${\rm MA~125\text{-}CT,~~CALCULUS~I}$

February 7, 2017

Name (Print last name first):
TEST I
Show all your work! No partial credit will be given for the answer only!
PART I
Part I consists of questions. Clearly write your answer in the space provided after each question. Show all of your your work!
All problems in Part I are 7 points each Question 1
Use the definition of the derivative to show that the derivative of $y = f(x) = 3x^2 + x$ is $f'(x) = 6x + 1$.
Question 2
Find the derivative of $f(x) = x^3 \sin(x)$
Answer:

Question 3

Find t	the	derivative	of	y =	f(x)	=	$\frac{x^2+1}{x+1}.$
--------	-----	------------	----	-----	------	---	----------------------

Answer:

Question 4

Find the derivative of $y = f(x) = \sqrt{x}(3x + x^2)$.

Answer:

Question 5

Find the equation of the tangent line to the graph of $y = f(x) = 2\tan(x)$ at the point a = 0.

Answer:

Question 6

Show that the equation $x\cos(x)+1=0$ has at least one solution on the interval $[0,\pi]$. Hint: use Intermediate Value Theorem.

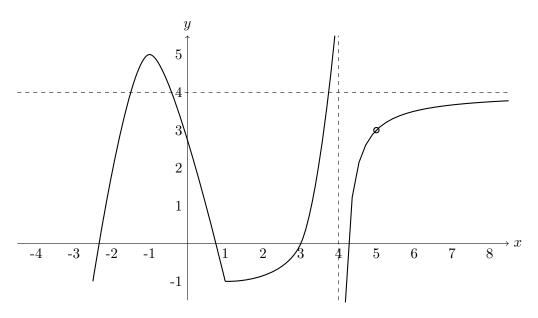
Question 7

Answer:												

PART II

Part II consists of 5 problems. You must show correct reasons to get full credit. Displaying only the final answer (even if correct) without the relevant steps will not get full credit.

Problem 1 (10 points)


Suppose that $S(t) = t^3 - 4t^2 + t$ is the position of a particle at time t (in seconds) on a line. Find:

- (a) the velocity at time t,
- (b) the displacement from t = 0 to t = 2,
- (c) the displacement from t = 2 to t = 3.

Recall that the displacement could be positive or negative depending on the direction of movement.

4

Problem 2 (12 points)

Given the graph of the function y = f(x) above, find:

1.
$$\lim_{x \to -1^-} f(x) =$$

2.
$$\lim_{x \to -1^+} f(x) =$$

$$3. \lim_{x \to -1} f(x) =$$

4.
$$\lim_{x \to 4^-} f(x) =$$

5.
$$\lim_{x \to 4^+} f(x) =$$

$$6. \lim_{x \to 4} f(x) =$$

7.
$$\lim_{x \to 5^-} f(x) =$$

8.
$$\lim_{x \to 5^+} f(x) =$$

$$9. \lim_{x \to 5} f(x) =$$

$$10. \lim_{x \to \infty} f(x) =$$

- 11. State all intervals on which f(x) is continuous.
- 12. State all intervals where f(x) is differentiable.

5

Problem 3 (10 points)

Find all points on the graph of $f(x) = 2x^3 - 9x^2$ where the tangent line is parallel to the line y = -12x.

Problem 4 (10 points)

Define a function

$$f(x) = \begin{cases} \frac{x^2 - x}{x - 1}, & x < 1, \\ kx, & x \ge 1, \end{cases}$$

- a) (8 points) Find a value of k so that f(x) is a continuous function for all real numbers x.
- **b)** (2 points) For the value of k you found, is f(x) differentiable at x = 1? Briefly explain.

Problem 5 (10 points)

Evaluate the following limits. Like always, justify your answers.

$$1. \lim_{x \to \infty} \sqrt{x+3} + \sqrt{x}$$

$$2. \lim_{x \to \infty} \sqrt{x+3} - \sqrt{x}$$

Scratch paper