.1.3 The Radon-Nikodym derivative. Suppose µ is a σ-finite positive measure on
a σ-algebra M and λ is either a complex measure or else a σ-finite positive measure also
defined on M. If λ is absolutely continuous with respect to µ, then either 4.1.1 or else
4.1.2 defines a function h through the equation λ(E) =

∫
µ
hχE . This function is called the

Radon-Nikodym derivative of λ with respect to µ. We denote it by (λ/µ).

4.1.4 The Radon-Nikodym derivative of a measure with respect to its total
variation. Suppose λ is a complex measure defined on the σ-algebra M. Since it is abso-
lutely continuous with respect to its total variation |λ|, there is a Radon-Nikodym derivative
h = (λ/|λ|) in L1(|λ|). In fact, |h| = 1 almost everywhere with respect to |λ|. Of course, we
may choose h so that |h| = 1 everywhere.

4.1.5 The chain rule for Radon-Nikodym derivatives. Suppose κ, λ and µ are σ-finite
positive measures on a σ-algebra M and that κ≪ λ≪ µ. Then κ≪ µ and

(κ/µ) = (κ/λ)(λ/µ).

This statement is also true when κ is a complex measure.

4.1.6 The Lebesgue decomposition of a total variation measure. Let µ be a positive
σ-finite measure on a σ-algebra M in X and λ a complex measure on M so that λ(E) =
λa(E) + λs(E) with λa ≪ µ and λs ⊥ µ. Then |λ|a = |λa| and |λ|s = |λs|. Moreover, if
g = (λa/µ), then |g| = (|λa|/µ).

Sketch of proof. Since λa ⊥ λs it is easy to see that |λa| ⊥ |λs| and |λ| = |λa|+|λs|.
Now note that λa ≪ |λa| ≪ µ. Let h = (λa/|λa|) and k = (|λa|/µ). Thus g = hk by

4.1.5. Using 1.2.9 and 4.1.4 we get k ≥ 0 and |h| = 1, respectively. Hence k = |g|. □
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4.2. Integration with respect to a complex measure

4.2.1 Integration with respect to complex measures. Suppose (X,M, λ) is a measure
space with a complex measure λ. Let h be the Radon-Nikodym derivative of λ with respect
to |λ| and recall that |h| = 1. Now we define∫

λ

g =

∫
|λ|
gh

whenever g is integrable with respect to |λ|.
4.2.2 Integration and the Radon-Nikodym derivative. We have now the following
extension of 1.1.12. Let (X,M, µ) be a measure space with a σ-finite positive measure µ.
Suppose ϕ is either a complex measure or else a σ-finite positive measure defined onM which
is absolutely continuous with respect to µ and let k be the corresponding Radon-Nikodym
derivative. Then g ∈ L1(|ϕ|) if and only if kg ∈ L1(µ). In this case∫

ϕ

g =

∫
µ

gk.

Sketch of proof. When ϕ is a positive measure, show this, in turn, for g being a
characteristic function, a simple function, a positive function, and an integrable function.
Otherwise take also 4.2.1, 4.1.5, and 4.1.6 into account. □





CHAPTER 5

Radon Functionals on Locally Compact Hausdorff
Spaces

Throughout this chapter X denotes a locally compact Hausdorff space.

5.1. Preliminaries

5.1.1 Locally compact Hausdorff spaces. Recall that a topological space is called locally
compact if every point has an open neighborhood with compact closure. A topological space
is called a Hausdorff space if any two distinct points have disjoint neighborhoods.

Note that Rn as well as its open and closed subsets are locally compact Hausdorff spaces
for any n ∈ N.

5.1.2 Compactly supported continuous functions. Let f : X → C be a function.
The set supp f = {x : f(x) ̸= 0} is called the support of a function f . The set of compactly
supported continuous functions defined on a topological space X is denoted by C0

c (X).
C0

c (X) is a normed vector space under the norm f 7→ ∥f∥∞ = sup{|f(x)| : x ∈ X}1.
5.1.3 Urysohn’s lemma. The notation K ≺ f indicates that K is compact in X, that
f ∈ C0

c (X), 0 ≤ f ≤ 1, and that f(x) = 1 for all x ∈ K. The notation f ≺ V indicates that
V is open in X, that f ∈ C0

c (X), 0 ≤ f ≤ 1, and that the support of f is in V .
The following theorem is well-known from topology.

Theorem. Suppose X is a locally compact Hausdorff space, K compact, V open, and
K ⊂ V ⊂ X. Then there exists f ∈ C0

c (X) such that K ≺ f ≺ V .

5.1.4 Partitions of unity. The following theorem, whose proof depends on Urysohn’s
lemma, is well-known from topology. If U1, ..., Un are open subsets of X and if the compact
set K is contained in

⋃n
k=1 Uk, then there are functions hk, k = 1, ..., n, such that hk ≺ Uk

and K ≺
∑n

k=1 hk. The collection {h1, ..., hn} is called a partition of unity on K with
respect to the cover {U1, ..., Un}.

5.2. Approximation by continuous functions

5.2.1 Compactly supported continuous functions in Lp(µ). Suppose X is a locally
compact Hausdorff space and µ a regular, positive Borel measure on X. If 1 ≤ p <∞ then
C0

c (X) is dense in Lp(µ).

Sketch of proof. Suppose f ∈ Lp(µ) and ε > 0 is given. According to 1.4.10 there
is a simple function s =

∑n
j=1 αjχAj with µ(Aj) < ∞ such that ∥f − s∥p < ε/2. Set

M = max{|α1|, ..., |αn|}. For each Aj there is then a continuous function gj such that
µ({x : χAj

(x) ̸= gj(x)}) < 1
n (

ε
2nM )p. For g =

∑n
j=1 αjgj we get ∥s− g∥p < ε/2. □

1This notation must not be confused with the one in 1.4.5 for functions which are essentially bounded

with respect to a positive measure.
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5.2.2 Functions vanishing at infinity. A complex-valued function f on a locally compact
Hausdorff space is said to vanish at infinity if for every ε > 0 there exists a compact set K
such that |f(x)| < ε if x ̸∈ K. The class of continuous functions which vanish at infinity is
denoted by C0

0 (X).
Of course, C0

c (X) ⊂ C0
0 (X). The converse is true if X is compact.

5.2.3 C0
0 (X) is a Banach space. If X is a locally compact Hausdorff space then C0

0 (X)
is the completion of C0

c (X) with respect to the norm ∥ · ∥∞.

Sketch of proof. To prove denseness consider the function h = fg where K ≺ g and
K being such that |f | < ε outside K. To prove completeness show that a Cauchy sequence
has pointwise limits giving rise to a continuous function vanishing at infinity. □

5.3. Riesz’s representation theorem

5.3.1 Radon functionals. A Radon functional on C0
c (X) is a function ϕ : C0

c (X) → C
which is linear and has the property that for every compact set K ⊂ X there is a number
CK such that

|ϕ(f)| ≤ CK∥f∥∞
whenever f ∈ C0

c (X) and supp f ⊂ K.
Given two Radon functionals ϕ and ψ and a complex number c we may define ϕ + ψ

and cϕ by (ϕ+ ψ)(f) = ϕ(f) + ψ(f) and (cϕ)(f) = cϕ(f), respectively. Thus the set of all
Radon functionals on C0

c (X) is a complex vector space.

Given a Radon functional ϕ we define its conjugate ϕ by ϕ(f) = ϕ(f). Note that ϕ = ϕ.
A Radon functional ϕ is called real if ϕ = ϕ. This is equivalent with the requirement that
ϕ(f) is real whenever f assumes only real values. Note, however, that ϕ being real does not
mean it is always real-valued.

Define Reϕ and Imϕ by (Reϕ)(f) = (ϕ(f)+ϕ(f))/2 and (Imϕ)(f) = (ϕ(f)−ϕ(f))/(2i),
respectively. Then ϕ = Reϕ+ i Imϕ.

ϕ, Reϕ, and Imϕ are Radon functionals when ϕ is one. Also, Reϕ and Imϕ are real.

5.3.2 Positive linear functionals. If ϕ : C0
c (X) → C is linear and if ϕ(f) ≥ 0 whenever

f ≥ 0, then ϕ is called a positive linear functional on C0
c (X).

Positive linear functionals are monotone in the sense that ϕ(f) ≤ ϕ(g) if f ≤ g. Con-
versely, if ϕ : C0

c (X) → C is linear and monotone, then it is a positive linear functional.

Theorem. Any positive linear functional is a Radon functional.

Sketch of proof. Choose g ∈ C0
c (X) such that K ≺ g. Write f =

∑3
k=0 i

kfk where
f0 = (Re f)+ etc. If supp f ⊂ K, then fk ≤ ∥f∥∞g. Choose CK = 4ϕ(g). □

5.3.3 The representation theorem for positive linear functionals. This major the-
orem was first proved by F. Riesz in 1909 in the case where X = [0, 1].

Theorem. Suppose ϕ is a positive linear functional on C0
c (X). Then there exist a

unique positive measure µ on B(X) with the following properties: (1) µ is outer regular, (2)
every open set is inner regular, and (3) ϕ(f) =

∫
µ
f for all f ∈ C0

c (X).

Moreover, the measure µ satisfies µ(K) = inf{ϕ(f) : K ≺ f} < ∞ whenever K is
compact and µ(U) = sup{ϕ(f) : f ≺ U} whenever U is open.

Sketch of proof. If K ≺ f ≺ U then, by the monotonicity of µ, we have µ(K) ≤
ϕ(f) ≤ µ(U). Since U is inner regular ϕ determines its measure uniquely. Outer regularity
establishes now the uniqueness of µ.
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We show existence by constructing the measure explicitly. Let E be the set of open sets
in X and define | · | : E → [0,∞] by |U | = sup{ϕ(f) : f ≺ U}. By 2.2.2 | · | defines an outer
measure µ∗ on P(X). By Carathéodory’s construction 2.2.3

M = {A ⊂ X : ∀B ⊂ X : µ∗(B) = µ∗(A ∩B) + µ∗(Ac ∩B)}

is a σ-algebra and µ = µ∗|M is a complete positive measure on it. We show that (i)
µ∗ is an extension of | · |, (ii) that B(X) ⊂ M and that µ is outer regular, (iii) that
µ(K) = inf{ϕ(f) : K ≺ f} < ∞ when K is compact and that open sets are inner regular,
and (iv) that ϕ(f) =

∫
µ
f for all f ∈ C0

c (X).

For (i) it is sufficient to show that |U | ≤
∑∞

k=1 |Uk| if U and the Uk are open and if
U ⊂

⋃∞
k=1 Uk. This proof uses a partition of unity on supp f with respect to the cover

{U1, ..., Un} whenever f ≺ U .
To prove (ii) note first that, by (i), there is, for any B ⊂ X and any ε > 0, an open set

V ⊃ B such that µ∗(B)+ ε ≥ µ∗(V ). If U is now any open set, there is an f ≺ U ∩V and a
g ≺ V \supp f such that µ∗(U∩V ) ≤ ϕ(f)+ε, µ∗(U c∩V ) ≤ ϕ(g)+ε, and ϕ(f+g) ≤ µ∗(V ).

We now turn to (iii) which relies on the monotonicity of ϕ. If K ≺ f we have that
g ≤ cf whenever c > 1 and g ≺ V = {x : 1 < cf(x)}. Since K ⊂ V , we get µ(K) ≤ cϕ(f),
and since c > 1 is arbitrary, we get this inequality also with c = 1. Choosing f so that
K ≺ f ≺ U with µ(U) close to µ(K) proves that µ(K) = inf{ϕ(f) : K ≺ f}. To show that
an open set U is inner regular, choose, for any g ≺ U and ε > 0, an f satisfying supp g ≺ f
and ϕ(f) ≤ µ(supp g) + ε.

To prove (iv) note first that we need only consider real-valued f and that, due to
the linearity of ϕ, it is sufficient to prove ϕ(f) ≤

∫
µ
f . Now let n ∈ N be given, define

K = supp f , and assume f(K) ⊂ (−a, a) for a suitable a > 0. Let ∆ = 2a/n and Ej =
{x ∈ K : −a + (j − 1)∆ < f(x) ≤ −a + j∆} for j = 1, ..., n. Note that the Ej are
pairwise disjoint and that their union is K. For each j there is an open set Uj such that
Ej ⊂ Uj ⊂ {x : f(x) < −a + (j + 1)∆} and µ(Ej) ≥ µ(Uj) − 1/n2. Let {h1, ..., hn} be
a partition of unity on K with respect to {U1, ..., Un} so that ϕ(hj) ≤ µ(Uj). Using these
inequalities and the monotonicity of ϕ this implies

ϕ(f) ≤
n∑

j=1

(−a+ (j + 1)∆)ϕ(hj) ≤ −a
n∑

j=1

ϕ(hj) +

n∑
j=1

∫
µ

(f + a+ 2∆)χEj
+

(n+ 1)∆

n
.

Since µ(K) ≤
∑n

j=1 ϕ(hj) one obtains ϕ(f) ≤
∫
µ
f + 2∆(µ(K) + 1). □

5.3.4 Total variation of a Radon functional. Suppose ϕ : C0
c (X) → C is a Radon

functional. Then there is a unique positive linear functional |ϕ| such that (i) |ϕ(f)| ≤ |ϕ|(|f |)
for all f ∈ C0

c (X) and (ii) |ϕ|(|f |) ≤ λ(|f |), if λ : C0
c (X) → C is any positive linear functional

such that |ϕ(f)| ≤ λ(|f |) for all f ∈ C0
c (X). |ϕ| is called the total variation functional of ϕ.

Sketch of proof. For non-negative f ∈ C0
c (X) define

|ϕ|(f) = sup{|ϕ(g)| : g ∈ C0
c (X), |g| ≤ f}.

Then 0 ≤ |ϕ| < ∞ and it satisfies |ϕ|(cf) = c|ϕ|(f) whenever c ∈ [0,∞). If |g1| ≤ f1,
|g2| ≤ f2, and |α1| = |α2| = 1, then |α1g1 + α2g2| ≤ f1 + f2, so that we get |ϕ|(f1) +
|ϕ|(f2) ≤ |ϕ|(f1 + f2). To prove the opposite inequality assume that |g| ≤ f1 + f2 and set
gj = (fjg)/(f1 + f2), j = 1, 2 if the denominator does not vanish and otherwise 0. We
have now proved that |ϕ| is additive on the non-negative functions in C0

c (X). For complex
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valued f define

|ϕ|(f) = |ϕ|((Re f)+)− |ϕ|((Re f)−) + i|ϕ|((Im f)+)− i|ϕ|((Im f)−).

Then |ϕ| is a positive linear functional such that |ϕ(f)| ≤ |ϕ|(|f |). The minimality property
follows since λ, as a positive functional, is monotone, i.e., λ(|g|) ≤ λ(|f |) if |g| ≤ |f |. □

5.3.5 Regularity for spaces with σ-finite measures. Suppose µ is a positive, σ-finite
Borel measure onX, which is outer regular, inner regular on open sets, and finite on compact
sets. Then µ is also inner regular.

Sketch of proof. Suppose X =
⋃∞

n=1Xn where µ(Xn) < ∞ and that E is any
measurable set. Then there are open sets Un ⊃ E ∩Xn such that µ(Un \ (E ∩Xn)) < ε2−n.
Hence E ⊂ U =

⋃∞
n=1 Un and µ(U \E) < ε. The set U \E, in turn, is contained in an open

set V whose measure is still less than ϵ.
If µ(E) = ∞ and M is a positive number, there is a compact set F ⊂ U such that

µ(F ) > M . Let K = F \ V and note that K is a compact subset of E. We also have, that
µ(K) ≥M − ε and hence that E is inner regular.

If µ(E) <∞ the proof is similar. □

5.3.6 Regularity for σ-compact spaces. In addition to our standard assumption that
X is a locally compact Hausdorff space suppose now also that X is σ-compact , i.e., that X
is a countable union of compact sets. If µ is a positive, outer regular Borel measure which
is finite on compact sets, then µ is σ-finite and inner regular.

Sketch of proof. It is clear that µ is σ-finite. Inner regularity may be proved by
imitating 2.3.5. □

5.3.7 The representation theorem for general Radon functionals.

Theorem. Suppose X is a σ-compact and locally compact Hausdorff space. If ϕ is a
Radon functional on C0

c (X), then there exists a unique positive regular measure µ on B(X)
and a measurable function h of absolute value 1 such that

ϕ(f) =

∫
µ

fh

whenever f ∈ C0
c (X). Additionally, µ is finite on compact sets.

Sketch of proof. Set ψ0 = (|Reϕ|+Reϕ)/2, ψ2 = (|Reϕ|−Reϕ)/2, ψ1 = (| Imϕ|+
Imϕ)/2, and ψ3 = (| Imϕ| − Imϕ)/2. Then the ψk are positive Radon functionals and

ϕ =
∑3

k=0 i
kψk. By 5.3.3 and 5.3.6 each of the ψk is associated with a unique positive

regular and σ-finite measure µk. These measures are absolutely continuous with respect
to their sum µ̃ which is also regular. Denote the Radon-Nikodym derivatives of µk with
respect to µ̃ by gk. By 1.2.9 we have 0 ≤ gk ≤ 1. With g =

∑3
k=0 i

kgk we obtain

ϕ(f) =

3∑
k=0

ikψk(f) =

3∑
k=0

ik
∫
µk

f =

3∑
k=0

ik
∫
µ̃

fgk =

∫
µ̃

fg.

Now define h(x) = g(x)/|g(x)| when g(x) ̸= 0 and h(x) = 1 otherwise. Also define µ by
µ(E) =

∫
µ̃
|g|χE . Then µ is again σ-finite and regular and

ϕ(f) =

∫
µ̃

fh|g| =
∫
µ

fh.

□
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5.3.8 The dual of C0
0 (X). If ϕ is bounded linear functional on C0

0 (X) then there is a
unique regular complex measure µ on B(X) such that ϕ(f) =

∫
µ
f . Thus, the dual of C0

0 (X)

is the space of all regular complex measures on B(X).

Sketch of proof. First suppose that ϕ is positive, i.e., ϕ(f) ≥ 0 whenever f ≥ 0.
The restriction of ϕ to C0

c (X) is then a positive Radon functional on C0
c (X). Theorem 5.3.3

gives the existence of a positive Borel measure µ such that ϕ(f) =
∫
µ
f for all f ∈ C0

c (X).

Note that µ(X) = sup{ϕ(f) : f ≺ X} ≤ C∥f∥∞ ≤ C, i.e., µ is a finite measure. The
boundedness of ϕ and the dominated convergence theorem show then that ϕ(f) =

∫
µ
f for

all f ∈ C0
0 (X).

Inner regularity follows from 5.3.5.
In general, if ϕ is bounded, then so are the positive functionals (|Reϕ| ± Reϕ)/2 and

(| Imϕ| ± Imϕ)/2. □

5.4. Exercises

5.1 (Lusin’s theorem). Suppose X is a locally compact Hausdorff space and µ is com-
plete, regular, positive Borel measure on X which is finite on compact sets. Assume that
f : X → C is measurable, that A ⊂ X is of finite measure, that f(x) = 0 if x ̸∈ A, and that
ε > 0. Then there exists a continuous function g : X → C of compact support such that

µ({x : f(x) ̸= g(x)}) < ε

and, if f is bounded,

sup{|g(x)| : x ∈ X} ≤ sup{|f(x)| : x ∈ X}.





CHAPTER 6

Differentiation

In this chapter we study functions defined on Rd, R, or on compact intervals [a, b] ⊂ R.
Throughout m denotes Lebesgue measure on R or Rd. The open balls of radius r centered
at x are denoted by B(x, r). Unless stated otherwise “almost everywhere” means “almost
everywhere with respect to Lebesgue measure”.

6.1. Derivatives of measures

6.1.1 A covering lemma. If C is a non-empty collection of open balls in Rd and c <

m(
⋃

B∈C B), then there are pairwise disjoint balls A1, ..., Ak ∈ C such that 3d
∑k

j=1 m(Aj) >
c.

Sketch of proof. Inner regularity of Lebesgue measure gives a compact set K ⊂⋃
B∈C B with m(K) > c. K will be covered by finitely many of the balls in C. One of

those with maximal radius is A1. Among the balls disjoint from A1 there is again one with
maximal radius, A2. After the k-th step of this process no balls disjoint from the chosen
ones are left and it comes to an end. Enlarging the radii of the chosen balls by a factor of
3 gives balls which still cover K. □

6.1.2 Hardy-Littlewood’s maximal function. If µ is a complex Borel measure on Rd

define the maximal function

Mµ(x) = sup{|µ|(B(x, r))/m(B(x, r)) : r > 0}.
Then Mµ is Borel measurable and

m({x :Mµ(x) > α}) ≤ 3d

α
|µ|(Rd)

whenever α > 0.

Sketch of proof. We want to show that the set V = {x :Mµ(x) > a} is open. Hence
suppose x0 ∈ V and note that then |µ|(B(x0, r))/m(B(x0, r)) = b > a for some r > 0. There
is a δ > 0 such that (r + δ)d < brd/a. Since B(x0, r) ⊂ B(x, r + δ) if |x− x0| < δ it follows
that B(x0, δ) ⊂ V .

For the second statement choose rx such that |µ|(B(x, rx))/m(B(x, rx)) > α for all
x ∈ {x :Mµ(x) > α}. Now use the covering lemma 6.1.1. □

Recall from 1.1.12 that, when 0 ≤ f ∈ L1(Rd), then A 7→ µ(A) =
∫
A
fdm is a finite

positive measure on L(Rd). We denote the associated maximal function by Mf .

6.1.3 Lebesgue points. If f : Rd → C is integrable, then x ∈ Rd is called a Lebesgue
point of f if

lim
r→0

1

m(B(x, r))

∫
m

|f − f(x)|χB(x,r) = 0.
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If f is continuous at x, then x is a Lebesgue point of f .
If x is a Lebesgue point of f , then

f(x) = lim
r→0

1

m(B(x, r))

∫
m

fχB(x,r).

Note, however, that the converse is not true.

Theorem. If f : Rd → C is integrable, then almost every point of Rd (with respect to
m) is a Lebesgue point of f .

Sketch of proof. Let ε > 0 be given. By 5.2.1 there is, for every n ∈ N, a gn ∈
C0

c (Rd) such that ∥f − gn∥1 ≤ 1/n. Let An = {x : |f(x) − gn(x)| > ε/3}, Bn = {x :
M|f−gn|(x) > ε/3}, and E =

⋂∞
n=1(An ∪Bn). Then m(E) = 0 and we may prove the claim

when x ∈ Ec. □

6.1.4 Nicely shrinking sets. Let x ∈ Rd. We say that Borel sets Ej ⊂ Rd shrink nicely
to x if there exists an α > 0 and a sequence of balls B(x, rj) with rj → 0 such that, for all
j, Ej ⊂ B(x, rj) and m(Ej) ≥ αm(B(x, rj)).

6.1.5 Derivatives of measures. Let µ be a complex Borel measure on Rd with Lebesgue
decomposition µ(E) =

∫
m
fχE+µs(E) and assume that |µs| is regular (here f is the Radon-

Nikodym derivative of µ with respect to m). Then there is a setM ⊂ Rd whose complement
has measure zero with the following property. If x ∈ M and j 7→ Ej(x) a sequence of sets
shrinking nicely to x, then

lim
j→∞

µ(Ej(x))

m(Ej(x))
= f(x).

In particular, if µ ⊥ m and x ∈M then limj→∞ µ(Ej(x))/m(Ej(x)) = 0.

Sketch of proof. Suppose µ is positive and µ ⊥ m. Let A be such that µ(A) =
m(Ac) = 0 and

Fk =
⋂
r>0

⋃
0<s<r

{x ∈ A :
µ(B(x, s))

m(B(x, s))
>

1

k
}.

Since µ is regular there is an open set U such that A ⊂ U and µ(U) < ε for any ε > 0. Use
the covering lemma 6.1.1 to show that m(Fk) = 0. Now prove the claim for x ∈ A\

⋃∞
k=1 Fk

assuming the Ej are balls.
We are done when µ is positive, µ ⊥ m, and Ej(x) is a sequence of balls. The general

case follows from this, the definition of nicely shrinking sets, the fact that |µs(E)| ≤ |µs|(E),
and 6.1.3. □

6.2. Exercises

6.1. Give an example of a sequence of sets shrinking nicely and one which does not.



CHAPTER 7

Functions of Bounded Variation and Lebesgue-Stieltjes
Measures

7.1. Functions of bounded variation

Throughout this section I ⊂ R denotes an interval of positive or infinite length.

7.1.1 Variation. Let f be a complex-valued function on I. Then we define the variation
of f over I as

Varf (I) = sup


n∑

j=1

|f(xj)− f(xj−1)| : all xj ∈ I and x0 < x1 < ... < xn

 .

If Varf (I) <∞, we say that f is of bounded variation on I. If Varf (K) <∞ whenever
K is a compact subinterval of I, we say that f is of locally bounded variation on I.

7.1.2 Basic properties of functions of bounded variation. Every non-decreasing
function f on I is of locally bounded variation since, in this case, Varf ([x, y]) = f(y)−f(x).
If f is of bounded variation on I, then it is bounded there.

Variation is additive in the sense that Varf ([x, y])+Varf ([y, z]) = Varf ([x, z]) whenever
x < y < z. Analogous formulas hold when x and/or z are removed from the intervals under
consideration.

If f is of (locally) bounded variation, then so are Re(f) and Im(f).

7.1.3 The vector space of functions of bounded variation. The complex-valued
functions defined on an interval I which are of locally bounded variation form a complex
vector space which is denoted by BVloc(I). In fact, since the product of two functions of
locally bounded variation is again of locally bounded variation, BVloc(I) is an algebra over
C. The set of functions of bounded variation on I is denoted by BV(I). It is a subalgebra
of BVloc(I).

7.1.4 Variation functions. Let I be an interval with endpoints a and b where a < b.
Suppose f ∈ BVloc(I) and c is a fixed point in I. For x ∈ I let

Vf (x) =


Varf ([c, x]) if x > c,

0 if x = c,

−Varf ([x, c]) if x < c.

The function Vf is called a variation function for f . If a ∈ I, it is customary to choose
c = a so that Vf (a) = 0 and Vf (x) = Varf ([a, x]) when x > a.

If a ̸∈ I, we may still define Vf (x) = Varf ((a, x]) provided f is of bounded variation
near a (i.e., f is of bounded variation on (a, d) for some d ∈ I).

Any two variation functions for f differ only by a constant.
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7.1.5 Bounded variation and monotonicity. If f : I → R is of locally bounded
variation, then Vf as well as Vf±f are non-decreasing. Therefore any real-valued function of
locally bounded variation may be expressed as the difference of two non-decreasing functions.

Complex-valued functions which are of locally bounded variation may be written as a
combination of four non-decreasing functions.

Since non-decreasing functions are Borel measurable, it follows that all functions of
locally bounded variation are Borel measurable.

7.1.6 Discontinuities. Let f be a complex-valued function on the interval I. If f is not
continuous at the point c ∈ I but limx↓c f(x) and limx↑c f(x) exist

1, then c is called a jump
discontinuity or a discontinuity of the first kind . Otherwise it is called a discontinuity of
the second kind .

If f is a complex-valued function on the interval I which has no discontinuities of the
second kind, we define f± : I → C by setting f+(x) = limt↓x f(t) and f

−(x) = limt↑x f(t).
If f is non-decreasing we have f+(x) = inf{f(t) : t > x} and f−(x) = sup{f(t) : t < x}.
7.1.7 Bounded variation and continuity. A function in BVloc(I) has at most countably
many discontinuities. Each of these is a discontinuity of the first kind. Moreover, if f is of
bounded variation on (a, b), then limx↓a f(x) and limx↑b f(x) exist.

7.1.8 Left-continuous and right-continuous functions. Suppose f is a function of
locally bounded variation on the interval I. Then f+ is right-continuous while f− is left-
continuous.

If f ∈ BVloc((a, b)) is left-continuous, then so is its variation function Vf .
We also find that limx↓a Varf ((a, x]) = 0 and limx↑b Varf ((a, x]) = Varf ((a, b)), if f ∈

BV((a, b)).

7.2. Lebesgue-Stieltjes measures

In this section (a, b) is a non-empty open interval in R. We allow a = −∞ and b = ∞.

7.2.1 Positive Lebesgue-Stieltjes measures. Suppose F : (a, b) → R is a non-decreasing
function. Let E be the set of all open intervals (c, d) such that a < c ≤ d < b and define
|(c, d)| = F−(d)− F+(c) when c < d and |∅| = |(c, c)| = 0. Then

µ∗
F (A) = inf{

∞∑
j=1

|(cj , dj)| : (cj , dj) ∈ E , A ⊂
∞⋃
j=1

(cj , dj)}

defines an outer measure which yields, employing Carathéodory’s construction 2.2.3, a com-
plete positive measure µF on a σ-algebra MF in (a, b). µF is an extension of | · | : E → [0,∞]
and MF contains all Borel sets. Moreover, µF assumes finite values on compact sets. µF is
called a positive Lebesgue-Stieltjes measure on (a, b). We shall say that µF is generated by
F .

Sketch of proof. To prove that the outer measure µ∗
F is an extension of (c, d) 7→

F−(d)−F+(c) note that, given δ > 0, there exist α and β such that c < α < β < d, F (α)−
δ < F+(c) ≤ F (α), and F (β) ≤ F−(d) < F (β) + δ. Since µ∗

F ({c}) = F+(c) − F−(c) ≥ 0
we get µ∗

F ([c, d)) ≤ F−(d)− F−(c) and µ∗
F ((c, d]) ≤ F+(d)− F+(c). Using this one shows

that open rays and hence open intervals are measurable. □

1If c is an endpoint of I we consider, of course, only one of these limits.
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Note that, if C is a real number, replacing F by F−+C (or by F++C) yields the same
measure.

If F and G are non-decreasing functions on (a, b) and α, β ∈ [0,∞), then µαF+βG =
αµF + βµG.

7.2.2 Examples. The following basic examples are instructive.

(1) If F is the identity the associate Lebesgue-Stieltjes measure is Lebesgue measure.
(2) If F = χ(x0,∞) the associate Lebesgue-Stieltjes measure is the Dirac measure con-

centrated on {x0}.
7.2.3 Regularity of positive Lebesgue-Stieltjes measures. An argument very similar
to that in 2.3.5 shows that positive Lebesgue-Stieltjes measures are regular.

7.2.4 Complex Lebesgue-Stieltjes measures. If F is of bounded variation, then there
is a complex Borel measure µF on (a, b) such that µF ([c, d)) = F−(d)−F−(c) for all intervals
[c, d) such that [c, d] ⊂ (a, b). The measure µF is called a complex Lebesgue-Stieltjes measure.
Again we say that µF is generated by F .

If F,G ∈ BV((a, b)) and α, β ∈ C, then µαF+βG = αµF + βµG.

7.2.5 Cumulative distribution functions. Suppose µ is a Borel measure, which is finite
on compact sets. If c is a fixed point in (a, b), we call the function defined by

Fµ(x) =


µ([c, x)) if x > c,

0 if x = c,

−µ([x, c)) if x < c

a cumulative distribution function (cdf) or distribution function for short. This function is
of locally bounded variation.

If µ is a finite Borel measure (in particular when it is a probability measure) it is
customary to define

Fµ(x) = µ((a, x)).

In this case Fµ is of bounded variation.
In either case Fµ is left-continuous. Moreover, if µ is a positive measure, then Fµ is

non-decreasing.

7.2.6 Cumulative distribution functions and Lebesgue-Stieltjes measures. Sup-
pose the function F : (a, b) → C is non-decreasing or of bounded variation and µF is the
associated Lebesgue-Stieltjes measure. If c is a fixed point in (a, b), the cumulative distri-
bution function FµF

of µF satisfies FµF
(x) = F−(x)− F−(c) for all x ∈ (a, b).

On the other hand, suppose µ is a Borel measure on (a, b), which is finite on compact
sets, and F is (one of) its cumulative distribution function(s). Then the Lebesgue-Stieltjes
measure µF generated by F satisfies µF (E) = µ(E) for all E ∈ B((a, b)).

Sketch of proof. Assume µ is positive. Clearly µF (I) = µ(I) for all intervals I
with compact closure in (a, b) and hence for all open sets. If E ∈ B((a, b)) we have
µ(E) ≤ µ(U) = µF (U) for any open set U which contains E. Hence µ(E) ≤ inf{µ(U) :
U open and E ⊂ U} = µF (E). Also

µF (E) ≤ µF (U) = µ(U) = µ(E) + µ(U \ E) ≤ µ(E) + µF (U \ E) ≤ µ(E) + ε

for a suitable open set U which contains E on account of the outer regularity of µF . The
general case follows. □
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In summary we see that there is a one-to-one correspondence between positive (or
complex) Lebesgue-Stieltjes measures and non-decreasing left-continuous functions (or left-
continuous functions of bounded variation) which vanish at a given point c ∈ (a, b).

7.2.7 Total variation of Lebesgue-Stieltjes measures. Suppose F is a left-continuous
function of bounded variation. Then the total variation of the complex Lebesgue-Stieltjes
measure µF is given by |µF | = µVF

.

Sketch of proof. Note that VF is a left-continuous, non-decreasing, and bounded
function such that limx↓a VF (x) = 0. Now let G(x) = |µF |((a, x)). Then VF ≤ G. Next
prove that |µF (E)| ≤ µVF

(E) in turn for intervals of the type [c, d), for open intervals, for
open sets and finally for measurable sets. This implies that µG = |µF | ≤ µVF

from which
we obtain G ≤ VF . □

7.2.8 Notation for Lebesgue-Stieltjes integrals. If µF is a Lebesgue-Stieltjes measure
on (a, b) generated by the function F ∈ BVloc((a, b)) and g ∈ L1(|µF |) it is customary to
write ∫

µF

gχE =

∫
E

gdF.

In particular, thinking of x as the identity function which generates Lebesgue measure, an
integral with respect to Lebesgue measure may be written as

∫
gdx.

7.2.9 Integration by parts. Suppose F and G are in BVloc((a, b)). Then the following
integration by parts formulas hold whenever [c, d] ⊂ (a, b).∫

χ[c,d]F
+dG+

∫
χ[c,d]G

−dF = (FG)+(d)− (FG)−(c)

and ∫
χ(c,d)F

+dG+

∫
χ(c,d)G

−dF = (FG)−(d)− (FG)+(c).

Sketch of proof. First suppose that F and G are non-decreasing and note that
µG ⊗ µF is a product measure on [c, d] × [c, d]. Let Q = {(t, u) ∈ [c, d] × [c, d] : t ≥ u} so
that Qu = [u, d] and Qt = [c, t]. Then the baby version of Fubini’s theorem 3.2.2 gives∫

(G+(d)−G−(u))dF (u) =

∫
µG([u, d])dF (u)

=

∫
µF ([c, t])dG(t) =

∫
(F+(t)− F−(c))dG(t),

i.e., the first formula. The complex case follows by an obvious computation. The second
formula (or other similar ones) are proved analogously. □

7.2.10 Consequences of the Lebesgue-Radon-Nikodym theorem for bounded
variation functions. Suppose F is a left-continuous function of bounded variation. Then
the following statements are true.

(1) F is almost everywhere differentiable and F ′ ∈ L1((a, b)) is the Radon-Nikodym
derivative of the absolutely continuous part of µF .

(2) µF ⊥ m if and only if F ′ = 0 almost everywhere.
(3) µF ≪ m if and only if F (d)− F (c) =

∫
m
F ′χ[c,d) whenever c < d.

Here “almost everywhere” is with respect to Lebesgue measure.
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Sketch of proof. Let µF (E) =
∫
m
fχE+ν(E) be the Lebesgue decomposition of µF ,

in particular ν ⊥ m. As a Lebesgue-Stieltjes measure |ν| is regular. By 4.1.1 f ∈ L1((a, b))
and by 6.1.5, using Ej(x) = [x, x+ hj) or [x− hj , x), F

′ = f almost everywhere (regardless
of the choice of the sequence hj), proving the first and second claim. For the third recall
that µF ([c, d)) = F (d)−F (c) which implies immediately the “only if” part of the statement.
To prove the “if” part define λ(E) =

∫
m
|F ′|χE and note that λ ≪ m. Thus 2.6.3 shows

that there is, for every ε > 0, a δ > 0 such that m(U) < δ implies λ(U) < ε. Note that
µF (E) =

∫
m
F ′χE holds for intervals of the type [c, d) and hence for open intervals and open

sets. Now assume m(E) = 0 and choose an open set U such that E ⊂ U , m(U) < δ, and
|µF |(U \ E) < ε. Then |µF (E)| ≤ |µF (U)|+ |µF |(U \ E) < 2ε. □

7.2.11 Lebesgue decomposition of Lebesgue-Stieltjes measures. Suppose µ is a
Lebesgue-Stieltjes measure. Then there are unique Lebesgue-Stieltjes measures µac, µsc,
and µd such that

µ = µac + µsc + µd

where µac is continuous and µac ≪ m, µsc is continuous and µsc ⊥ m, while µd is discrete
and µd ⊥ m.

7.3. Absolutely continuous functions

I ⊂ R denotes an interval of positive length in this section.

7.3.1 Absolutely continuous functions. A complex-valued function defined on an in-
terval I is called absolutely continuous on I if, for every positive ε, there is a positive δ such
that

∑n
j=1 |f(yj) − f(xj)| < ε whenever {(xj , yj) : 1 ≤ j ≤ n} is a collection of pairwise

disjoint intervals in I such that
∑n

j=1(yj − xj) < δ. If f is absolutely continuous on every
compact subinterval of I it is called locally absolutely continuous on I.

The set of locally absolutely continuous functions on I is a complex vector space denoted
by ACloc(I). AC(I), the space of absolutely continuous functions on I, is a subspace of
ACloc(I).

7.3.2 Basic properties of absolutely continuous functions. If f : I → C is absolutely
continuous, then it is uniformly continuous and of locally bounded variation on I. In par-
ticular, absolutely continuous functions are differentiable almost everywhere.

The product of two locally absolutely continuous functions is again locally absolutely
continuous. Thus ACloc(I) is an algebra over C.

If f is absolutely continuous, then so are Re(f) and Im(f).

7.3.3 Compositions of absolutely continuous functions. A function h : (A,B) → R is
called Lipschitz continuous, if there is a positive number C such that |h(x)−h(y)| ≤ C|x−y|
whenever x, y ∈ (A,B). Any Lipschitz continuous function is absolutely continuous.

Suppose g : (α, β) → (A,B) is absolutely continuous, f : (a, b) → (α, β) is absolutely
continuous and strictly increasing, and h : (A,B) → R is Lipschitz continuous. Then
g ◦ f : (a, b) → (A,B) and h ◦ g : (α, β) → R are also absolutely continuous.

7.3.4 The variation function of an absolutely continuous function. If f : I → C is
(locally) absolutely continuous, then so is any of its variation functions.

7.3.5 Absolutely continuous functions and absolutely continuous measures. Sup-
pose F is a left-continuous function of bounded variation. Then F is absolutely continuous
if and only if µF ≪ m. In particular,

∫
g dF =

∫
gF ′ dx whenever g ∈ L1(|µF |).
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Sketch of proof. Recall that µF ≪ m if and only if |µF | ≪ m. For the “if” direction
of the claim use 2.6.3. For the “only if” direction use that VF is locally absolutely continuous
and the outer regularity of m. □

7.3.6 The fundamental theorem of calculus. Let F : [a, b] → C be a measurable
function. Then F is absolutely continuous on [a, b] if and only if F is differentiable almost
everywhere, F ′ is integrable, and

F (x′)− F (x) =

∫
m

F ′χ(x,x′)

whenever a ≤ x ≤ x′ ≤ b.

7.3.7 More on the variation function. Let I ⊂ R be an interval and [x0, x] ⊂ I.
Suppose F : I → R is left-continuous. Then the following statements hold:

(1) If F is non-decreasing, then
∫
m
F ′χ(x0,x) ≤ F (x)− F (x0).

(2) If F is of locally bounded variation, then
∫
m
|F ′|χ(x0,x) ≤ VF (x)− VF (x0).

(3) If F is locally absolutely continuous, then
∫
m
|F ′|χ(x0,x) = VF (x) − VF (x0). In

particular, V ′
F = |F ′| almost everywhere with respect to Lebesgue measure.

7.4. Singular functions

In this section (a, b) is a non-empty open interval in R. We allow a = −∞ and b = ∞.

7.4.1 Jump functions. A jump function is a function F : (a, b) → C of the form

F (x) = c+

{∑
xn≥0(gnχ(xn,∞)(x) + hnχ[xn,∞)(x)) if x ≥ 0,

−
∑

xn<0(gnχ(−∞,xn](x) + hnχ(−∞,xn)(x)) if x < 0

where c ∈ C, xn is a sequence of pairwise distinct numbers in (a, b), and gn, hn are sequences
of complex numbers such that

∑
xn∈[c,d](|gn|+ |hn|) <∞ whenever a < c < d < b. Loosely

speaking one may say that a jump function is a function which only changes through jump
discontinuities. Note that

F (xn)− lim
x↑xn

F (x) = hn and lim
x↓xn

F (x)− F (xn) = gn.

In particular, hn = 0 if and only if F is left-continuous at xn and gn = 0 if and only if F is
right-continuous at xn. Every jump function is of locally bounded variation.

Theorem. If f : (a, b) → C is a function of locally bounded variation, then there is a
jump function F : (a, b) → C such that f − F is a continuous function of locally bounded
variation. Moreover, f is the sum of a left-continuous function and a right-continuous
function.

Sketch of proof. Denote the points of discontinuity of f by xn, n ∈ Z where Z ⊂ Z
is an appropriate index set. Moreover, set hn = f(xn)− f−(xn) and gn = f(xn)− f+(xn).
Define F as in (7.4.1). Then f − F is a continuous function of locally bounded variation.
Since F itself is the sum of a left-continuous function and a right-continuous function the
same is true for f . □

7.4.2 Bounded variation and differentiability. A function of bounded variation is
almost everywhere differentiable.
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Sketch of proof. This was proved in 7.2.10 for left-continuous functions of bounded
variation. A slight modification of that proof shows that right-continuous functions of
bounded variation are also almost everywhere differentiable. Any function of bounded vari-
ation is a sum of a left-continuous one and a right-continuous one. □

7.4.3 Singular functions. Suppose F is a function of bounded variation. Then F ′ = 0
almost everywhere if and only if µF ⊥ m. A function whose derivative is zero almost every-
where is called a singular function. Continuous functions of bounded variation for which
µF ⊥ m are called singular continuous function. Obviously, jump functions are singular.

The most famous example of a singular continuous function is the Cantor function, also
called the devil’s staircase. It maps [0, 1] onto [0, 1], is non-decreasing and continuous and
its derivative is zero almost everywhere. The set where the derivative is not zero is the
famous Cantor set. Its image under the Cantor function is the whole interval [0, 1]. The
graph of the Cantor function adorns the front of these notes.

7.4.4 Jump functions and discrete measures. Suppose F is a left-continuous function
and either of bounded variation or else non-decreasing. Then µF is discrete if and only if F
is a jump function.

7.4.5 Lebesgue decomposition of functions of bounded variation. If F : (a, b) → C
has finite variation on (a, b) then there are functions Fac, Fsc, Fd : (a, b) → C such that

F = Fac + Fsc + Fd,

Fac is absolutely continuous, Fsc is singular continuous, and Fd is a jump function. Fac,
Fsc, and Fd are unique except for additive constants. In particular, if F is an absolutely
continuous and singular function, then F is constant.

7.5. Exercises

7.1. Determine the σ-algebra and the measure when F is the Heaviside function (which
equals 0 on (−∞, 0] and 1 on (0,∞)).

7.2. Show that Vf (a, b) = |f(b)− f(a)| if f is monotone.

7.3. Show that the characteristic function of Q is not of bounded variation not even
locally.

7.4. Show that the sine function is not of bounded variation but that it is of locally
bounded variation.

7.5. Suppose that f : (a, b) → (α, β) and g : (α, β) → R are absolutely continuous.
Show that f ◦ g is absolutely continuous if and only if it is of bounded variation.





CHAPTER 8

Additional Topics

8.1. The substitution rule

8.1.1 Images of measures. Suppose (X,M, µ) is a measure space, Y is a set, and
T : X → Y is a function. Then Ω = {E ⊂ Y : T−1(E) ∈ M} is a σ-algebra in Y and
τ : E 7→ µ(T−1(E)) is a measure defined on Ω. Of course, τ is a positive measure if µ is. If
Y is a topological space and T is measurable, then B(Y ) ⊂ Ω.

Theorem. If µ and τ are positive measures as above and if g : Y → C (or g : Y →
[0,∞]) is an integrable (or a positive measurable) function with respect to Ω, then g ◦ T is
a measurable function with respect to M. In this case∫

τ

g =

∫
µ

g ◦ T.

If T is injective, the hypotheses that µ and τ are positive may be dropped.

Sketch of proof. For positive measures show this, in turn, for g being a character-
istic function, a simple function, a positive function, and an integrable function.

The injectivity of T implies that the sets Ej = {Tx : x ∈ Fj} are pairwise disjoint
if the Fj are and that T−1(Ej) = Fj . Given E and pairwise disjoint sets Fj so that⋃∞

j=1 Fj = T−1(E) we get now

∞∑
j=1

|µ(Fj)| =
∞∑
j=1

|τ(Ej)| ≤ |τ |(
∞⋃
j=1

Ej) ≤ |τ |(E)

and hence |µ|(T−1(E)) ≤ |τ |(E). The opposite inequality |τ |(E) ≤ |µ|(T−1(E)) follows
even without assuming that T is injective. Now observe that∫

|µ|
(hχE) ◦ T =

∫
|τ |
hχE = τ(E) = µ(T−1(E)) =

∫
µ

χE ◦ T =

∫
|µ|
k(χE ◦ T )

where h = (τ/|τ |) and k = (µ/|µ|). Thus k = h ◦ T and
∫
τ
g =

∫
µ
g ◦ T . □

8.1.2 The area under the Gaussian bell curve.∫
m

e−x2

=
√
π.

Sketch of proof. By Fubini’s theorem we are done if we can show that∫
m2

e−x2−y2

= π.

Now let T : R2 → [0,∞) : (x, y) 7→ π(x2 + y2) and use Theorem 8.1.1. □

43
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8.1.3 Transformations of Lebesgue-Stieltjes measures. Suppose (a, b) and (α, β) are
real intervals. If F : (α, β) → C is left-continuous and of bounded variation and T : (a, b) →
(α, β) is continuous and bijective (and hence strictly monotone), then G = F ◦T : (a, b) → C
is also left-continuous and of bounded variation.

Now let µF and µG denote the Lebesgue-Stieltjes measures associated with F and G.
If g ∈ L1(|µF |), then g ◦ T ∈ L1(|µG|) and∫

µF

g = ±
∫
µG

g ◦ T

where one has to choose the positive sign if T is strictly increasing and the negative if it is
strictly decreasing.

Sketch of proof. Define τ(E) = µG(T
−1(E)) as in 8.1.1 and, for some c ∈ (α, β), set

H(y) = τ([c, y)) for y ≥ c and H(y) = −τ([y, c)) for y < c as in 7.2.5. Since T is bijective we
get H(y) = ±(F∓(y)− F∓(c)) which proves that τ = ±µF . Now apply Theorem 8.1.1 □

8.1.4 The classical substitution rule. Suppose T : (a, b) → (α, β) is absolutely contin-
uous, strictly increasing and surjective. Then∫

m

χ(α,β)g =

∫
m

χ(a,b)(g ◦ T )T ′

whenever g ∈ L1(α, β).

Sketch of proof. In 8.1.3 choose F to be the identity on (α, β) so that G = T .
According to 7.3.5 µT is absolutely continuous with respect to m. From 4.2.2 we obtain∫
m
χ(α,β)g =

∫
m
χ(a,b)(g ◦ T )h where h is the Radon-Nikodym derivative of µT with respect

to m. Now apply 6.1.5. □

8.1.5 The substitution rule (general version). Suppose X and Y are topological
spaces, µ and ν are positive measures defined on B(X) and B(Y ), respectively, and T : X →
Y is a surjective measurable function. We also require the following

(1) µ and ν are σ-finite, in fact there exist An ∈ B(X) such that
⋃∞

n=1An = X and
µ(T−1(T (An))) <∞.

(2) µ(E) = 0 implies ν(T (E)) = 0 for all E ∈ B(X).

Then (hg) ◦ T ∈ L1(µ) whenever g ∈ L1(ν). Moreover,∫
ν

g =

∫
µ

(hg) ◦ T

where h is the Radon-Nikodym derivative of ν with respect to the measure τ : E 7→
µ(T−1(E)) introduced in 8.1.1.

Sketch of proof. Since T is surjective requirement (2) shows that ν ≪ τ . Require-
ment (1) implies that τ is σ-finite. Hence, by 4.2.2,

∫
ν
g =

∫
τ
gh for some measurable

function h : Y → [0,∞]. Thus
∫
ν
g =

∫
τ
gh =

∫
µ
(gh) ◦ T by 8.1.1. □

8.1.6 Linear Transformations in Rd. Let T be a linear invertible transformation from
Rd to Rd and g a Borel measurable function on Rd. Then∫

md

g = |det(T )|
∫
md

g ◦ T
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whenever g : Rd → C is integrable. This holds, in particular, for translations and rotations
which have det(T ) = 1.

Sketch of proof. We begin with some basic facts from Linear Algebra. Denoting
the canonical basis of Rd by e1, ..., ed define the transformations T1, T2, and T3 by

(1) T1e1 = te1 where t ̸= 0 and T1ek = ek for k ≥ 2,
(2) T2e1 = e1 + e2 and T2ek = ek for k ≥ 2, and
(3) T3ek = eπ(k) where π is a permutation of {1, ..., d}.

It is well-known that every linear transformation T is a composition of these three types
and that the determinant of T is the product of the determinants of the factors. We have
det(T1) = t, det(T2) = 1, and det(T3) = ±1, depending on the parity of π. If Q is a
rectangular box of volume v then T1(Q) and T3(Q) are again such boxes of volume |t|v and
v, respectively, while T2(Q) is a parallelepiped of volume v. Hence we get in summary, that
m(T (Q)) = |detT |m(Q).

Now, if m(E) = 0, then there is countable collection of disjoint open boxes whose total
measure is arbitrarily small. It follows that m(T (E)) = 0 and hence that the hypotheses
of 8.1.5 are satisfied. In particular, m ≪ τ where τ = m(T−1(·)) and we need to deter-
mine the Radon-Nikodym derivative of m with respect to τ . Since m(E) = 0 implies also
m(T−1(E)) = 0 we have τ ≪ m, too, so that, by 4.1.5, (m/τ) is the reciprocal of (τ/m). We
compute the latter with the help of 6.1.5. For a > 0 let C(x, a) be the cube Xd

k=1(xk, xk+a).
The cubes C(x, a) shrink nicely to x as a tends to 0. Since τ(C(x, a)) = m(T−1(C(x, a))) =
det(T−1)m(C(x, a)) we get (τ/m)(x) = lima→0 det(T

−1) = 1/ det(T ). □

8.1.7 Differentiable Transformations in Rd. Let T be a map from an open set V ⊂ Rd

to Rd and x0 a point in V . If there is a linear transformation A(x0) : Rd → Rd such that

lim
x→x0

|T (x)− T (x0)−A(x0)(x− x0)|
|x− x0|

= 0

then T is called differentiable at x0 and T ′(x0) = A(x0) is called the derivative of T at x0.
In particular, if T is a linear transformation, then A(x0) = T for all x0 ∈ Rd.

If T is an injective transformation which is differentiable everywhere on V , then∫
md

χT (V )g =

∫
md

χV (g ◦ T )|det(T ′)|

whenever g ∈ L1(md).
We shall not prove this theorem but compare with 8.1.4 in the case d = 1 and with

8.1.6 in the case where T is linear and invertible.

8.2. Convolutions

8.2.1 Convolutions. Let f and g be two complex-valued functions on R. We define the
convolution f ∗ g of f and g by

(f ∗ g)(x) =
∫
m(t)

f(x− t)g(t)

whenever the integral exists.
Define F by F (x, t) = f(x− t)g(t). According to 2.1.2 F is Borel measurable, at least

if f and g are. If f and g are merely Lebesgue measurable, then, by 2.1.8, there are Borel
functions f0 and g0 which are equal to f and g, respectively, almost everywhere with respect
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to m. Let F0(x, t) = f0(x − t)g0(t) and note that F = F0 almost everywhere with respect
to m2. Hence F is Lebesgue measurable.

Now suppose f , g, and h are Lebesgue-measurable. Then f ∗ g = g ∗ f if either of these
exists. Similarly (f ∗ g) ∗ h = f ∗ (g ∗ h).
8.2.2 Young’s inequality. If f ∈ L1(R), g ∈ Lp(R), 1 ≤ p ≤ ∞, then∫

m(t)

|f(x− t)g(t)| <∞

for almost every x ∈ R, f ∗ g ∈ Lp(R) and
∥f ∗ g∥p ≤ ∥f∥1∥g∥p.

Sketch of proof. Define, as above, F (x, t) = f(x−t)g(t). First assume p = 1. Since,
by 8.1.4, ∫

m(t)

∫
m(x)

|F (x, t)| = ∥g∥1|∥f∥1

we have F ∈ L1(m⊗m). An application of Fubini’s theorem gives the result for p = 1.
If p > 1, write |f(x− t)| = |f(x− t)|1/q|f(x− t)|1/p where q is the exponent conjugate

to p. Then apply Hölder’s inequality to reduce this case to the previous one. □

8.3. Exercises

8.1. Why does the formula in 8.1.4 involve |T ′| instead of the expected T ′ in the classical
substitution rule?



APPENDIX A

Background

A.1. Topological and metric spaces

A.1.1 Topological spaces. Let X be a set. A subset τ of the power set P(X) of X is
called a topology in X if it has the following three properties: (i) ∅, X ∈ τ ; (ii) if σ ⊂ τ ,
then

⋃
A∈σ A ∈ τ ; and (iii) if A,B ∈ τ , then A ∩B ∈ τ .

If τ is a topology in X, then (X, τ) (or simply X, if no confusion can arise) is called
a topological space. The elements of τ are called open sets. Their complements are called
closed sets.

A neighborhood of x ∈ X is an open set containing x.

A.1.2 Base of a topology. A subset β of the power set P(X) of X is called a base of a
topology, if (i)

⋃
B∈β B = X and (ii) for each x ∈ B1 ∩ B2 there is an element B ∈ β such

that x ∈ B ⊂ B1 ∩ B2 whenever B1, B2 ∈ β. The set of all unions of elements of β is then
a topology. It is the smallest topology containing β.

β ⊂ τ is a base of a given topology τ , if for every x ∈ X and every U ∈ τ which contains
x there is a V ∈ β such that x ∈ V ⊂ U .

A.1.3 Relative topology. Let (X, τ) be a topological space and Y a subset of X. Let
τ ′ = {U ∩ Y : U ∈ τ}. Then (Y, τ ′) is a topological space. τ ′ is called the relative topology
on Y (inherited from (X, τ)).

A.1.4 Product topology. Let (X, τ) and (Y, σ) be topological spaces. The set {U × V :
U open in X and V open in Y } forms the base of a topology ρ in X × Y . The topology ρ
is called the product topology of τ and σ.

A.1.5 Metric and pseudo-metric spaces. Let X be a set. If the function d : X ×X →
[0,∞) satisfies
(1) d(x, x) = 0 for all x ∈ X,
(2) d(x, y) = d(y, x) for all x, y ∈ X,
(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X,
it is a called a pseudo-metric on X and (X, d) (or simply X, if no confusion can arise) is
called a pseudo-metric space.

If instead of property (1) we have
(1’) d(x, y) = 0 if and only if x = y,
then d is a called a metric on X and (X, d) is called a metric space.

Every metric space is a pseudo-metric space and every pseudo-metric space is a topo-
logical space whose topology is generated by the base consisting of the open balls B(x, r) =
{y ∈ X : d(x, y) < r}, x ∈ X, r ≥ 0.

Suppose (X, d) is a pseudo-metric space. If we call x and y related if d(x, y) = 0 we
obtain an equivalence relation. Denoting the equivalence class of x by [x] one may show
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that ([x], [y]) 7→ d(x, y) is well defined and determines a metric on the set of equivalence
classes.

A.1.6 Sequences in pseudo-metric spaces. Let (X, d) be a pseudo-metric space. A
sequence x : N → X is said to converge to x0 ∈ X, if for every positive ε there is a number
N such that d(x(n), x0) < ε whenever n > N . The point x0 is then called a limit of the
sequence x. Limits in metric spaces are unique. In pseudo-metric spaces, however, they
need not be unique.

A sequence x : N → X is called a Cauchy sequence if for every positive ε there is a
number N such that d(x(n), x(m)) < ε whenever n,m > N .

A pseudo-metric space X is called complete if every Cauchy sequence in X converges.
A complete pseudo-metric space X containing the pseudo-metric space Y as a dense

subset is called the completion of X.

A.2. Functional Analysis

A.2.1 Semi-normed, normed, and Banach spaces. Let X be a complex vector space.
If the function n : X → [0,∞) satisfies
(1) n(αx) = |α|n(x) for all α ∈ C and all x ∈ X,
(2) n(x+ y) ≤ n(x) + n(y) for all x, y ∈ X,
then it is called a semi-norm on X. Note that these properties imply n(0) = 0 and n(x) ≥ 0
for all x ∈ X.

If a semi-norm also satisfies
(3) n(x) = 0 only if x = 0
then it is called a norm and (X,n) (or simply X, if no confusion can arise) is called a normed
vector space.

Note that every vector space with a semi-norm n is a pseudo-metric space with the
pseudo-metric d(x, y) = n(x − y). If n is even a norm, then (X, d) is a metric space. A
complete normed vector space is called a Banach space.

Suppose (X,n) is a vector space with a semi-norm n. If we call x and y related if
n(x − y) = 0 we obtain an equivalence relation. Denoting the equivalence class of x by
[x] one may show that [x] 7→ n(x) is well defined and determines a norm on the set of
equivalence classes (which is a vector space upon proper definition of addition and scalar
multiplication). Of course, the set of these equivalence classes is also a metric space. We
obtain the same metric space, if we first introduce the pseudo-metric space induced by n
and then turn it into a metric space as in A.1.5.

A.2.2 Inner product and Hilbert spaces. Let X be a complex vector space. If the
function p : X ×X → C satisfies
(1) p(x, x) > 0 for all 0 ̸= x ∈ X,
(2) p(αx+ βy, z) = αp(x, z) + βp(y, z) for all x, y, z ∈ X and all α, β ∈ C,
(3) p(x, y) = p(y, x) for all x, y ∈ X,
then it is called an inner product on X and (X, p) is called an inner product space.

Every inner product space is a normed space with the norm n(x) =
√
p(x, x) and hence

a metric space. A complete inner product space is called a Hilbert space.

A.2.3 Linear functionals. A linear functional is a complex-valued function ϕ defined on
a complex vector space V satisfying ϕ(αf + βg) = αϕ(f) + βϕ(g) for all f, g ∈ V and all
α, β ∈ C. A linear functional ϕ on a normed vector space V is called bounded , if there is a
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constant C such that |ϕ(x)| ≤ C∥x∥ for all x ∈ V . The set of all bounded linear functionals
on a normed vector space V is called the dual of V .

A.2.4 Riesz’ representation theorem for linear functionals in a Hilbert space.
This is one of the major facts about Hilbert spaces.

Theorem. Let H be a complex Hilbert space and L a bounded linear functional on H.
Then there exists a unique y ∈ H such that Lx = ⟨x, y⟩ for all x ∈ H. In fact, there is a
one-to-one correspondence between the elements of H and the bounded linear functionals
on H.





Glossary

left-continuous: A function f is called left-continuous, if f(x) = limt↑x f(t).

pairwise disjoint: The elements of a collection of sets are called pairwise disjoint , if the
intersection of any two distinct sets taken from the collection is empty.

right-continuous: A function f is called right-continuous, if f(x) = limt↓x f(t).

totally ordered set: A set is called totally ordered when it is equipped with a binary
relation ≺ satisfying (i) a ≺ b and b ≺ a imply a = b, (ii) a ≺ b and b ≺ c imply a ≺ c, and
(iii) either a ≺ b or b ≺ a.
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List of special symbols

f±: the positive and negative part of a real-valued function f , 4
f±: the right- and left-continuous variants of a function f without discontinuities of the

second kind, 36

B(X): the Borel σ-algebra, 11

χA: the characteristic function of A, i.e., the function assuming the value 1 on A and the
value 0 elsewhere, 2

Ac: the complement of a given set A, 1
C0

c (X): the set of compactly supported continuous functions defined on X, 27

Fσ: an Fσ set is a countable union of closed sets, 11

Gδ: a Gδ set is a countable intersection of open sets, 11

L(R): the Lebesgue σ-algebra of R, 14

Mµ: the maximal function associated with a measure µ, 33
Mf : the maximal function associated with an integrable function f , 33
(X,M): a set and associated σ-algebra, 1
m: Lebesgue measure on R, 14
(X,M, µ): a measurable space with a measure defined on its σ-algebra, 1

P(X): the power set, i.e., the set of all subsets, of X, 1

supp f : the support of a function f , i.e., the closure of the set where f is different from 0,
27
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Index

σ-additivity, 1
σ-algebra, 1

Borel, 11
Lebesgue, 14

σ-compact, 30
σ-finite measure, 11
σ-subadditive, 12

absolutely continuity
of a measure, 17

absolutely continuous, 39
locally, 39

additive, 2
almost all, 4
almost everywhere, 4
average, 6

Banach space, 48
Borel measure, 11
bounded linear functional, 48
bounded variation, 35
locally, 35

canonical representation of a simple
function, 2

Carathéodory’s theorem, 12
Cauchy sequence, 48
closed set, 47
complete pseudo-metric space, 48
completion, 48
completion of a σ-algebra, 11
completion of a positive measure, 11
concentrated, 17
conjugate exponents, 6
conjugate of a functional, 28
convergence in measure, 9
convergence of a sequence, 48
convex, 6

convolution, 45
countable additivity, 1
countable cover, 12
cumulative distribution function, 37

discontinuity of the first kind, 36
discontinuity of the second kind, 36
distribution function, 37
dominated convergence theorem, 5
dual, 49

Egorov’s theorem, 9
essential supremum, 7
essentially bounded, 7
event, 11

Fatou’s lemma, 3
finite measure, 11

generating a Lebesgue-Stieltjes measure,
36, 37

Hölder’s inequality, 6, 7
Hausdorff space, 27
Hilbert space, 48

imaginary part of a measure, 16
inner product, 48
inner product space, 48
integrable, 3
integrable function, 4
integral
of a simple function, 2

Jensen’s inequality, 6
Jordan decomposition, 17
jump discontinuity, 36
jump function, 40

Lebesgue decomposition, 23
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left-continuous, 51
length, 13
limit of a sequence, 48
linear functional, 48
positive, 28

Lipschitz continuous, 39
locally compact, 27
lower Riemann sum, 15
Lusin’s theorem, 31

maximal function, 33
measurable, 4
Lebesgue, 14
set, 1
space, 1

measurable non-negative function, 2
measure, 1
σ-finite, 11
complete, 11
complex, 1, 16
complex Lebesgue-Stieltjes, 37
continuous, 18
counting, 2
Dirac, 2
discrete, 18
finite, 11
Lebesgue, 14
outer, 12
positive, 1
positive Lebesgue-Stieltjes, 36
probability, 11
real, 16
unit mass, 2

measure space, 1
metric, 47
metric space, 47
Minkowski’s inequality, 7
monotone class, 20
monotone functional, 28
monotone measure, 1
monotone set function, 12
mutually singular, 17

negative part of a function, 4
neighborhood, 47
nicely shrinking, 34
norm, 48
normed vector space, 48

open ball, 47
open set, 47

pairwise disjoint, 51
partition of a set, 16
partition of an interval, 14
partition of unity, 27
positive part of a function, 4
product σ-algebra, 19
product measure, 19
product topology, 47
pseudo-metric, 47
pseudo-metric space, 47

Radon functional, 28
Radon-Nikodym derivative, 24
real part of a measure, 16
rectangle
measurable, 19

refinement, 14
common, 14

regular, 12
inner, 12
outer, 12

relative topology, 47
Riemann integrable, 15
Riemann integral, 15
right-continuous, 51

section of a function, 20
section of a set, 19
semi-norm, 48
set
Borel, 11

simple function, 2
singular continuous function, 41
singular function, 41
subadditive
countably, 12

support of a function, 27
supremum
essential, 7

topological space, 47
topology, 47
total variation
of a complex measure, 16
of a measurable set, 16

total variation functional, 29
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totally ordered set, 51

upper Riemann sum, 15
Urysohn’s lemma, 27

vanishing at infinity, 28
variation, 35

variation function, 35

variation of a measure

negative, 17

positive, 17

total, 16

volume, 22
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